Search results for: steel strip reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2401

Search results for: steel strip reinforcement

151 Design, Implementation, and Evaluation of ALS-PBL Model in the EMI Classroom

Authors: Yen-Hui Lu

Abstract:

In the past two decades, in order to increase university visibility and internationalization, English as a medium of instruction (EMI) has become one of the main language policies in higher education institutions where English is not a dominant language. However, given the complex, discipline-embedded nature of academic communication, academic literacy does not come with students’ everyday language experience, and it is a challenge for all students. Particularly, to engage students in the effective learning process of discipline concepts in the EMI classrooms, teachers need to provide explicit academic language instruction to assist students in deep understanding of discipline concepts. To bridge the gap between academic language development and discipline learning in the EMI classrooms, the researcher incorporates academic language strategies and key elements of project-based learning (PBL) into an Academic Language Strategy driven PBL (ALS-PBL) model. With clear steps and strategies, the model helps EMI teachers to scaffold students’ academic language development in the EMI classrooms. ALS-PBL model includes three major stages: preparation, implementation, and assessment. First, in the preparation stage, ALS-PBL teachers need to identify learning goals for both content and language learning and to design PBL topics for investigation. Second, during the implementation stage, ALS-PBL teachers use the model as a guideline to create a lesson structure and class routine. There are five important elements in the implementation stage: (1) academic language preparation, (2) connecting background knowledge, (3) comprehensible input, (4) academic language reinforcement, and (5) sustained inquiry and project presentation. Finally, ALS-PBL teachers use formative assessments such as student learning logs, teachers’ feedback, and peer evaluation to collect detailed information that demonstrates students’ academic language development in the learning process. In this study, ALS-PBL model was implemented in an interdisciplinary course entitled “Science is Everywhere”, which was co-taught by five professors from different discipline backgrounds, English education, civil engineering, business administration, international business, and chemical engineering. The purpose of the course was to cultivate students’ interdisciplinary knowledge as well as English competency in disciplinary areas. This study used a case-study design to systematically investigate students’ learning experiences in the class using ALS-PBL model. The participants of the study were 22 college students with different majors. This course was one of the elective EMI courses in this focal university. The students enrolled in this EMI course to fulfill the school language policy, which requires the students to complete two EMI courses before their graduation. For the credibility, this study used multiple methods to collect data, including classroom observation, teachers’ feedback, peer assessment, student learning log, and student focus-group interviews. Research findings show four major successful aspects of implementing ALS-PBL model in the EMI classroom: (1) clear focus on both content and language learning, (2) meaningful practice in authentic communication, (3) reflective learning in academic language strategies, and (4) collaborative support in content knowledge.This study will be of value to teachers involved in delivering English as well as content lessons to language learners by providing a theoretically-sound practical model for application in the classroom.

Keywords: academic language development, content and language integrated learning, english as a medium of instruction, project-based learning

Procedia PDF Downloads 60
150 The Impact of Animal Assisted Interventions in Primary Schools: A Mixed Method Intervention Study Examining the Influence of Reading to Dogs on Children's Reading Outcomes and Emotional Wellbeing

Authors: Jill Steel

Abstract:

The interlinked issues of emotional wellbeing and attainment continue to dominate international educational discourse. Reading skills are particularly important to attainment in all areas of the curriculum, and illiteracy is associated with reduced wellbeing and life prospects, with serious ramifications for the wider economy and society. Research shows that reading attainment is influenced by reading motivation and frequency. Reading to Dogs (RTD) is increasingly applied to promote reading motivation and frequency in schools despite a paucity of empirical evidence, specifically examining the influence of RTD on emotional wellbeing and engagement with reading. This research aims to examine whether RTD is effective in promoting these positive outcomes among children aged eight to nine years. This study also aims to inform much needed regulation of the field and standards of practice, including both child and dog welfare. Therefore, ethical matters such as children’s inclusion and safety, as well as the rights and wellbeing of dogs infuse the study throughout. The methodological design is a mixed method longitudinal study. A UK wide questionnaire will be distributed to teachers between January and June 2020 to understand their perceptions of RTD. Following this, a randomised controlled trial (N = 100) will begin in August 2020 in two schools of a comparable demographic, with N= 50 in the intervention school, and N= 50 in a waiting list control school. Reading and wellbeing assessments will be conducted prior to and immediately post RTD, and four weeks after RTD to measure sustained changes. The reading assessments include New Group Reading Test, Motivation to Read Profile (Gambrell et al., 1995), as well as reading frequency and reading anxiety assessments specifically designed for the study. Wellbeing assessments include Goodman’s SDQ, (1997) and pupil self-reporting questionnaires specifically designed for the study. Child, class teacher, and parent questionnaires and interviews prior to, during and post RTD will be conducted to measure perceptions of the impact of RTD on mood and motivation towards reading. This study will make a substantial contribution to our understanding of the effectiveness of RTD and thus have consequences for the fields of education and anthrozoology.

