Search results for: stratified turbulence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 804

Search results for: stratified turbulence

624 3D CFD Modelling of the Airflow and Heat Transfer in Cold Room Filled with Dates

Authors: Zina Ghiloufi, Tahar Khir

Abstract:

A transient three-dimensional computational fluid dynamics (CFD) model is developed to determine the velocity and temperature distribution in different positions cold room during pre-cooling of dates. The turbulence model used is the k-ω Shear Stress Transport (SST) with the standard wall function, the air. The numerical results obtained show that cooling rate is not uniform inside the room; the product at the medium of room has a slower cooling rate. This cooling heterogeneity has a large effect on the energy consumption during cold storage.

Keywords: CFD, cold room, cooling rate, dDates, numerical simulation, k-ω (SST)

Procedia PDF Downloads 204
623 Multivalued Behavior for a Two-Level System Using Homotopy Analysis Method

Authors: Angelo I. Aquino, Luis Ma. T. Bo-ot

Abstract:

We use the Homotopy Analysis Method (HAM) to solve the system of equations modeling the two-level system and extract results which will pinpoint to turbulent behavior. We look at multi-valued solutions as indicative of turbulence or turbulent-like behavior. We take di erent speci c cases which result in multi-valued velocities. The solutions are in series form and application of HAM ensures convergence in some region.

Keywords: multivalued solutions, homotopy analysis method, two-level system, equation

Procedia PDF Downloads 568
622 Influence of the Test Environment on the Dynamic Response of a Composite Beam

Authors: B. Moueddene, B. Labbaci, L. Missoum, R. Abdeldjebar

Abstract:

Quality estimation of the experimental simulation of boundary conditions is one of the problems encountered while performing an experimental program. In fact, it is not easy to estimate directly the effective influence of these simulations on the results of experimental investigation. The aim of this is article to evaluate the effect of boundary conditions uncertainties on structure response, using the change of the dynamics characteristics. The experimental models used and the correlation by the Frequency Domain Assurance Criterion (FDAC) allowed an interpretation of the change in the dynamic characteristics. The application of this strategy to stratified composite structures (glass/ polyester) has given satisfactory results.

Keywords: vibration, composite, endommagement, correlation

Procedia PDF Downloads 342
621 Computational Fluid Dynamics Simulation of Turbulent Convective Heat Transfer in Rectangular Mini-Channels for Rocket Cooling Applications

Authors: O. Anwar Beg, Armghan Zubair, Sireetorn Kuharat, Meisam Babaie

Abstract:

In this work, motivated by rocket channel cooling applications, we describe recent CFD simulations of turbulent convective heat transfer in mini-channels at different aspect ratios. ANSYS FLUENT software has been employed with a mean average error of 5.97% relative to Forrest’s MIT cooling channel study (2014) at a Reynolds number of 50,443 with a Prandtl number of 3.01. This suggests that the simulation model created for turbulent flow was suitable to set as a foundation for the study of different aspect ratios in the channel. Multiple aspect ratios were also considered to understand the influence of high aspect ratios to analyse the best performing cooling channel, which was determined to be the highest aspect ratio channels. Hence, the approximate 28:1 aspect ratio provided the best characteristics to ensure effective cooling. A mesh convergence study was performed to assess the optimum mesh density to collect accurate results. Hence, for this study an element size of 0.05mm was used to generate 579,120 for proper turbulent flow simulation. Deploying a greater bias factor would increase the mesh density to the furthest edges of the channel which would prove to be useful if the focus of the study was just on a single side of the wall. Since a bulk temperature is involved with the calculations, it is essential to ensure a suitable bias factor is used to ensure the reliability of the results. Hence, in this study we have opted to use a bias factor of 5 to allow greater mesh density at both edges of the channel. However, the limitations on mesh density and hardware have curtailed the sophistication achievable for the turbulence characteristics. Also only linear rectangular channels were considered, i.e. curvature was ignored. Furthermore, we only considered conventional water coolant. From this CFD study the variation of aspect ratio provided a deeper appreciation of the effect of small to high aspect ratios with regard to cooling channels. Hence, when considering an application for the channel, the geometry of the aspect ratio must play a crucial role in optimizing cooling performance.

