Search results for: textile reinforced composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3269

Search results for: textile reinforced composite

479 Development of Carrageenan-Psyllium/Montmorillonite Clay Hybrid Hydrogels for Agriculture Purpose

Authors: D. Aydinoglu, N. Karaca, O. Ceylan

Abstract:

Limited water resources on the earth come first among the most alarming issues. In this respect, several solutions from treatment of waste water to water management have been proposed. Recently, use of hydrogels as soil additive, which is one of the water management ways in agriculture, has gained increasing interest. In traditional agriculture applications, water used with irrigation aim, rapidly flows down between the pore structures in soil, without enough useful for soil. To overcome this fact and increase the abovementioned limit values, recently, several natural based hydrogels have been suggested and tested to find out their efficiency in soil. However, most of these researches have dealt with grafting of synthetic acrylate based monomers on natural gelling agents, most probably due to reinforced of the natural gels. These results motivated us to search a natural based hydrogel formulations, not including any synthetic component, and strengthened with montmorillonite clay instead of any grafting polymerization with synthetic monomer and examine their potential in this field, as well as characterize of them. With this purpose, carrageenan-psyllium/ montmorillonite hybrid hydrogels have been successively prepared. Their swelling capacities were determined both in deionized and tap water and were found to be dependent on the carrageenan, psyllium and montmorillonite ratios, as well as the water type. On the other hand, mechanical tests revealed that especially carrageenan and montmorillonite contents have a great effect on gel strength, which is one of the essential features, preventing the gels from cracking resulted in readily outflow of all the water in the gel without beneficial for soil. They found to reach 0.23 MPa. The experiments carried out with soil indicated that hydrogels significantly improved the water uptake capacities and water retention degrees of the soil from 49 g to 85 g per g of soil and from 32 to 67%, respectively, depending on the ingredient ratios. Also, biodegradation tests demonstrated that all the hydrogels undergo biodegradation, as expected from their natural origin. The overall results suggested that these hybrid hydrogels have a potential for use as soil additive and can be safely used owing to their totally natural structure.

Keywords: carrageenan, hydrogel, montmorillonite, psyllium

Procedia PDF Downloads 90
478 Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites

Authors: Jeevan Jyoti, Bhanu Pratap Singh, S. R. Dhakate

Abstract:

In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement.

Keywords: ABS, EMI shielding, multiwalled carbon nanotubes, reduced graphene oxide, graphene, oxide-carbon nanotube (GCNTs), twin screw extruder, multiwall carbon nanotube, electrical conductivity

Procedia PDF Downloads 324
477 Experimental and Theoretical Study on Flexural Behaviors of Reinforced Concrete Cement (RCC) Beams by Using Carbonfiber Reinforcedpolymer (CFRP) Laminate as Retrofitting and Rehabilitation Method

Authors: Fils Olivier Kamanzi

Abstract:

This research Paper shows that materials CFRP were used to rehabilitate 9 Beams and retrofitting of 9 Beams with size (125x250x2300) mm each for M50 grade of concrete with 20% of Volume of Cement replaced by GGBS as a mineral Admixture. Superplasticizer (ForscoConplast SP430) used to reduce the water-cement ratio and maintaining good workability of fresh concrete (Slump test 57mm). Concrete Mix ratio 1:1.56:2.66 with a water-cement ratio of 0.31(ACI codebooks). A sample of 6cubes sized (150X150X150) mm, 6cylinders sized (150ФX300H) mm and 6Prisms sized (100X100X500) mm were cast, cured, and tested for 7,14&28days by compressive, tensile and flexure test; finally, mix design reaches the compressive strength of 59.84N/mm2. 21 Beams were cast and cured for up to 28 days, 3Beams were tested by a two-point loading machine as Control beams. 9 Beams were distressed in flexure by adopting failure up to final Yielding point under two-point loading conditions by taking 90% off Ultimate load. Three sets, each composed of three distressed beams, were rehabilitated by using CFRP sheets, one, two & three layers, respectively, and after being retested up to failure mode. Another three sets were freshly retrofitted also by using CFRP sheets one, two & three layers, respectively, and being tested by a two-point load method of compression strength testing machine. The aim of this study is to determine the flexural Strength & behaviors of repaired and retrofitted Beams by CFRP sheets for gaining good strength and considering economic aspects. The results show that rehabilitated beams increase its strength 47 %, 78 % & 89 %, respectively, to thickness of CFRP sheets and 41%, 51 %& 68 %, respectively too, for retrofitted Beams. The conclusion is that three layers of CFRP sheets are the best applicable in repairing and retrofitting the bonded beams method.