Keywords: animal assisted intervention, reading to dogs, welfare, wellbeing

Procedia PDF Downloads 144
149 Magnetic Lines of Force and Diamagnetism

Authors: Angel Pérez Sánchez

Abstract:

Magnet attraction or repulsion is not a product of a strange force from afar but comes from anchored lines of force inside the magnet as if it were reinforced concrete since you can move a small block by taking the steel rods that protrude from its interior. This approach serves as a basis for studying the behavior of diamagnetic materials. The significance of this study is to unify all diamagnetic phenomena: Movement of grapes, cooper approaching a magnet, Magnet levitation, etc., with a single explanation for all these phenomena. The method followed has consisted of observation of hundreds of diamagnetism experiments (in copper, aluminum, grapes, tomatoes, and bismuth), including the creation of own and new experiments and application of logical deduction product of these observations. Approaching a magnet to a hanging grape, Diamagnetism seems to consist not only of a slight repulsion but also of a slight attraction at a small distance. Replacing the grapes with a copper sphere, it behaves like the grape, pushing and pulling a nearby magnet. Diamagnetism could be redefined in the following way: There are materials that don't magnetize their internal structure when approaching a magnet, as ferromagnetic materials do. But they do allow magnetic lines of force to run through its interior, enhancing them without creating their own lines of force. Magnet levitates on superconducting ceramics because magnet gives lines near poles a force superior to what a superconductor can enhance these lines. Little further from the magnet, enhancing of lines by the superconductor is greater than the strength provided by the magnet due to the distance from the magnet's pole. It is this point that defines the magnet's levitation band. The anchoring effect of lines is what ultimately keeps the magnet and superconductor at a certain distance. The magnet seeks to levitate the area in which magnetic lines are stronger near de magnet's poles. Pouring ferrofluid into a magnet, lines of force are observed coming out of the poles. On other occasions, diamagnetic materials simply enhance the lines they receive without moving their position since their own weight is greater than the strength of the enhanced lines. (This is the case with grapes and copper). Magnet and diamagnetic materials look for a place where the lines of force are most enhanced, and this is at a small distance. Once the ideal distance is established, they tend to keep it by pushing or pulling on each other. At a certain distance from the magnet: the power exerted by diamagnetic materials is greater than the force of lines in the vicinity of the magnet's poles. All Diamagnetism phenomena: copper, aluminum, grapes, tomatoes, bismuth levitation, and magnet levitation on superconducting ceramics can now be explained with the support of magnetic lines of force.

Keywords: diamagnetism, magnetic levitation, magnetic lines of force, enhancing magnetic lines

Procedia PDF Downloads 65
148 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 68
147 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 98
146 Flow Boiling Heat Transfer at Low Mass and Heat Fluxes: Heat Transfer Coefficient, Flow Pattern Analysis and Correlation Assessment

Authors: Ernest Gyan Bediako, Petra Dancova, Tomas Vit

Abstract:

Flow boiling heat transfer remains an important area of research due to its relevance in thermal management systems and other applications. Despite the enormous work done in the field of flow boiling heat transfer over the years to understand how flow parameters such as mass flux, heat flux, saturation conditions and tube geometries influence the characteristics of flow boiling heat transfer, there are still many contradictions and lack of agreement on the actual mechanisms controlling heat transfer and how flow parameters impact the heat transfer. This work thus seeks to experimentally investigate the heat transfer characteristics and flow patterns at low mass fluxes, low heat fluxes and low saturation pressure conditions which are of less attention in literature but prevalent in refrigeration, air-conditioning and heat pump applications. In this study, flow boiling experiment was conducted for R134a working fluid in a 5 mm internal diameter stainless steel horizontal smooth tube with mass flux ranging from 80- 100 kg/m2 s, heat fluxes ranging from 3.55kW/m2 - 25.23 kW/m2 and saturation pressure of 460 kPa. Vapor quality ranged from 0 to 1. A well-known flow pattern map created by Wojtan et al. was used to predict the flow patterns noticed during the study. The experimental results were correlated with well-known flow boiling heat transfer correlations in literature. The findings show that, heat transfer coefficient was influenced by both mass flux and heat fluxes. However, for an increasing heat flux, nucleate boiling was observed to be the dominant mechanism controlling the heat transfer especially at low vapor quality region. For an increasing mass flux, convective boiling was the dominant mechanism controlling the heat transfer especially in the high vapor quality region. Also, the study observed an unusual high heat transfer coefficient at low vapor qualities which could be due to periodic wetting of the walls of the tube due to slug flow pattern and stratified wavy flow patterns. The flow patterns predicted by Wojtan et al. flow pattern map were mixture of slug and stratified wavy, purely stratified wavy and dry out. Statistical assessment of the experimental data with various well-known correlations from literature showed that, none of the correlations reported in literature could predicted the experimental data with enough accuracy.

Keywords: flow boiling, heat transfer coefficient, mass flux, heat flux.

Procedia PDF Downloads 86
145 Life Cycle Assessment of an Onshore Wind Turbine in Kuwait

Authors: Badriya Almutairi, Ashraf El-Hamalawi

Abstract:

Wind energy technologies are considered to be among the most promising types of renewable energy sources due to the growing concerns over climate change and energy security. Kuwait is amongst the countries that began realising the consequences of climate change and the long-term economic and energy security situation, considering options when oil runs out. Added to this are the fluctuating oil prices, rapid increase in population, high electricity consumption and protection of the environment It began to make efforts in the direction of greener solutions for energy needs by looking for alternative forms of energy and assessing potential renewable energy resources, including wind and solar. The aim of this paper is to examine wind energy as an alternative renewable energy source in Kuwait, due to its availability and low cost, reducing the dependency on fossil fuels compared to other forms of renewable energy. This paper will present a life cycle assessment of onshore wind turbine systems in Kuwait, comprising 4 stages; goal and scope of the analysis, inventory analysis, impact assessment and interpretation of the results. It will also provide an assessment of potential renewable energy resources and technologies applied for power generation and the environmental benefits for Kuwait. An optimum location for a site (Shagaya) will be recommended for reasons such as high wind speeds, land availability and distance to the next grid connection, and be the focus of this study. The potential environmental impacts and resources used throughout the wind turbine system’s life-cycle are then analysed using a Life Cycle Assessment (LCA). The results show the total carbon dioxide (CO₂) emission for a turbine with steel pile foundations is greater than emissions from a turbine with concrete foundations by 18 %. The analysis also shows the average CO₂ emissions from electricity generated using crude oil is 645gCO₂/kWh and the carbon footprint per functional unit for a wind turbine ranges between 6.6 g/kWh to 10 g/kWh, an increase of 98%, thus providing cost and environmental benefits by creating a wind farm in Kuwait. Using a cost-benefit analysis, it was also found that the electricity produced from wind energy in Kuwait would cost 17.6fils/kWh (0.05834 $/kWh), which is less than the cost of electricity currently being produced using conventional methods at 22 fils/kW (0.07$/kWh), i.e., a reduction of 20%.

Keywords: CO₂ emissions, Kuwait, life cycle assessment, renewable energy, wind energy

Procedia PDF Downloads 280
144 Analysis of the Brazilian Trade Balance in Relation to Mercosur: A Comparison between the Period 1989-1994 and 1994-2012

Authors: Luciana Aparecida Bastos, Tatiana Diair L. F. Rosa, Jesus Creapldi

Abstract:

The idea of Latin American integration occurred from the ideals of Simón Bolívar that, in 1824, called the Ibero-American nations to Amphictyonic Congress of Panama, on June 22, 1826, where he would defend the importance of Latin American unity. However, this congress was frustrating and the idea of Bolívar went no further. It was only after the European Union to start the process, driven by the end of World War II that the subject returned to emerge in Latin America. Thus, in 1960, supported by the European integration process, started in 1957 with the excellent result of the ECSC - European Coal and Steel Community, a result of the Customs Union of the BENELUX (integration between Belgium, the Netherlands and Luxembourg) in 1948, was created in Latin America, LAFTA - Latin American Free Trade Association, in 1960. In 1980, LAFTA was replaced by LAAI- Latin American Association, both with the same goal: to integrate Latin America, it´s economy and its trade. Most researchers in this period agree that the regional market would be expanded through the integration. The creation of one or more economic blocs in the region would provide the union of Latin American countries through a fusion of common interests and by their geographical proximity, which would try to develop common projects to promote mutual growth and economic development, tariff reductions, promotion of increased trade between, among many other goals set together. Thus, taking into account Mercosur, the main Latin-American block, created in 1994, the aim of this paper is to make a brief analysis of the trade balance performance of Brazil (larger economy of the block) in Mercosur in the periods: 1989-1994 and 1994-2012. The choice of this period was because the objective is to compare the period before and after the integration of Brazil in Mercosur. The methodologies used were the literature review and descriptive statistics. The results showed that after the integration of Brazil in Mercosur, the exports and imports grew within the bloc and the country turned out to become the leading importer of other economies of Mercosur after integration, that is, Brazil, after integration to Mercosur, was largely responsible for promoting the expansion of regional trade through the import of products from other members of the block.

Keywords: Brazil, mercosur, integration, trade balance, comparison

Procedia PDF Downloads 297
143 Verification Protocols for the Lightning Protection of a Large Scale Scientific Instrument in Harsh Environments: A Case Study

Authors: Clara Oliver, Oibar Martinez, Jose Miguel Miranda

Abstract:

This paper is devoted to the study of the most suitable protocols to verify the lightning protection and ground resistance quality in a large-scale scientific facility located in a harsh environment. We illustrate this work by reviewing a case study: the largest telescopes of the Northern Hemisphere Cherenkov Telescope Array, CTA-N. This array hosts sensitive and high-speed optoelectronics instrumentation and sits on a clear, free from obstacle terrain at around 2400 m above sea level. The site offers a top-quality sky but also features challenging conditions for a lightning protection system: the terrain is volcanic and has resistivities well above 1 kOhm·m. In addition, the environment often exhibits humidities well below 5%. On the other hand, the high complexity of a Cherenkov telescope structure does not allow a straightforward application of lightning protection standards. CTA-N has been conceived as an array of fourteen Cherenkov Telescopes of two different sizes, which will be constructed in La Palma Island, Spain. Cherenkov Telescopes can provide valuable information on different astrophysical sources from the gamma rays reaching the Earth’s atmosphere. The largest telescopes of CTA are called LST’s, and the construction of the first one was finished in October 2018. The LST has a shape which resembles a large parabolic antenna, with a 23-meter reflective surface supported by a tubular structure made of carbon fibers and steel tubes. The reflective surface has 400 square meters and is made of an array of segmented mirrors that can be controlled individually by a subsystem of actuators. This surface collects and focuses the Cherenkov photons into the camera, where 1855 photo-sensors convert the light in electrical signals that can be processed by dedicated electronics. We describe here how the risk assessment of direct strike impacts was made and how down conductors and ground system were both tested. The verification protocols which should be applied for the commissioning and operation phases are then explained. We stress our attention on the ground resistance quality assessment.