Keywords: rocket channel cooling, ANSYS FLUENT CFD, turbulence, convection heat transfer

Procedia PDF Downloads 125
620 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers

Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker

Abstract:

The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.

Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic

Procedia PDF Downloads 300
619 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 576
618 Evaluation of Main Factors Affecting the Choice of a Freight Forwarder: A Sri Lankan Exporter’s Perspective

Authors: Ishani Maheshika

Abstract:

The intermediary role performed by freight forwarders in exportation has become significant in fulfilling businesses’ supply chain needs in this dynamic world. Since the success of exporter’s business is at present, highly reliant on supply chain optimization, cost efficiency, profitability, consistent service and responsiveness, the decision of selecting the most beneficial freight forwarder has become crucial for exporters. Although there are similar foreign researches, prior researches covering Sri Lankan setting are not in existence. Moreover, results vary with time, nature of industry and business environment factors. Therefore, a study from the perspective of Sri Lankan exporters was identified as a requisite to be researched. In order to identify and prioritize key factors which have affected the exporter’s decision in selecting freight forwarders in Sri Lankan context, Sri Lankan export industry was stratified into 22 sectors based on commodity using stratified sampling technique. One exporter from each sector was then selected using judgmental sampling to have a sample of 22. Factors which were identified through a pilot survey, was organized under 6 main criteria. A questionnaire was basically developed as pairwise comparisons using 9-point semantic differential scale and comparisons were done within main criteria and subcriteria. After a pre-testing, interviews and e-mail questionnaire survey were conducted. Data were analyzed using Analytic Hierarchy Process to determine priority vectors of criteria. Customer service was found to be the most important main criterion for Sri Lankan exporters. It was followed by reliability and operational efficiency respectively. The criterion of the least importance is company background and reputation. Whereas small sized exporters pay more attention to rate, reliability is the major concern among medium and large scale exporters. Irrespective of seniority of the exporter, reliability is given the prominence. Responsiveness is the most important sub criterion among Sri Lankan exporters. Consistency of judgments with respect to main criteria was verified through consistency ratio, which was less than 10%. Being more competitive, freight forwarders should come up with customized marketing strategies based on each target group’s requirements and expectations in offering services to retain existing exporters and attract new exporters.

Keywords: analytic hierarchy process, freight forwarders, main criteria, Sri Lankan exporters, subcriteria

Procedia PDF Downloads 380
617 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame

Procedia PDF Downloads 243
616 Simulation of Flow Patterns in Vertical Slot Fishway with Cylindrical Obstacles

Authors: Mohsen Solimani Babarsad, Payam Taheri

Abstract:

Numerical results of vertical slot fishways with and without cylinders study are presented. The simulated results and the measured data in the fishways are compared to validate the application of the model. This investigation is made using FLUENT V.6.3, a Computational Fluid Dynamics solver. Advantages of using these types of numerical tools are the possibility of avoiding the St.-Venant equations’ limitations, and turbulence can be modeled by means of different models such as the k-ε model. In general, the present study has demonstrated that the CFD model could be useful for analysis and design of vertical slot fishways with cylinders.

Keywords: slot Fish-way, CFD, k-ε model, St.-Venant equations’

Procedia PDF Downloads 331
615 Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD

Authors: Mohammadreza DaqiqShirazi, Rouhollah Torabi, Alireza Riasi, Ahmad Nourbakhsh

Abstract:

In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed.

Keywords: numerical study, centrifugal pumps, disk friction loss, sidewall gap

Procedia PDF Downloads 491
614 Role of von Willebrand Factor and ADAMTS13 In The Prediction of Thrombotic Complications In Patients With COVID-19

Authors: Nataliya V. Dolgushina, Elena A. Gorodnova, Olga S. Beznoshenco, Andrey Yu Romanov, Irina V. Menzhinskaya, Lyubov V. Krechetova, Gennady T. Suchich

Abstract:

In patients with COVID-19, generalized hypercoagulability can lead to the development of severe coagulopathy. This event is accompanied by the development of a pronounced inflammatory reaction. The observational prospective study included 39 patients with mild COVID-19 and 102 patients with moderate and severe COVID-19. Patients were then stratified into groups depending on the risk of venous thromboembolism. vWF to ADAMTS-13 concentrations and activity ratios were significantly higher in patients with a high venous thromboembolism risks in patients with moderate and severe forms COVID-19.