Keywords: retrofitting, rehabilitation, cfrp, rcc beam, flexural strength and behaviors, ggbs, and epoxy resin

Procedia PDF Downloads 67
476 Role of SiOx Interlayer on Lead Oxide Electrodeposited on Stainless Steel for Promoting Electrochemical Treatment of Wastewater Containing Textile Dye

Authors: Hanene Akrout, Ines Elaissaoui, Sabrina Grassini, Daniele Fulginiti, Latifa Bousselmi

Abstract:

The main objective of this work is to investigate the efficiency of depollution power related to PbO₂ layer deposited onto a stainless steel (SS) substrate with SiOx as interlayer. The elaborated electrode was used as anode for anodic oxidation of wastewater containing Amaranth dye, as recalcitrant organic pollutant model. SiOx interlayer was performed using Plasma Enhanced Chemical Vapor Deposition ‘PECVD’ in plasma fed with argon, oxygen, and tetraethoxysilane (TEOS, Si precursor) in different ratios, onto the SS substrate. PbO₂ layer was produced by pulsed electrodeposition on SS/SiOx. The morphological of different surfaces are depicted with Field Emission Scanning Electron Microscope (FESEM) and the composition of the lead oxide layer was investigated by X-Ray Diffractometry (XRD). The results showed that the SiOx interlayer with more rich oxygen content improved better the nucleation of β-PbO₂ form. Electrochemical Impedance Spectroscopy (EIS) measurements undertaken on different interfaces (at optimized conditions) revealed a decrease of Rfilm while CPE film increases for SiOx interlayer, characterized by a more inorganic nature and deposited in a plasma fed by higher O2-to-TEOS ratios. Quantitative determinations of the Amaranth dye degradation rate were performed in terms of colour and COD removals, reaching a 95% and an 80% respectively removal at pH = 2 in 300 min. Results proved the improvement of the degradation wastewater containing the amaranth dye. During the electrolysis, the Amaranth dye solution was sampled at 30 min intervals and analyzed by ‘High-performance Liquid Chromatography’ HPLC. The gradual degradation of the Amaranth dye confirmed by the decrease in UV absorption using the SS/SiOx(20:20:1)/PbO₂ anode, the reaction exhibited an apparent first-order kinetic for electrolysis time of 5 hours, with an initial rate constant of about 0.02 min⁻¹.

Keywords: electrochemical treatment, PbO₂ anodes, COD removal, plasma

Procedia PDF Downloads 169
475 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 241
474 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 113
473 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications

Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro

Abstract:

The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.

Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials

Procedia PDF Downloads 13
472 Poly(Ethylene Glycol)-Silicone Containing Phase Change Polymer for Thermal Energy Storage

Authors: Swati Sundararajan, , Asit B. Samui, Prashant S. Kulkarni

Abstract:

The global energy crisis has led to extensive research on alternative sources of energy. The gap between energy supply and demand can be met by thermal energy storage techniques, of which latent heat storage is most effective in the form of phase change materials (PCMs). Phase change materials utilize latent heat absorbed or released over a narrow temperature range of the material undergoing phase transformation, to store energy. The latent heat can be utilized for heating or cooling purposes. It can also be used for converting to electricity. All these actions amount to minimizing the load on electricity demand. These materials retain this property over repeated number of cycles. Different PCMs differ in the phase change temperature and the heat storage capacities. Poly(ethylene glycol) (PEG) was cross-linked to hydroxyl-terminated poly(dimethyl siloxane) (PDMS) in the presence of cross-linker, tetraethyl orthosilicate (TEOS) and catalyst, dibutyltin dilaurate. Four different ratios of PEG and PDMS were reacted together, and the composition with the lowest PEG concentration resulted in the formation of a flexible solid-solid phase change membrane. The other compositions are obtained in powder form. The enthalpy values of the prepared PCMs were studied by using differential scanning calorimetry and the crystallization properties were analyzed by using X-ray diffraction and polarized optical microscopy. The incorporation of silicone moiety was expected to reduce the hydrophilic character of PEG, which was evaluated by measurement of contact angle. The membrane forming ability of this crosslinked polymer can be extended to several smart packaging, building and textile applications. The detailed synthesis, characterization and performance evaluation of the crosslinked polymer blend will be incorporated in the presentation.

Keywords: phase change materials, poly(ethylene glycol), poly(dimethyl siloxane), thermal energy storage

Procedia PDF Downloads 330
471 Synthesis and Characterization of Lactic Acid Grafted TiO2 Nanocomposites

Authors: Qasar Saleem

Abstract:

The aim of this project was to synthesize and analyze Polylactic acid-grafted TiO2 nanocomposite. When dispersed at the nanoscale TiO2 can behave as see through transparent UV filters and thermomechanical materials. The synthesis plan involved three stages. First, dispersion of TiO2 white powder in water/ethanol solvent system. Second grafting TiO2 surface by oligomers of lactic acid aimed at changing its surface features. Third polymerization of lactic acid monomer with grafted TiO2 in the presence of anhydrous stannous chloride as a catalyst. Polylactic acid grafted-TiO2 nanocomposite was synthesized by melt polycondensation in situ of lactic acid onto titanium oxide (TiO2) nanoparticles surface. The product was characterized by TGA, DSC, FTIR, and UV analysis and degradation observation. An idea regarding bonds between the grafting polymer and surface modified titanium oxide nanoparticles. Characteristics peaks of Ti–carbonyl bond, the related intensities of the Fourier transmission absorption peaks of graft composite, the melt and decomposition behavior stages of Polylactic acid-grafted TiO2 nanocomposite convinced that oligomers of polylactic acid were chemically bonded on the surface of TiO2 nanoparticles. Through grafting polylactic acid, the Polylactic acid grafted -TiO2 sample shown good absorption in UV region and degradation behavior under normal atmospheric conditions. Regaining transparency of degraded white opaque Polylactic acid-grafted TiO2 nanocomposite on heating was another character. Polylactic acid-grafted TiO2 nanocomposite will be a potential candidate in future for biomedical, UV shielding and environment friendly material.