Keywords: grounding, large scale scientific instrument, lightning risk assessment, lightning standards and safety

Procedia PDF Downloads 104
142 Parameter Fitting of the Discrete Element Method When Modeling the DISAMATIC Process

Authors: E. Hovad, J. H. Walther, P. Larsen, J. Thorborg, J. H. Hattel

Abstract:

In sand casting of metal parts for the automotive industry such as brake disks and engine blocks, the molten metal is poured into a sand mold to get its final shape. The DISAMATIC molding process is a way to construct these sand molds for casting of steel parts and in the present work numerical simulations of this process are presented. During the process green sand is blown into a chamber and subsequently squeezed to finally obtain the sand mould. The sand flow is modelled with the Discrete Element method (DEM) and obtaining the correct material parameters for the simulation is the main goal. Different tests will be used to find or calibrate the DEM parameters needed; Poisson ratio, Young modulus, rolling friction coefficient, sliding friction coefficient and coefficient of restitution (COR). The Young modulus and Poisson ratio are found from compression tests of the bulk material and subsequently used in the DEM model according to the Hertz-Mindlin model. The main focus will be on calibrating the rolling resistance and sliding friction in the DEM model with respect to the behavior of “real” sand piles. More specifically, the surface profile of the “real” sand pile will be compared to the sand pile predicted with the DEM for different values of the rolling and sliding friction coefficients. When the DEM parameters are found for the particle-particle (sand-sand) interaction, the particle-wall interaction parameter values are also found. Here the sliding coefficient will be found from experiments and the rolling resistance is investigated by comparing with observations of how the green sand interacts with the chamber wall during experiments and the DEM simulations will be calibrated accordingly. The coefficient of restitution will be tested with different values in the DEM simulations and compared to video footages of the DISAMATIC process. Energy dissipation will be investigated in these simulations for different particle sizes and coefficient of restitution, where scaling laws will be considered to relate the energy dissipation for these parameters. Finally, the found parameter values are used in the overall discrete element model and compared to the video footage of the DISAMATIC process.

Keywords: discrete element method, physical properties of materials, calibration, granular flow

Procedia PDF Downloads 460
141 Innovation Mechanism in Developing Cultural and Creative Industries

Authors: Liou Shyhnan, Chia Han Yang

Abstract:

The study aims to investigate the promotion of innovation in the development of cultural and creative industries (CCI) and apply research on culture and creativity to this promotion. Using the research perspectives of culture and creativity as the starting points, this study has examined the challenges, trends, and opportunities that have emerged from the development of the CCI until the present. It is found that a definite context of cause and effect exist between them, and that a homologous theoretical basis can be used to understand and interpret them. Based on the characteristics of the aforementioned challenges and trends, this study has compiled two main theoretical systems for conducting research on culture and creativity: (i) reciprocal process between creativity and culture, and (ii) a mechanism for innovation involving multicultural convergence. Both theoretical systems were then used as the foundation to arrive at possible research propositions relating to the two developmental systems. This was respectively done through identification of the theoretical context through a literature review, and interviews and observations of actual case studies within Taiwan’s CCI. In so doing, the critical factors that can address the aforementioned challenges and trends were discovered. Our results indicated that, for reciprocal process between creativity and culture, we recognize that culture serves as creative resources in cultural and creative industries. According to shared consensus, culture provides symbolic meanings and emotional attachment for products and experiences offered by CCI. Besides, different cultures vary in their effects on creativity processes and standards, thus engendering distinctive preferences for and evaluations of the creative expressions and experiences of CCIs. In addition, we identify that creativity serves as the engine for driving the continuation and rebirth of cultures. Accounting for the core of culture, the employment of technology, design, and business facilitates the transformation and innovation mechanism for promoting culture continuity. In addition, with cultural centered, the digital technology, design thinking, and business model are critical constitutes of the innovation mechanism to promote the cultural continuity. Regarding cultural preservation and regeneration of local spaces and folk customs, we argue that the preservation and regeneration of local spaces and cultural cultures must embody the interactive experiences of present-day life. And cultural space and folk custom would regenerate with interact and experience in modern life. Regarding innovation mechanism for multicultural convergence, we propose that innovative stakeholders from different disciplines (e.g., creators, designers, engineers, and marketers) in CCIs rely on the establishment of a cocreation mechanism to promote interdisciplinary interaction. Furthermore, CCI development needs to develop a cocreation mechanism for enhancing the interdisciplinary collaboration among CCI innovation stakeholders. We further argue multicultural mixing would enhance innovation in developing CCI, and assuming an open and mutually enlightening attitude to enrich one another’s cultures in the multicultural exchanges under globalization will create diversity in homogenous CCIs. Finally, for promoting innovation in developing cultural and creative industries, we further propose a model for joint knowledge creation that can be established for enhancing the mutual reinforcement of theoretical and practical research on culture and creativity.

Keywords: culture and creativity, innovation, cultural and creative industries, cultural mixing

Procedia PDF Downloads 296
140 Mechanical Properties of Poly(Propylene)-Based Graphene Nanocomposites

Authors: Luiza Melo De Lima, Tito Trindade, Jose M. Oliveira

Abstract:

The development of thermoplastic-based graphene nanocomposites has been of great interest not only to the scientific community but also to different industrial sectors. Due to the possible improvement of performance and weight reduction, thermoplastic nanocomposites are a great promise as a new class of materials. These nanocomposites are of relevance for the automotive industry, namely because the emission limits of CO2 emissions imposed by the European Commission (EC) regulations can be fulfilled without compromising the car’s performance but by reducing its weight. Thermoplastic polymers have some advantages over thermosetting polymers such as higher productivity, lower density, and recyclability. In the automotive industry, for example, poly(propylene) (PP) is a common thermoplastic polymer, which represents more than half of the polymeric raw material used in automotive parts. Graphene-based materials (GBM) are potential nanofillers that can improve the properties of polymer matrices at very low loading. In comparison to other composites, such as fiber-based composites, weight reduction can positively affect their processing and future applications. However, the properties and performance of GBM/polymer nanocomposites depend on the type of GBM and polymer matrix, the degree of dispersion, and especially the type of interactions between the fillers and the polymer matrix. In order to take advantage of the superior mechanical strength of GBM, strong interfacial strength between GBM and the polymer matrix is required for efficient stress transfer from GBM to the polymer. Thus, chemical compatibilizers and physicochemical modifications have been reported as important tools during the processing of these nanocomposites. In this study, PP-based nanocomposites were obtained by a simple melt blending technique, using a Brabender type mixer machine. Graphene nanoplatelets (GnPs) were applied as structural reinforcement. Two compatibilizers were used to improve the interaction between PP matrix and GnPs: PP graft maleic anhydride (PPgMA) and PPgMA modified with tertiary amine alcohol (PPgDM). The samples for tensile and Charpy impact tests were obtained by injection molding. The results suggested the GnPs presence can increase the mechanical strength of the polymer. However, it was verified that the GnPs presence can promote a decrease of impact resistance, turning the nanocomposites more fragile than neat PP. The compatibilizers’ incorporation increases the impact resistance, suggesting that the compatibilizers can enhance the adhesion between PP and GnPs. Compared to neat PP, Young’s modulus of non-compatibilized nanocomposite increase demonstrated that GnPs incorporation can promote a stiffness improvement of the polymer. This trend can be related to the several physical crosslinking points between the PP matrix and the GnPs. Furthermore, the decrease of strain at a yield of PP/GnPs, together with the enhancement of Young’s modulus, confirms that the GnPs incorporation led to an increase in stiffness but to a decrease in toughness. Moreover, the results demonstrated that incorporation of compatibilizers did not affect Young’s modulus and strain at yield results compared to non-compatibilized nanocomposite. The incorporation of these compatibilizers showed an improvement of nanocomposites’ mechanical properties compared both to those the non-compatibilized nanocomposite and to a PP sample used as reference.

Keywords: graphene nanoplatelets, mechanical properties, melt blending processing, poly(propylene)-based nanocomposites

Procedia PDF Downloads 163
139 Artificial Habitat Mapping in Adriatic Sea

Authors: Annalisa Gaetani, Anna Nora Tassetti, Gianna Fabi

Abstract:

The hydroacoustic technology is an efficient tool to study the sea environment: the most recent advancement in artificial habitat mapping involves acoustic systems to investigate fish abundance, distribution and behavior in specific areas. Along with a detailed high-coverage bathymetric mapping of the seabed, the high-frequency Multibeam Echosounder (MBES) offers the potential of detecting fine-scale distribution of fish aggregation, combining its ability to detect at the same time the seafloor and the water column. Surveying fish schools distribution around artificial structures, MBES allows to evaluate how their presence modifies the biological natural habitat overtime in terms of fish attraction and abundance. In the last years, artificial habitat mapping experiences have been carried out by CNR-ISMAR in the Adriatic sea: fish assemblages aggregating at offshore gas platforms and artificial reefs have been systematically monitored employing different kinds of methodologies. This work focuses on two case studies: a gas extraction platform founded at 80 meters of depth in the central Adriatic sea, 30 miles far from the coast of Ancona, and the concrete and steel artificial reef of Senigallia, deployed by CNR-ISMAR about 1.2 miles offshore at a depth of 11.2 m . Relating the MBES data (metrical dimensions of fish assemblages, shape, depth, density etc.) with the results coming from other methodologies, such as experimental fishing surveys and underwater video camera, it has been possible to investigate the biological assemblage attracted by artificial structures hypothesizing which species populate the investigated area and their spatial dislocation from these artificial structures. Processing MBES bathymetric and water column data, 3D virtual scenes of the artificial habitats have been created, receiving an intuitive-looking depiction of their state and allowing overtime to evaluate their change in terms of dimensional characteristics and depth fish schools’ disposition. These MBES surveys play a leading part in the general multi-year programs carried out by CNR-ISMAR with the aim to assess potential biological changes linked to human activities on.

Keywords: artificial habitat mapping, fish assemblages, hydroacustic technology, multibeam echosounder

Procedia PDF Downloads 235
138 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 59
137 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education

Authors: Lauren G. Coggins

Abstract:

Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.

Keywords: education, healthcare-associated infections, infection, nursing, prevention

Procedia PDF Downloads 87
136 An Exploration of Special Education Teachers’ Practices in a Preschool Intellectual Disability Centre in Saudi Arabia

Authors: Faris Algahtani

Abstract:

Background: In Saudi Arabia, it is essential to know what practices are employed and considered effective by special education teachers working with preschool children with intellectual disabilities, as a prerequisite for identifying areas for improvement. Preschool provision for these children is expanding through a network of Intellectual Disability Centres while, in primary schools, a policy of inclusion is pursued and, in mainstream preschools, pilots have been aimed at enhancing learning in readiness for primary schooling. This potentially widens the attainment gap between preschool children with and without intellectual disabilities, and influences the scope for improvement. Goal: The aim of the study was to explore special education teachers’ practices and perceived perceptions of those practices for preschool children with intellectual disabilities in Saudi Arabia Method: A qualitative interpretive approach was adopted in order to gain a detailed understanding of how special education teachers in an IDC operate in the classroom. Fifteen semi-structured interviews were conducted with experienced and qualified teachers. Data were analysed using thematic analysis, based on themes identified from the literature review together with new themes emerging from the data. Findings: American methods strongly influenced teaching practices, in particular TEACCH (Treatment and Education of Autistic and Communication related handicapped Children), which emphasises structure, schedules and specific methods of teaching tasks and skills; and ABA (Applied Behaviour Analysis), which aims to improve behaviours and skills by concentrating on detailed breakdown and teaching of task components and rewarding desired behaviours with positive reinforcement. The Islamic concept of education strongly influenced which teaching techniques were used and considered effective, and how they were applied. Tensions were identified between the Islamic approach to disability, which accepts differences between human beings as created by Allah in order for people to learn to help and love each other, and the continuing stigmatisation of disability in many Arabic cultures, which means that parents who bring their children to an IDC often hope and expect that their children will be ‘cured’. Teaching methods were geared to reducing behavioural problems and social deficits rather than to developing the potential of the individual child, with some teachers recognizing the child’s need for greater freedom. Relationships with parents could in many instances be improved. Teachers considered both initial teacher education and professional development to be inadequate for their needs and the needs of the children they teach. This can be partly attributed to the separation of training and development of special education teachers from that of general teachers. Conclusion: Based on the findings, teachers’ practices could be improved by the inclusion of general teaching strategies, parent-teacher relationships and practical teaching experience in both initial teacher education and professional development. Coaching and mentoring support from carefully chosen special education teachers could assist the process, as could the presence of a second teacher or teaching assistant in the classroom.

Keywords: special education, intellectual disabilities, early intervention , early childhood

Procedia PDF Downloads 117
135 Hegemonic Salaryman Masculinity: Case Study of Transitional Male Gender Roles in Today's Japan

Authors: D. Norton

Abstract:

This qualitative study focuses on the lived experience and displacement of young white-collar masculinities in Japan. In recent years, the salaryman lifestyle has undergone significant disruption - increased competition for regular employment, rise in non-regular structurings of labour across public/private sectors, and shifting role expectations within the home. Despite this, related scholarship hints at a continued reinforcement of the traditional male gender role - that the salaryman remains a key benchmark of Japanese masculine identity. For those in structural proximity to these more ‘normative’ performativities, interest lies their engagement with such narratives - how they make sense of their masculinity in response to stated changes. In light of the historical emphasis on labour and breadwinning logics, notions of respective security or precarity generated as a result remain unclear. Similarly, concern extends to developments within the private sphere - by what means young white-collar men construct ideas of singlehood and companionship according to traditional gender ideologies or more contemporary, flexible readings. The influence of these still-emergent status distinctions on the logics of the social group in question is yet to be explored in depth by gender scholars. This project, therefore, focuses on a salaryman archetype as hegemonic - its transformation amidst these changes and socialising mechanisms that continue to legitimate unequal gender hierarchies. For data collection, a series of ethnographic interviews were held over a period of 12 months with university-educated, white-collar male employees from both Osaka and the Greater Tokyo Area. Findings suggest a modern salaryman ideal reflecting both continuities and shifts within white-collar employment. Whilst receptive to more contemporary workplace practices, the narratives of those interviewed remain imbued with logics supporting patterns of internal hegemony. Regular/non-regular distinction emerged as the foremost variable for both material and discursive patterns of white-collar stratification, with variants of displacement for each social group. Despite the heightened valorisation of stable employment, regular workers articulated various concerns over a model of corporate masculinity seen to be incompatible with recent socioeconomic developments. Likewise, non-regular employees face detachment owing to a still-inflexible perception of their working masculinity as marginalized amidst economic precarity. In seeking to negotiate respective challenges, those interviewed demonstrated an engagement with various concurrent social changes that would often either accommodate, reinforce, or expand upon traditional role behaviours. Few of these narratives offered any notable transgression of said ideal, however, suggesting that within the spectre of white-collar employment in Japan for the near future, any substantive transformation of corporate masculinity remains dependant upon economic developments, less so the agency of those involved.

Keywords: gender ideologies, hegemonic masculinity, Japan, white-collar employment

Procedia PDF Downloads 100
134 An Evaluation of the Auxiliary Instructional App Amid Learning Chinese Characters for Children with Specific Learning Disorders

Authors: Chieh-Ning Lan, Tzu-Shin Lin, Kun-Hao Lin

Abstract:

Chinese handwriting skill is one of the basic skills of school-age children in Taiwan, which helps them to learn most academic subjects. Differ from the alphabetic language system, Chinese written language is a logographic script with a complicated 2-dimensional character structure as a morpheme. Visuospatial ability places a great role in Chinese handwriting to maintain good proportion and alignment of these interwoven strokes. In Taiwan, school-age students faced the challenge to recognize and write down Chinese characters, especially in children with written expression difficulties (CWWDs). In this study, we developed an instructional app to help CWWDs practice Chinese handwriting skills, and we aimed to apply the mobile assisted language learning (MALL) system in clinical writing strategies. To understand the feasibility and satisfaction of this auxiliary instructional writing app, we investigated the perceive and value both from school-age students and the clinic therapists, who were the target users and the experts. A group of 8 elementary school children, as well as 8 clinic therapists, were recruited. The school-age students were asked to go through a paper-based instruction and were asked to score the visual expression based on their graphic preference; the clinic therapists were asked to watch an introductive video of this instructional app and complete the online formative questionnaire. In the results of our study, from the perspective of user interface design, school-age students were more attracted to cartoon-liked pictures rather than line drawings or vivid photos. Moreover, compared to text, pictures which have higher semantic transparency were more commonly chosen by children. In terms of the quantitative survey from clinic therapists, they were highly satisfied with this auxiliary instructional writing app, including the concepts such as visual design, teaching contents, and positive reinforcement system. Furthermore, the qualitative results also suggested comprehensive positive feedbacks on the teaching contents and the feasibility of integrating the app into clinical treatments. Interestingly, we found that clinic therapists showed high agreement in approving CWWDs’ writing ability with using orthographic knowledge; however, in the qualitative section, clinic therapists pointed out that CWWDs usually have relative insufficient background knowledge in Chinese character orthographic rules, which because it is not a key-point in conventional handwriting instruction. Also, previous studies indicated that conventional Chinese reading and writing instructions were lacked of utilizing visual-spatial arrangement strategies. Based on the sharing experiences from all participants, we concluded several interesting topics that are worth to dedicate to in the future. In this undergoing app system, improvement and revision will be applied into the system design, and will establish a better and more useful instructional system for CWWDs within their treatments; enlightened by the opinions related to learning content, the importance of orthographic knowledge in Chinese character recognition should be well discussed and involved in CWWDs’ intervention in the future.

Keywords: auxiliary instructional app, children with writing difficulties, Chinese handwriting, orthographic knowledge

Procedia PDF Downloads 151
133 Integrating Circular Economy Framework into Life Cycle Analysis: An Exploratory Study Applied to Geothermal Power Generation Technologies

Authors: Jingyi Li, Laurence Stamford, Alejandro Gallego-Schmid

Abstract:

Renewable electricity has become an indispensable contributor to achieving net-zero by the mid-century to tackle climate change. Unlike solar, wind, or hydro, geothermal was stagnant in its electricity production development for decades. However, with the significant breakthrough made in recent years, especially the implementation of enhanced geothermal systems (EGS) in various regions globally, geothermal electricity could play a pivotal role in alleviating greenhouse gas emissions. Life cycle assessment has been applied to analyze specific geothermal power generation technologies, which proposed suggestions to optimize its environmental performance. For instance, selecting a high heat gradient region enables a higher flow rate from the production well and extends the technical lifespan. Although such process-level improvements have been made, the significance of geothermal power generation technologies so far has not explicitly displayed its competitiveness on a broader horizon. Therefore, this review-based study integrates a circular economy framework into life cycle assessment, clarifying the underlying added values for geothermal power plants to complete the sustainability profile. The derived results have provided an enlarged platform to discuss geothermal power generation technologies: (i) recover the heat and electricity from the process to reduce the fossil fuel requirements; (ii) recycle the construction materials, such as copper, steel, and aluminum for future projects; (iii) extract the lithium ions from geothermal brine and make geothermal reservoir become a potential supplier of the lithium battery industry; (iv) repurpose the abandoned oil and gas wells to build geothermal power plants; (v) integrate geothermal energy with other available renewable energies (e.g., solar and wind) to provide heat and electricity as a hybrid system at different weather; (vi) rethink the fluids used in stimulation process (EGS only), replace water with CO2 to achieve negative emissions from the system. These results provided a new perspective to the researchers, investors, and policymakers to rethink the role of geothermal in the energy supply network.

Keywords: climate, renewable energy, R strategies, sustainability

Procedia PDF Downloads 113
132 Rhizospheric Oxygen Release of Hydroponically Grown Wetland Macrophytes as Passive Source for Cathodic Reduction in Microbial Fuel Cell

Authors: Chabungbam Niranjit Khuman, Makarand Madhao Ghangrekar, Arunabha Mitra

Abstract:

The cost of aeration is one of the limiting factors in the upscaling of microbial fuel cells (MFC) for field-scale applications. Wetland macrophytes have the ability to release oxygen into the water to maintain aerobic conditions in their root zone. In this experiment, the efficacy of rhizospheric oxygen release of wetland macrophytes as a source of oxygen in the cathodic chamber of MFC was conducted. The experiment was conducted in an MFC consisting of a three-liter anodic chamber made of ceramic cylinder and a 27 L cathodic chamber. Untreated carbon felts were used as electrodes (i.e., anode and cathode) and connected to an external load of 100 Ω using stainless steel wire. Wetland macrophytes (Canna indica) were grown in the cathodic chamber of the MFC in a hydroponic fashion using a styrofoam sheet (termed as macrophytes assisted-microbial fuel cell, M-MFC). The catholyte (i.e., water) in the M-MFC had negligible contact with atmospheric air due to the styrofoam sheet used for maintaining the hydroponic condition. There was no mixing of the catholyte in the M-MFC. Sucrose based synthetic wastewater having chemical oxygen demand (COD) of 3000 mg/L was fed into the anodic chamber of the MFC in fed-batch mode with a liquid retention time of four days. The C. indica thrived well throughout the duration of the experiment without much care. The average dissolved oxygen (DO) concentration and pH value in the M-MFC were 3.25 mg/L and 7.07, respectively, in the catholyte. Since the catholyte was not in contact with air, the DO in the catholyte might be considered as solely liberated from the rhizospheric oxygen release of C. indica. The maximum COD removal efficiency of M-MFC observed during the experiment was 76.9%. The inadequacy of terminal electron acceptor in the cathodic chamber in M-MFC might have hampered the electron transfer, which in turn, led to slower specific microbial activity, thereby resulting in lower COD removal efficiency than the traditional MFC with aerated catholyte. The average operating voltage (OV) and open-circuit voltage (OCV) of 294 mV and 594 mV, respectively, were observed in M-MFC. The maximum power density observed during polarization was 381 mW/m³, and the maximum sustainable power density observed during the experiment was 397 mW/m³ in M-MFC. The maximum normalized energy recovery and coulombic efficiency of 38.09 Wh/m³ and 1.27%, respectively, were observed. Therefore, it was evidenced that rhizospheric oxygen release of wetland macrophytes (C. indica) was capable of sustaining the cathodic reaction in MFC for field-scale applications.