Keywords: ADAMTS-13, COVID-19, hypercoagulation, thrombosis, von Willebrand factor

Procedia PDF Downloads 57
613 Prediction of Turbulent Separated Flow in a Wind Tunel

Authors: Karima Boukhadia

Abstract:

In the present study, the subsonic flow in an asymmetrical diffuser was simulated numerically using code CFX 11.0 and its generator of grid ICEM CFD. Two models of turbulence were tested: K- ε and K- ω SST. The results obtained showed that the K- ε model singularly over-estimates the speed value close to the wall and that the K- ω SST model is qualitatively in good agreement with the experimental results of Buice and Eaton 1997. They also showed that the separation and reattachment of the fluid on the tilted wall strongly depends on its angle of inclination and that the length of the zone of separation increases with the angle of inclination of the lower wall of the diffuser.

Keywords: asymmetric diffuser, separation, reattachment, tilt angle, separation zone

Procedia PDF Downloads 549
612 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia

Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova

Abstract:

The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.

Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline

Procedia PDF Downloads 116
611 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 148
610 Jet Impingement Heat Transfer on a Rib-Roughened Flat Plate

Authors: A. H. Alenezi

Abstract:

Cooling by impingement jet is known to have a significant high local and average heat transfer coefficient which make it widely used in industrial cooling systems. The heat transfer characteristics of an impinging jet on rib-roughened flat plate has been investigated numerically. This paper was set out to investigate the effect of rib height on the heat transfer rate. Since the flow needs to have enough spacing after passing the rib to allow reattachment especially for high Reynolds numbers, this study focuses on finding the optimum rib height which would be the best to maximize the heat transfer rate downstream the plate. This investigation employs a round nozzle with hydraulic diameter (Dh) of 13.5 mm, Jet-to-target distance of (H/D) of 4, rib location=1.5D and and finally jet angels of 45˚ and 90˚ under the influence of Re =10,000.

Keywords: jet impingement, CFD, turbulence model, heat transfer

Procedia PDF Downloads 317
609 Optimization of the Aerodynamic Performances of an Unmanned Aerial Vehicle

Authors: Fares Senouci, Bachir Imine

Abstract:

This document provides numerical and experimental optimization of the aerodynamic performance of a drone equipped with three types of horizontal stabilizer. To build this optimal configuration, an experimental and numerical study was conducted on three parameters: the geometry of the stabilizer (horizontal form or reverse V form), the position of the horizontal stabilizer (up or down), and the landing gear position (closed or open). The results show that up-stabilizer position with respect to the horizontal plane of the fuselage provides better aerodynamic performance, and that the landing gear increases the lift in the zone of stability, that is to say where the flow is not separated.

Keywords: aerodynamics, drag, lift, turbulence model, wind tunnel

Procedia PDF Downloads 226
608 Numerical Simulation of Flow and Particle Motion in Liquid – Solid Hydrocyclone

Authors: Seyed Roozbeh Pishva, Alireza Aboudi Asl

Abstract:

In this investigation a hydrocyclone by using for separation particles from fluid in oil and gas, mining and other industries is simulated. Case study is cone – cylindrical and solid - liquid hydrocyclone. The fluid is water and the solid is a type of silis having diameters of 53, 75, 106, 150, 212, 250, and 300 micron. In this investigation CFD method used for analysis flow and movement of particles in hydrocyclone. In this modeling flow is three-dimention, turbulence and RSM model have been used for solving. Particles are three dimensional, spherical and non rotating and for tracking them Lagrangian model is used. The results of this study in addition to analyzing flowfield, obtaining efficiency of hydrocyclone in 5, 7, 12, and 15 percent concentrations and compare them with experimental result that both of them had suitable agreement with each other.