Keywords: condensation, nanocomposites, oligomers, polylactic

Procedia PDF Downloads 179
470 Energy Intensity: A Case of Indian Manufacturing Industries

Authors: Archana Soni, Arvind Mittal, Manmohan Kapshe

Abstract:

Energy has been recognized as one of the key inputs for the economic growth and social development of a country. High economic growth naturally means a high level of energy consumption. However, in the present energy scenario where there is a wide gap between the energy generation and energy consumption, it is extremely difficult to match the demand with the supply. India being one of the largest and rapidly growing developing countries, there is an impending energy crisis which requires immediate measures to be adopted. In this situation, the concept of Energy Intensity comes under special focus to ensure energy security in an environmentally sustainable way. Energy Intensity is defined as the energy consumed per unit output in the context of industrial energy practices. It is a key determinant of the projections of future energy demands which assists in policy making. Energy Intensity is inversely related to energy efficiency; lesser the energy required to produce a unit of output or service, the greater is the energy efficiency. Energy Intensity of Indian manufacturing industries is among the highest in the world and stands for enormous energy consumption. Hence, reducing the Energy Intensity of Indian manufacturing industries is one of the best strategies to achieve a low level of energy consumption and conserve energy. This study attempts to analyse the factors which influence the Energy Intensity of Indian manufacturing firms and how they can be used to reduce the Energy Intensity. The paper considers six of the largest energy consuming manufacturing industries in India viz. Aluminium, Cement, Iron & Steel Industries, Textile Industries, Fertilizer and Paper industries and conducts a detailed Energy Intensity analysis using the data from PROWESS database of the Centre for Monitoring Indian Economy (CMIE). A total of twelve independent explanatory variables based on various factors such as raw material, labour, machinery, repair and maintenance, production technology, outsourcing, research and development, number of employees, wages paid, profit margin and capital invested have been taken into consideration for the analysis.

Keywords: energy intensity, explanatory variables, manufacturing industries, PROWESS database

Procedia PDF Downloads 304
469 Numerical and Experimental Analysis of Stiffened Aluminum Panels under Compression

Authors: Ismail Cengiz, Faruk Elaldi

Abstract:

Within the scope of the study presented in this paper, load carrying capacity and buckling behavior of a stiffened aluminum panel designed by adopting current ‘buckle-resistant’ design application and ‘Post –Buckling’ design approach were investigated experimentally and numerically. The test specimen that is stabilized by Z-type stiffeners and manufactured from aluminum 2024 T3 Clad material was test under compression load. Buckling behavior was observed by means of 3 – dimensional digital image correlation (DIC) and strain gauge pairs. The experimental study was followed by developing an efficient and reliable finite element model whose ability to predict behavior of the stiffened panel used for compression test is verified by compering experimental and numerical results in terms of load – shortening curve, strain-load curves and buckling mode shapes. While finite element model was being constructed, non-linear behaviors associated with material and geometry was considered. Finally, applicability of aluminum stiffened panel in airframe design against to composite structures was evaluated thorough the concept of ‘Structural Efficiency’. This study reveals that considerable amount of weight saving could be gained if the concept of ‘post-buckling design’ is preferred to the already conventionally used ‘buckle resistant design’ concept in aircraft industry without scarifying any of structural integrity under load spectrum.

Keywords: post-buckling, stiffened panel, non-linear finite element method, aluminum, structural efficiency

Procedia PDF Downloads 118
468 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 75
467 Satellite Derived Snow Cover Status and Trends in the Indus Basin Reservoir

Authors: Muhammad Tayyab Afzal, Muhammad Arslan, Mirza Muhammad Waqar

Abstract:

Snow constitutes an important component of the cryosphere, characterized by high temporal and spatial variability. Because of the contribution of snow melt to water availability, snow is an important focus for research on climate change and adaptation. MODIS satellite data have been used to identify spatial-temporal trends in snow cover in the upper Indus basin. For this research MODIS satellite 8 day composite data of medium resolution (250m) have been analysed from 2001-2005.Pixel based supervised classification have been performed and extent of snow have been calculated of all the images. Results show large variation in snow cover between years while an increasing trend from west to east is observed. Temperature data for the Upper Indus Basin (UIB) have been analysed for seasonal and annual trends over the period 2001-2005 and calibrated with the results acquired by the research. From the analysis it is concluded that there are indications that regional warming is one of the factor that is affecting the hydrology of the upper Indus basin due to accelerated glacial melting during the simulation period, stream flow in the upper Indus basin can be predicted with a high degree of accuracy. This conclusion is also supported by the research of ICIMOD in which there is an observation that the average annual precipitation over a five year period is less than the observed stream flow and supported by positive temperature trends in all seasons.