Keywords: hydrocyclone, RSM Model, CFD, copper industry

Procedia PDF Downloads 537
607 Hydrotherapy with Dual Sensory Impairment (Dsi)-Deaf and Blind

Authors: M. Warburton

Abstract:

Background: Case study examining hydrotherapy for a person with DSI. A 46 year-old lady completely deaf and blind post congenital rubella syndrome. Touch becomes the primary information gathering sense to optimise function in life. Communication is achieved via tactile finger spelling and signals onto her hand and skin. Hydrotherapy may provide a suitable mobility environment and somato-sensory input to people, and especially DSI persons. Buoyancy, warmth, hydrostatic pressure, viscosity and turbulence are elements of hydrotherapy that may offer a DSI person somato-sensory input to stimulate the mechanoreceptors, thermoreceptors and proprioceptors and offer a unique hydro-therapeutic environment. Purpose: The purpose of this case study was to establish what measurable benefits could be achieved from hydrotherapy with a DSI person. Methods: Hydrotherapy was provided for 8-weeks, 2 x week, 35-minute session duration. Pool temperature 32.5 degrees centigrade. Pool length 25-metres. Each session consisted of mobility encouragement and supervision, and activities to stimulate the somato-sensory system utilising aquatic properties of buoyancy, turbulence, viscosity, warmth and hydrostatic pressure. Somato-sensory activities focused on stimulating touch and tactile exploration including objects of various shape, size, weight, contour, texture, elasticity, pliability, softness and hardness. Outcomes were measured by the Goal Attainment Scale (GAS) and included mobility distance, attendance, and timed tactile responsiveness to varying objects. Results: Mobility distance and attendance exceeded baseline expectations. Timed tactile responsiveness to varying objects also changed positively from baseline. Average scale scores were 1.00 with an overall GAS t-score of 63.69. Conclusions: Hydrotherapy can be a quantifiable physio-therapeutic option for persons with DSI. It provides a relatively safe environment for mobility and allows the somato-sensory system to be fully engaged - important for the DSI population. Implications: Hydrotherapy can be a measurable therapeutic option for a DSI person. Physiotherapists should consider hydrotherapy for DSI people. Hydrotherapy can offer unique physical properties for the DSI population not available on land.

Keywords: chronic, disability, disease, rehabilitation

Procedia PDF Downloads 318
606 Customer Satisfaction on Reliability Dimension of Service Quality in Indian Higher Education

Authors: Rajasekhar Mamilla, G. Janardhana, G. Anjan Babu

Abstract:

The present research studies analyses the students’ satisfaction with university performance regarding the reliability dimension, ability of professors and staff to perform the promised services with quality to students in the post-graduate courses offered by Sri Venkateswara University in India. The research is done with the notion that the student compares the perceived performance with prior expectations. Customer satisfaction is seen as the outcome of this comparison. The sample respondents were administered with the schedule based on the stratified random technique for this study. Statistical techniques such as factor analysis, t-test and correlation analysis were used to accomplish the respective objectives of the study.

Keywords: satisfaction, reliability, service quality, customer

Procedia PDF Downloads 522
605 Experimental Investigation on Noise from Rod-Airfoil with Leading Edge Serrations

Authors: Siti Ruhliah Lizarose Samion, Mohamed Sukri Mat Ali, Con Doolan

Abstract:

The present work is an experimental investigation of adapting a passive treatment leading edge serrations over a rod-airfoil flow-induced noise generation. The leading edge serrations are bio-inspired from a barn-owl silent flight. The rod-airfoil configuration is a benchmark configuration taken to investigate airfoil-turbulence interaction noise (ATIN). Location of serrations placed and the wideness of serrations are the two parameters taken in this study. The ATIN is reduced up to 3.5 dB for a wide leading serrations case. A correlation is found between the wideness of serrations and the noise reduction mechanism of the airfoil.

Keywords: aerodynamic noise, leading edge serrations, rod-airfoil, experiment

Procedia PDF Downloads 320
604 Numerical Flow Simulation around HSP Propeller in Open Water and behind a Vessel Wake Using RANS CFD Code

Authors: Kadda Boumediene, Mohamed Bouzit

Abstract:

The prediction of the flow around marine propellers and vessel hulls propeller interaction is one of the challenges of Computational fluid dynamics (CFD). The CFD has emerged as a potential tool in recent years and has promising applications. The objective of the current study is to predict the hydrodynamic performances of HSP marine propeller in open water and behind a vessel. The unsteady 3-D flow was modeled numerically along with respectively the K-ω standard and K-ω SST turbulence models for steady and unsteady cases. The hydrodynamic performances such us a torque and thrust coefficients and efficiency show good agreement with the experiment results.