Keywords: indus basin, MODIS, remote sensing, snow cover

Procedia PDF Downloads 359
466 A Single Stage Cleft Rhinoplasty Technique for Primary Unilateral Cleft Lip and Palate 'The Gujrat Technique'

Authors: Diaa Othman, Muhammad Adil Khan, Muhammad Riaz

Abstract:

Without an early intervention to correct the unilateral complete cleft lip and palate deformity, nasal architecture can progress to an exaggerated cleft nose deformity. We present the results of a modified unilateral cleft rhinoplasty procedure ‘the Gujrat technique’ to correct this deformity. Ninety pediatric and adult patients with non-syndromic unilateral cleft lip underwent primary and secondary composite cleft rhinoplasty using the Gujrat technique as a single stage operation over a 10-year period. The technique involved an open rhinoplasty with Tennison lip repair, and employed a combination of three autologous cartilage grafts, seven cartilage-molding sutures and a prolene mesh graft for alar base support. Post-operative evaluation of nasal symmetry was undertaken using the validated computer program ‘SymNose’. Functional outcome and patient satisfaction were assessed using the NOSE scale and ROE (rhinoplasty outcome evaluation) questionnaires. The single group study design used the non-parametric matching pairs Wilcoxon Sign test (p < 0.001), and showed overall good to excellent functional and aesthetic outcomes, including nasal projection and tip definition, and higher scores of the digital SymNose grading system. Objective assessment of the Gujrat cleft rhinoplasty technique demonstrates its aesthetic appeal and functional versatility. Overall it is a simple and reproducible technique, with no significant complications.

Keywords: cleft lip and palate, congenital rhinoplasty, nasal deformity, secondary rhinoplasty

Procedia PDF Downloads 175
465 An Antidiabetic Dietary Defence Weapon: Oats and Milk Based Probiotic Fermented Product

Authors: Rameshwar Singh Seema

Abstract:

In today’s world where diabetes has become an epidemic, our aim was to potentiate the effect of probiotics by integrating probiotics with cereals to formulate composite foods using Lactobacillus rhamnosus GG (LGG) and Lactobacillus casei NCDC19 against type 2 diabetes. After optimizing the product by Response Surface Methodology, it was studied for their effect on induction and progression of type 2 diabetes in HFD-fed Wistar rats. After 9 weeks study, best results were shown by the group fed with oat and milk based product fermented with LGG and L. casei NCDC19 which resulted in a significant decrease in blood glucose, HBA1c, improved OGTT, oxidative stress, cholesterol and triglycerides level during progression study of type 2 diabetes. During induction study also, there was significant reduction in blood glucose level, oxidative stress, cholesterol level and triglycerides level but slightly less as compared to progression study. Real time PCR gene expression studies were done for 5 genes (GLUT-4, IRS-2, ppar-γ, TNF-α, IL-6) whose expression is directly related to type 2 diabetes. The relative fold change expression was increased in case of GLUT-4, IRS-2, ppar-γ and decreased in case of TNF-α and IL-6 during both induction and progression study of diabetes but more significantly during progression study. Hence it was concluded that oat and milk based probiotic fermented product showed the synergistic effect of probiotics and oats especially in case of progression of type 2 diabetes. The benefits of these probiotic formulations may be further validated by clinical trials.

Keywords: type 2 diabetes, LGG, L.casei NCDC19, food science

Procedia PDF Downloads 383
464 Considerations upon Structural Health Monitoring of Small to Medium Wind Turbines

Authors: Nicolae Constantin, Ştefan Sorohan

Abstract:

The small and medium wind turbines are running in quite different conditions as compared to the big ones. Consequently, they need also a different approach concerning the structural health monitoring (SHM) issues. There are four main differences between the above mentioned categories: (i) significantly smaller dimensions, (ii) considerably higher rotation speed, (iii) generally small distance between the turbine and the energy consumer and (iv) monitoring assumed in many situations by the owner. In such conditions, nondestructive inspections (NDI) have to be made as much as possible with affordable, yet effective techniques, requiring portable and accessible equipment. Additionally, the turbines and accessories should be easy to mount, dispose and repair. As the materials used for such unit can be metals, composites and combined, the technologies should be adapted accordingly. An example in which the two materials co-exist is the situation in which the damaged metallic skin of a blade is repaired with a composite patch. The paper presents the inspection of the bonding state of the patch, using portable ultrasonic equipment, able to put in place the Lamb wave method, which proves efficient in global and local inspections as well. The equipment is relatively easy to handle and can be borrowed from specialized laboratories or used by a community of small wind turbine users, upon the case. This evaluation is the first in a row, aimed to evaluate efficiency of NDI performed with rather accessible, less sophisticated equipment and related inspection techniques, having field inspection capabilities. The main goal is to extend such inspection procedures to other components of the wind power unit, such as the support tower, water storage tanks, etc.