Keywords: seiun maru propeller, steady, unstead, CFD, HSP

Procedia PDF Downloads 276
603 Time-Interval between Rectal Cancer Surgery and Reintervention for Anastomotic Leakage and the Effects of a Defunctioning Stoma: A Dutch Population-Based Study

Authors: Anne-Loes K. Warps, Rob A. E. M. Tollenaar, Pieter J. Tanis, Jan Willem T. Dekker

Abstract:

Anastomotic leakage after colorectal cancer surgery remains a severe complication. Early diagnosis and treatment are essential to prevent further adverse outcomes. In the literature, it has been suggested that earlier reintervention is associated with better survival, but anastomotic leakage can occur with a highly variable time interval to index surgery. This study aims to evaluate the time-interval between rectal cancer resection with primary anastomosis creation and reoperation, in relation to short-term outcomes, stratified for the use of a defunctioning stoma. Methods: Data of all primary rectal cancer patients that underwent elective resection with primary anastomosis during 2013-2019 were extracted from the Dutch ColoRectal Audit. Analyses were stratified for defunctioning stoma. Anastomotic leakage was defined as a defect of the intestinal wall or abscess at the site of the colorectal anastomosis for which a reintervention was required within 30 days. Primary outcomes were new stoma construction, mortality, ICU admission, prolonged hospital stay and readmission. The association between time to reoperation and outcome was evaluated in three ways: Per 2 days, before versus on or after postoperative day 5 and during primary versus readmission. Results: In total 10,772 rectal cancer patients underwent resection with primary anastomosis. A defunctioning stoma was made in 46.6% of patients. These patients had a lower anastomotic leakage rate (8.2% vs. 11.6%, p < 0.001) and less often underwent a reoperation (45.3% vs. 88.7%, p < 0.001). Early reoperations (< 5 days) had the highest complication and mortality rate. Thereafter the distribution of adverse outcomes was more spread over the 30-day postoperative period for patients with a defunctioning stoma. Median time-interval from primary resection to reoperation for defunctioning stoma patients was 7 days (IQR 4-14) versus 5 days (IQR 3-13 days) for no-defunctioning stoma patients. The mortality rate after primary resection and reoperation were comparable (resp. for defunctioning vs. no-defunctioning stoma 1.0% vs. 0.7%, P=0.106 and 5.0% vs. 2.3%, P=0.107). Conclusion: This study demonstrated that early reinterventions after anastomotic leakage are associated with worse outcomes (i.e. mortality). Maybe the combination of a physiological dip in the cellular immune response and release of cytokines following surgery, as well as a release of endotoxins caused by the bacteremia originating from the leakage, leads to a more profound sepsis. Another explanation might be that early leaks are not contained to the pelvis, leading to a more profound sepsis requiring early reoperations. Leakage with or without defunctioning stoma resulted in a different type of reinterventions and time-interval between surgery and reoperation.

Keywords: rectal cancer surgery, defunctioning stoma, anastomotic leakage, time-interval to reoperation

Procedia PDF Downloads 108
602 Dispositional Loneliness and Mental Health of the Elderly in Cross River State, Nigeria

Authors: Peter Unoh Bassey

Abstract:

The study is predicated on the current trend of the rate of dispositional loneliness experienced by the elderly in society today as a result of the breakdown in the family attachment patterns, loss of close associates, and interpersonal conflicts. The research adopted the ex-post facto research design through a survey data collected from a total of 500 elderly comprising of both retirees and community-based elders. Both the stratified and simple sampling techniques were used to select the sample. Based on the findings, it was recommended that the elderly should be trained in acquiring specific attachment styles as well as be trained in developing appropriate social skills to counter loneliness.

Keywords: dispositional loneliness, mental health, elderly, cross river state

Procedia PDF Downloads 126
601 Relationship between Quality of Life and Perceived Stress among Teachers of Physical Education

Authors: Minu Lakra

Abstract:

The present study was done on 100 (male=50 and female=50) teachers of physical education at tertiary level from Varanasi city. They were chosen according to the stratified sampling method. Data collection tool was Perceived Stress Scale: 14 items (Cohen, Kamarck and mermelstain 1983) and Quality of Life was developed by THE WHOQOL GROUP in 1991. Data was analyzed with the help of correlation. Findings explore that perceived stress and quality of life has been positively correlated in female teachers of higher education from physical education whereas in male teachers the relationship was found insignificant.

Keywords: higher education, male and female teachers , percieved stress, quality of life

Procedia PDF Downloads 322
600 Gender and Science: Is the Association Universal?

Authors: Neelam Kumar

Abstract:

Science is stratified, with an unequal distribution of research facilities and rewards among scientists. Gender stratification is one of the most prevalent phenomena in the world of science. In most countries gender segregation, horizontal as well as vertical, stands out in the field of science and engineering. India is no exception. This paper aims to examine: (1) gender and science associations, historical as well as contemporary, (2) women’s enrolment and gender differences in selection of academic fields, (2) women as professional researchers, (3) career path and recognition/trajectories. The paper reveals that in recent years the gender–science relationship has changed, but is not totally free from biases. Women’s enrolment into various science disciplines has shown remarkable and steady increase in most parts of the world, including India, yet they remain underrepresented in the S&T workforce, although to a lesser degree than in the past.

Keywords: gender, science, universal, women

Procedia PDF Downloads 276
599 The Structure and Development of a Wing Tip Vortex under the Effect of Synthetic Jet Actuation

Authors: Marouen Dghim, Mohsen Ferchichi

Abstract:

The effect of synthetic jet actuation on the roll-up and the development of a wing tip vortex downstream a square-tipped rectangular wing was investigated experimentally using hotwire anemometry. The wing is equipped with a hallow cavity designed to generate a high aspect ratio synthetic jets blowing at an angles with respect to the spanwise direction. The structure of the wing tip vortex under the effect of fluidic actuation was examined at a chord Reynolds number Re_c=8×10^4. An extensive qualitative study on the effect of actuation on the spanwise pressure distribution at c⁄4 was achieved using pressure scanner measurements in order to determine the optimal actuation parameters namely, the blowing momentum coefficient, Cμ, and the non-dimensionalized actuation frequency, F^+. A qualitative study on the effect of actuation parameters on the spanwise pressure distribution showed that optimal actuation frequencies of the synthetic jet were found within the range amplified by both long and short wave instabilities where spanwise pressure coefficients exhibited a considerable decrease by up to 60%. The vortex appeared larger and more diffuse than that of the natural vortex case. Operating the synthetic jet seemed to introduce unsteadiness and turbulence into the vortex core. Based on the ‘a priori’ optimal selected parameters, results of the hotwire wake survey indicated that the actuation achieved a reduction and broadening of the axial velocity deficit. A decrease in the peak tangential velocity associated with an increase in the vortex core radius was reported as a result of the accelerated radial transport of angular momentum. Peak vorticity level near the core was also found to be largely diffused as a direct result of the increased turbulent mixing within the vortex. The wing tip vortex a exhibited a reduced strength and a diffused core as a direct result of increased turbulent mixing due to the presence of turbulent small scale vortices within its core. It is believed that the increased turbulence within the vortex due to the synthetic jet control was the main mechanism associated with the decreased strength and increased size of the wing tip vortex as it evolves downstream. A comparison with a ‘non-optimal’ case was included to demonstrate the effectiveness of selecting the appropriate control parameters. The Synthetic Jet will be operated at various actuation configurations and an extensive parametric study is projected to determine the optimal actuation parameters.

Keywords: flow control, hotwire anemometry, synthetic jet, wing tip vortex

Procedia PDF Downloads 413
598 Numerical Analysis of the Turbulent Flow around DTMB 4119 Marine Propeller

Authors: K. Boumediene, S. E. Belhenniche

Abstract:

This article presents a numerical analysis of a turbulent flow past DTMB 4119 marine propeller by the means of RANS approach; the propeller designed at David Taylor Model Basin in USA. The purpose of this study is to predict the hydrodynamic performance of the marine propeller, it aims also to compare the results obtained with the experiment carried out in open water tests; a periodical computational domain was created to reduce the unstructured mesh size generated. The standard kw turbulence model for the simulation is selected; the results were in a good agreement. Therefore, the errors were estimated respectively to 1.3% and 5.9% for KT and KQ.