Keywords: structural health monitoring, small wind turbines, non-destructive inspection, field inspection capabilities

Procedia PDF Downloads 313
463 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 159
462 The Role of Building Services in Energy Conservation into Residential Buildings

Authors: Osama Ahmed Ibrahim Masoud, Mohamed Ibrahim Mohamed Abdelhadi, Ahmed Mohamed Seddik Hassan

Abstract:

The problem of study focuses on thermal comfort realization in a residential building during hot and dry climate periods consumes a major electrical energy for air conditioning operation. Thermal comfort realization in a residential building during such climate becomes more difficult regarding the phenomena of climate change, and the use of building and construction materials which have the feature of heat conduction as (bricks-reinforced concrete) and the global energy crises. For that, this study aims to how to realize internal thermal comfort through how to make the best use of building services (temporarily used service spaces) for reducing the electrical energy transfer and saving self-shading. In addition, the possibility of reduction traditional energy (fossil fuel) consumed in cooling through the use of building services for reducing the internal thermal comfort and the relationship between them. This study is based on measuring the consumed electrical energy rate in cooling (by using Design-Builder program) for a residential building (the place of study is: Egypt- Suez Canal- Suez City), this design model has lots of alternatives designs for the place of building services (center of building- the eastern front- southeastern front- the southern front- the south-west front, the western front). The building services are placed on the fronts with different rates for determining the best rate on fronts which realizes thermal comfort with the lowest of energy consumption used in cooling. Findings of the study indicate to that the best position for building services is on the west front then the south-west front, and the more the building services increase, the more energy consumption used in cooling of residential building decreases. Recommendations indicate to the need to study the building services positions in the new projects progress to select the best alternatives to realize ‘Energy conservation’ used in cooling or heating into the buildings in general, residential buildings particularly.

Keywords: residential buildings, energy conservation, thermal comfort, building services, temporary used service spaces, DesignBuilder

Procedia PDF Downloads 249
461 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings

Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi

Abstract:

In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.

Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel

Procedia PDF Downloads 209
460 Random Vertical Seismic Vibrations of the Long Span Cantilever Beams

Authors: Sergo Esadze

Abstract:

Seismic resistance norms require calculation of cantilevers on vertical components of the base seismic acceleration. Long span cantilevers, as a rule, must be calculated as a separate construction element. According to the architectural-planning solution, functional purposes and environmental condition of a designing buildings/structures, long span cantilever construction may be of very different types: both by main bearing element (beam, truss, slab), and by material (reinforced concrete, steel). A choice from these is always linked with bearing construction system of the building. Research of vertical seismic vibration of these constructions requires individual approach for each (which is not specified in the norms) in correlation with model of seismic load. The latest may be given both as deterministic load and as a random process. Loading model as a random process is more adequate to this problem. In presented paper, two types of long span (from 6m – up to 12m) reinforcement concrete cantilever beams have been considered: a) bearing elements of cantilevers, i.e., elements in which they fixed, have cross-sections with large sizes and cantilevers are made with haunch; b) cantilever beam with load-bearing rod element. Calculation models are suggested, separately for a) and b) types. They are presented as systems with finite quantity degree (concentrated masses) of freedom. Conditions for fixing ends are corresponding with its types. Vertical acceleration and vertical component of the angular acceleration affect masses. Model is based on assumption translator-rotational motion of the building in the vertical plane, caused by vertical seismic acceleration. Seismic accelerations are considered as random processes and presented by multiplication of the deterministic envelope function on stationary random process. Problem is solved within the framework of the correlation theory of random process. Solved numerical examples are given. The method is effective for solving the specific problems.

Keywords: cantilever, random process, seismic load, vertical acceleration

Procedia PDF Downloads 156
459 Forest Risk and Vulnerability Assessment: A Case Study from East Bokaro Coal Mining Area in India

Authors: Sujata Upgupta, Prasoon Kumar Singh

Abstract:

The expansion of large scale coal mining into forest areas is a potential hazard for the local biodiversity and wildlife. The objective of this study is to provide a picture of the threat that coal mining poses to the forests of the East Bokaro landscape. The vulnerable forest areas at risk have been assessed and the priority areas for conservation have been presented. The forested areas at risk in the current scenario have been assessed and compared with the past conditions using classification and buffer based overlay approach. Forest vulnerability has been assessed using an analytical framework based on systematic indicators and composite vulnerability index values. The results indicate that more than 4 km2 of forests have been lost from 1973 to 2016. Large patches of forests have been diverted for coal mining projects. Forests in the northern part of the coal field within 1-3 km radius around the coal mines are at immediate risk. The original contiguous forests have been converted into fragmented and degraded forest patches. Most of the collieries are located within or very close to the forests thus threatening the biodiversity and hydrology of the surrounding regions. Based on the vulnerability values estimated, it was concluded that more than 90% of the forested grids in East Bokaro are highly vulnerable to mining. The forests in the sub-districts of Bermo and Chandrapura have been identified as the most vulnerable to coal mining activities. This case study would add to the capacity of the forest managers and mine managers to address the risk and vulnerability of forests at a small landscape level in order to achieve sustainable development.