Keywords: propeller flow, CFD simulation, RANS, hydrodynamic performance

Procedia PDF Downloads 456
597 Turbulent Flow in Corrugated Pipes with Helical Grooves

Authors: P. Mendes, H. Stel, R. E. M. Morales

Abstract:

This article presents a numerical and experimental study of turbulent flow in corrugated pipes with helically “d-type" grooves, for Reynolds numbers between 7500 and 100,000. The ANSYS-CFX software is used to solve the RANS equations with the BSL two equation turbulence model, through the element-based finite-volume method approach. Different groove widths and helix angles are considered. Numerical results are validated with experimental pressure drop measurements for the friction factor. A correlation for the friction factor is also proposed considering the geometric parameters and Reynolds numbers evaluated.

Keywords: turbulent flow, corrugated pipe, helical, numerical, experimental, friction factor, correlation

Procedia PDF Downloads 456
596 Survey of Rate and Causes of Literacy Preservation in Adult Newly Learners

Authors: Mohammad Narimani, Zahra Rostamoghli

Abstract:

The main objective of this study is the survey of rate and causes of literacy preservation in adult newly learners. Statistical sample consists of 384 adults who are newly learners of literacy, at 2002, who were selected by stratified sampling method. This is a correlation cross-sectional survey research, in which authors-constructed measures were used for data collection. Results of survey showed that learners' literacy preservation rate after two years was 70%, 61% and 57%, in reading, dictation and mathematic tests, respectively.Following can be noted as factors correlated with literacy preservation; repetition of subjects and learners' subjective review, access to and using the library and publications, feeling of need to and interest in educated matters, socio cultural class of learners, and literacy level of learners' family.

Keywords: literacy preservation, new learner, literacy improvement movement, mathematic test

Procedia PDF Downloads 445
595 The Impacts Of Hydraulic Conditions On The Fate, Transport And Accumulation Of Microplastics Pollution In The Aquatic Ecosystems

Authors: Majid Rasta, Xiaotao Shi, Mian Adnan Kakakhel, Yanqin Bai, Lao Liu, Jia Manke

Abstract:

Microplastics (MPs; particles <5 mm) pollution is considered as a globally pervasive threat to aquatic ecosystems, and many studies reported this pollution in rivers, wetlands, lakes, coastal waters and oceans. In the aquatic environments, settling and transport of MPs in water column and sediments are determined by different factors such as hydrologic characteristics, watershed pattern, rainfall events, hydraulic conditions, vegetation, hydrodynamics behavior of MPs, and physical features of particles (shape, size and density). In the meantime, hydraulic conditions (such as turbulence, high/low water speed flows or water stagnation) play a key role in the fate of MPs in aquatic ecosystems. Therefore, this study presents a briefly review on the effects of different hydraulic conditions on the fate, transport and accumulation of MPs in aquatic ecosystems. Generally, MPs are distributed horizontally and vertically in aquatic environments. The vertical distribution of MPs in the water column changes with different flow velocities. In the riverine, turbulent flow causing from the rapid water velocity and shallow depth may create a homogeneous mixture of MPs throughout the water column. While low velocity followed by low-turbulent waters can lead to the low level vertical mixing of MP particles in the water column. Consequently, the high numbers of MPs are expected to be found in the sediments of deep and wide channels as well as estuaries. In contrast, observing the lowest accumulation of MP particles in the sediments of straights of the rivers, places with the highest flow velocity is understandable. In the marine environment, hydrodynamic factors (e.g., turbulence, current velocity and residual circulation) can affect the sedimentation and transportation of MPs and thus change the distribution of MPs in the marine and coastal sediments. For instance, marine bays are known as the accumulation area of MPs due to poor hydrodynamic conditions. On the other hand, in the nearshore zone, the flow conditions are highly complex and dynamic. Experimental studies illustrated that maximum horizontal flow velocity in the sandy beach can predict the accumulation of MPs so that particles with high sinking velocities deposit in the lower water depths. As a whole, it can be concluded that the transport and accumulation of MPs in aquatic ecosystems are highly affected by hydraulic conditions. This study provided information about the impacts of hydraulic on MPs pollution. Further research on hydraulics and its relationship to the accumulation of MPs in aquatic ecosystems is needed to increase insights into this pollution.

Keywords: microplastics pollution, hydraulic, transport, accumulation

Procedia PDF Downloads 33