Keywords: forest, coal mining, indicators, vulnerability

Procedia PDF Downloads 362
458 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India

Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar

Abstract:

This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.

Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies

Procedia PDF Downloads 393
457 Parental Involvement and Motivation as Predictors of Learning Outcomes in Yoruba Language Value Concepts among Senior Secondary School Students in Ibadan, Nigeria

Authors: Adeyemi Adeyinka, Yemisi Ilesanmi

Abstract:

This study investigated parental involvement and motivation as predictors of students’ learning outcomes in value concepts in Yoruba language in Ibadan, Nigeria. Value concepts in Yoruba language aimed at teaching moral lessons and transmitting Yoruba culture. However, feelers from schools and the society reported students’ poor achievement in examinations and negative attitude to the subject. Previous interventions focused on teaching strategies with little consideration for student-related factors. The study was anchored on psychosocial learning theory. The respondents were senior secondary II students with mean age of 15.50 ± 2.25 from 20 public schools in Ibadan, Oyo-State. In all, 1000 students were selected (486 males and 514 females) through proportionate to sample size technique. Instruments used were Students’ Motivation (r=0.79), Parental Involvement (r=0.87), and Attitude to Yoruba Value Concepts (r=0.94) scales and Yoruba Value Concepts Achievement Test (r=0.86). Data were analyzed using descriptive statistics, Pearson product moment correlation and Multiple regressions at 0.05 level of significance. Findings revealed a significant relationship between parental involvement (r=0.54) and students’ achievement in and attitude to (r=0.229) value concepts in Yoruba. The composite contribution of parental involvement and motivation to students’ achievement and attitude was significant, contributing 20.3% and 5.1% respectively. The relative contributions of parental involvement to students’ achievement (β = 0.073; t = 1.551) and attitude (β = 0.228; t = 7.313) to value concepts in Yoruba were significant. Parental involvement was the independent variable that strongly predicts students’ achievement in and attitude to Yoruba value concepts. Parents should inculcate indigenous knowledge in their children and support its learning at school.

Keywords: parental involvement, motivation, predictors, learning outcomes, value concepts in Yoruba

Procedia PDF Downloads 164
456 Shear Behavior of Reinforced Concrete Beams Casted with Recycled Coarse Aggregate

Authors: Salah A. Aly, Mohammed A. Ibrahim, Mostafa M. khttab

Abstract:

The amount of construction and demolition (C&D) waste has increased considerably over the last few decades. From the viewpoint of environmental preservation and effective utilization of resources, crushing C&D concrete waste to produce coarse aggregate (CA) with different replacement percentage for the production of new concrete is one common means for achieving a more environment-friendly concrete. In the study presented herein, the investigation was conducted in two phases. In the first phase, the selection of the materials was carried out and the physical, mechanical and chemical characteristics of these materials were evaluated. Different concrete mixes were designed. The investigation parameter was Recycled Concrete Aggregate (RCA) ratios. The mechanical properties of all mixes were evaluated based on compressive strength and workability results. Accordingly, two mixes have been chosen to be used in the next phase. In the second phase, the study of the structural behavior of the concrete beams was developed. Sixteen beams were casted to investigate the effect of RCA ratios, the shear span to depth ratios and the effect of different locations and reinforcement of openings on the shear behavior of the tested specimens. All these beams were designed to fail in shear. Test results of the compressive strength of concrete indicated that, replacement of natural aggregate by up to 50% recycled concrete aggregates in mixtures with 350 Kg/m3 cement content led to increase of concrete compressive strength. Moreover, the tensile strength and the modulus of elasticity of the specimens with RCA have very close values to those with natural aggregates. The ultimate shear strength of beams with RCA is very close to those with natural aggregates indicating the possibility of using RCA as partial replacement to produce structural concrete elements. The validity of both the Egyptian Code for the design and implementation of Concrete Structures (ECCS) 203-2007 and American Concrete Institute (ACI) 318-2011Codes for estimating the shear strength of the tested RCA beams was investigated. It was found that the codes procedures gives conservative estimates for shear strength.

Keywords: construction and demolition (C&D) waste, coarse aggregate (CA), recycled coarse aggregates (RCA), opening

Procedia PDF Downloads 367
455 Biopics in Hindi Film Industry and the Youth Perception

Authors: Divyani Redhu, Sachin Bharti

Abstract:

India, as a nation, has always been known for its concept of ‘Unity in Diversity’, and the same ideology can very well be witnessed in the kind of cinema that is produced in India. From mythological films in the beginning to historical films and from comedy to the all-entertaining commercial ‘masala’ films, the Indian film industry has time and again catered its viewers with varied flavors on screen. Needless to say that for a film industry which stood at a total value of 183.2 billion in the year 2019 as per the Statista Portal 2020, there is no dearth of viewers and at the same time, to cater to the needs of a humongous viewer base, variety in content needs to be offered. Particularly looking at the filmography of the Hindi film industry of the last decade, undoubtedly, the genre that has risen like a shining star is that of Biopics. Hindi cinema’s never-ending fascination with the biopic has grown stronger and become more evident in recent times. The success of biographical films like Jodha Akbar, The Dirty Picture, Mary Kom, Bajirao Mastani, Neerja, Aligarh, Azhar, etc. seems to have truly reinforced the industry’s faith and put Bollywood on a biopic spree. From films on the lives of sportspersons to those of the actors, gangsters, social workers, historical figures, and extraordinary citizens, the industry has left no stone unturned till now. Also, many more biopics are in the pipeline slated to be released soon. Also, when the film viewers are concerned, India is known as the youngest nation in the world where youth constituted about 34% of the country’s population in 2019, making India the country with maximum young people. Thus, the attempt of the researchers is to understand the perception of youth (15-24 years of age as per the UN) towards the biopic films. The above-mentioned study would be quantitative in nature. For the same, a survey would be conducted in the capital city of India, i.e., Delhi. The tool of the survey would be a questionnaire, and the number of respondents would be 200. The results derived from the study would focus on the film viewing preferences of youth in Delhi, the popularity of biopic films among the youth, reasons for watching biopic films and their overall perception about the same, etc.

Keywords: biopics, Delhi, Hindi cinema, India, youth

Procedia PDF Downloads 89
454 Infrastructure Change Monitoring Using Multitemporal Multispectral Satellite Images

Authors: U. Datta

Abstract:

The main objective of this study is to find a suitable approach to monitor the land infrastructure growth over a period of time using multispectral satellite images. Bi-temporal change detection method is unable to indicate the continuous change occurring over a long period of time. To achieve this objective, the approach used here estimates a statistical model from series of multispectral image data over a long period of time, assuming there is no considerable change during that time period and then compare it with the multispectral image data obtained at a later time. The change is estimated pixel-wise. Statistical composite hypothesis technique is used for estimating pixel based change detection in a defined region. The generalized likelihood ratio test (GLRT) is used to detect the changed pixel from probabilistic estimated model of the corresponding pixel. The changed pixel is detected assuming that the images have been co-registered prior to estimation. To minimize error due to co-registration, 8-neighborhood pixels around the pixel under test are also considered. The multispectral images from Sentinel-2 and Landsat-8 from 2015 to 2018 are used for this purpose. There are different challenges in this method. First and foremost challenge is to get quite a large number of datasets for multivariate distribution modelling. A large number of images are always discarded due to cloud coverage. Due to imperfect modelling there will be high probability of false alarm. Overall conclusion that can be drawn from this work is that the probabilistic method described in this paper has given some promising results, which need to be pursued further.

Keywords: co-registration, GLRT, infrastructure growth, multispectral, multitemporal, pixel-based change detection

Procedia PDF Downloads 106
453 An Approach towards Designing an Energy Efficient Building through Embodied Energy Assessment: A Case of Apartment Building in Composite Climate

Authors: Ambalika Ekka

Abstract:

In today’s world, the growing demand for urban built forms has resulted in the production and consumption of building materials i.e. embodied energy in building construction, leading to pollution and greenhouse gas (GHG) emissions. Therefore, new buildings will offer a unique opportunity to implement more energy efficient building without compromising on building performance of the building. Embodied energy of building materials forms major contribution to embodied energy in buildings. The paper results in an approach towards designing an energy efficient apartment building through embodied energy assessment. This paper discusses the trend of residential development in Rourkela, which includes three case studies of the contemporary houses, followed by architectural elements, number of storeys, predominant material use and plot sizes using primary data. It results in identification of predominant material used and other characteristics in urban area. Further, the embodied energy coefficients of various dominant building materials and alternative materials manufactured in Indian Industry is taken in consideration from secondary source i.e. literature study. The paper analyses the embodied energy by estimating materials and operational energy of proposed building followed by altering the specifications of the materials based on the building components i.e. walls, flooring, windows, insulation and roof through res build India software and comparison of different options is assessed with consideration of sustainable parameters. This paper results that autoclaved aerated concrete block only reaches the energy performance Index benchmark i.e. 69.35 kWh/m2 yr i.e. by saving 4% of operational energy and as embodied energy has no particular index, out of all materials it has the highest EE 23206202.43  MJ.

Keywords: energy efficient, embodied energy, EPI, building materials

Procedia PDF Downloads 151
452 Gellan Gum/Gamma-Polyglutamic Acid and Glycerol Composited Membrane for Guiding Bone Regeneration

Authors: Chi-Chang Lin, Jiun-Yan Chiu

Abstract:

Periodontal disease, oral cancer relating trauma is the prominent factor devastating bone tissue that is crucial to reestablishing in clinical. As we know, common symptom, osteoporosis, and infection limiting the ability of the bone tissue to recover cause difficulty before implantation therapy. Regeneration of bone tissue is the fundamental therapy before surgical processes. To promote the growth of bone tissue, many commercial products still have sophisticated problems that need to overcome. Regrettably, there is no available material which is apparently preferable for releasing and controlling of loading dosage, or mitigating inflammation. In our study, a hydrogel-based composite membrane has been prepared by using Gellan gum (GG), gamma-polyglutamic acid (γ-PGA) and glycerol with simple sol-gel method. GG is a natural material that is massively adopted in cartilage. Unfortunately, the strength of pure GG film is a manifest weakness especially under simulating body fluidic conditions. We utilize another biocompatible material, γ-PGA as cross-linker which can form tri-dimension structure that enhancing the strength. Our result indicated the strength of pure GG membrane can be obviously improved by cross-linked with γ-PGA (0.5, 0.6, 0.7, 0.8, 0.9, 1.0 w/v%). Besides, blending with glycerol (0, 1.0, 2.0, 3.0 w/v%) can significantly improve membrane toughness that corresponds to practical use. The innovative composited hydrogel made of GG, γ-PGA, and glycerol is attested with neat results including elongation and biocompatibility that take the advantage of extension covering major trauma. Recommendations are made for treatment to build up the foundation of bone tissue that would help patients to escape from the suffering and shorten the amount of time in recovery.

Keywords: bone tissue, gellan gum, regeneration, toughness

Procedia PDF Downloads 112
451 Subdued Electrodermal Response to Empathic Induction Task in Intimate Partner Violence (IPV) Perpetrators

Authors: Javier Comes Fayos, Isabel Rodríguez Moreno, Sara Bressanutti, Marisol Lila, Angel Romero Martínez, Luis Moya Albiol

Abstract:

Empathy is a cognitive-affective capacity whose deterioration is associated with aggressive behaviour. Deficient affective processing is one of the predominant risk factors in men convicted of intimate partner violence (IPV perpetrators), since it makes their capacity to empathize very difficult. The objective of this study is to compare the response of electrodermal activity (EDA), as an indicator of emotionality, to an empathic induction task, between IPV perpetrators and men without a history of violence. The sample was composed of 51 men who attended the CONTEXTO program, with penalties for gender violence under two years, and 47 men with no history of violence. Empathic induction was achieved through the visualization of 4 negative emotional-eliciting videos taken from an emotional induction battery of videos validated for the Spanish population. The participants were asked to actively empathize with the video characters (previously pointed out). The psychophysiological recording of the EDA was accomplished by the "Vrije Universiteit Ambulatory Monitoring System (VU-AMS)." An analysis of repeated measurements was carried out with 10 intra-subject measurements (time) and "group" (IPV perpetrators and non-violent perpetrators) as the inter-subject factor. First, there were no significant differences between groups in the baseline AED levels. Yet, a significant interaction between the “time” and “group” was found with IPV perpetrators exhibiting lower EDA response than controls after the empathic induction task. These findings provide evidence of a subdued EDA response after an empathic induction task in IPV perpetrators with respect to men without a history of violence. Therefore, the lower psychophysiological activation would be indicative of difficulties in the emotional processing and response, functions that are necessary for the empathic function. Consequently, the importance of addressing possible empathic difficulties in IPV perpetrator psycho-educational programs is reinforced, putting special emphasis on the affective dimension that could hinder the empathic function.

Keywords: electrodermal activity, emotional induction, empathy, intimate partner violence

Procedia PDF Downloads 165
450 Audio-Lingual Method and the English-Speaking Proficiency of Grade 11 Students

Authors: Marthadale Acibo Semacio

Abstract:

Speaking skill is a crucial part of English language teaching and learning. This actually shows the great importance of this skill in English language classes. Through speaking, ideas and thoughts are shared with other people, and a smooth interaction between people takes place. The study examined the levels of speaking proficiency of the control and experimental groups on pronunciation, grammatical accuracy, and fluency. As a quasi-experimental study, it also determined the presence or absence of significant changes in their speaking proficiency levels in terms of pronouncing the words correctly, the accuracy of grammar and fluency of a language given the two methods to the groups of students in the English language, using the traditional and audio-lingual methods. Descriptive and inferential statistics were employed according to the stated specific problems. The study employed a video presentation with prior information about it. In the video, the teacher acts as model one, giving instructions on what is going to be done, and then the students will perform the activity. The students were paired purposively based on their learning capabilities. Observing proper ethics, their performance was audio recorded to help the researcher assess the learner using the modified speaking rubric. The study revealed that those under the traditional method were more fluent than those in the audio-lingual method. With respect to the way in which each method deals with the feelings of the student, the audio-lingual one fails to provide a principle that would relate to this area and follows the assumption that the intrinsic motivation of the students to learn the target language will spring from their interest in the structure of the language. However, the speaking proficiency levels of the students were remarkably reinforced in reading different words through the aid of aural media with their teachers. The study concluded that using an audio-lingual method of teaching is not a stand-alone method but only an aid of the teacher in helping the students improve their speaking proficiency in the English Language. Hence, audio-lingual approach is encouraged to be used in teaching English language, on top of the chalk-talk or traditional method, to improve the speaking proficiency of students.

Keywords: audio-lingual, speaking, grammar, pronunciation, accuracy, fluency, proficiency

Procedia PDF Downloads 38