Keywords: hydroponic, microbial fuel cell, rhizospheric oxygen release, wetland macrophytes

Procedia PDF Downloads 109
131 Nano-Enabling Technical Carbon Fabrics to Achieve Improved Through Thickness Electrical Conductivity in Carbon Fiber Reinforced Composites

Authors: Angelos Evangelou, Katerina Loizou, Loukas Koutsokeras, Orestes Marangos, Giorgos Constantinides, Stylianos Yiatros, Katerina Sofocleous, Vasileios Drakonakis

Abstract:

Owing to their outstanding strength to weight properties, carbon fiber reinforced polymer (CFRPs) composites have attracted significant attention finding use in various fields (sports, automotive, transportation, etc.). The current momentum indicates that there is an increasing demand for their employment in high value bespoke applications such as avionics and electronic casings, damage sensing structures, EMI (electromagnetic interference) structures that dictate the use of materials with increased electrical conductivity both in-plane and through the thickness. Several efforts by research groups have focused on enhancing the through-thickness electrical conductivity of FRPs, in an attempt to combine the intrinsically high relative strengths exhibited with improved z-axis electrical response as well. However, only a limited number of studies deal with printing of nano-enhanced polymer inks to produce a pattern on dry fabric level that could be used to fabricate CFRPs with improved through thickness electrical conductivity. The present study investigates the employment of screen-printing process on technical dry fabrics using nano-reinforced polymer-based inks to achieve the required through thickness conductivity, opening new pathways for the application of fiber reinforced composites in niche products. Commercially available inks and in-house prepared inks reinforced with electrically conductive nanoparticles are employed, printed in different patterns. The aim of the present study is to investigate both the effect of the nanoparticle concentration as well as the droplet patterns (diameter, inter-droplet distance and coverage) to optimize printing for the desired level of conductivity enhancement in the lamina level. The electrical conductivity is measured initially at ink level to pinpoint the optimum concentrations to be employed using a “four-probe” configuration. Upon printing of the different patterns, the coverage of the dry fabric area is assessed along with the permeability of the resulting dry fabrics, in alignment with the fabrication of CFRPs that requires adequate wetting by the epoxy matrix. Results demonstrated increased electrical conductivities of the printed droplets, with increase of the conductivity from the benchmark value of 0.1 S/M to between 8 and 10 S/m. Printability of dense and dispersed patterns has exhibited promising results in terms of increasing the z-axis conductivity without inhibiting the penetration of the epoxy matrix at the processing stage of fiber reinforced composites. The high value and niche prospect of the resulting applications that can stem from CFRPs with increased through thickness electrical conductivities highlights the potential of the presented endeavor, signifying screen printing as the process to to nano-enable z-axis electrical conductivity in composite laminas. This work was co-funded by the European Regional Development Fund and the Republic of Cyprus through the Research and Innovation Foundation (Project: ENTERPRISES/0618/0013).

Keywords: CFRPs, conductivity, nano-reinforcement, screen-printing

Procedia PDF Downloads 129
130 Compression and Air Storage Systems for Small Size CAES Plants: Design and Off-Design Analysis

Authors: Coriolano Salvini, Ambra Giovannelli

Abstract:

The use of renewable energy sources for electric power production leads to reduced CO2 emissions and contributes to improving the domestic energy security. On the other hand, the intermittency and unpredictability of their availability poses relevant problems in fulfilling safely and in a cost efficient way the load demand along the time. Significant benefits in terms of “grid system applications”, “end-use applications” and “renewable applications” can be achieved by introducing energy storage systems. Among the currently available solutions, CAES (Compressed Air Energy Storage) shows favorable features. Small-medium size plants equipped with artificial air reservoirs can constitute an interesting option to get efficient and cost-effective distributed energy storage systems. The present paper is addressed to the design and off-design analysis of the compression system of small size CAES plants suited to absorb electric power in the range of hundreds of kilowatt. The system of interest is constituted by an intercooled (in case aftercooled) multi-stage reciprocating compressor and a man-made reservoir obtained by connecting large diameter steel pipe sections. A specific methodology for the system preliminary sizing and off-design modeling has been developed. Since during the charging phase the electric power absorbed along the time has to change according to the peculiar CAES requirements and the pressure ratio increases continuously during the filling of the reservoir, the compressor has to work at variable mass flow rate. In order to ensure an appropriately wide range of operations, particular attention has been paid to the selection of the most suitable compressor capacity control device. Given the capacity regulation margin of the compressor and the actual level of charge of the reservoir, the proposed approach allows the instant-by-instant evaluation of minimum and maximum electric power absorbable from the grid. The developed tool gives useful information to appropriately size the compression system and to manage it in the most effective way. Various cases characterized by different system requirements are analysed. Results are given and widely discussed.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), compressor design, compression system management.

Procedia PDF Downloads 201
129 In vitro Evaluation of Capsaicin Patches for Transdermal Drug Delivery

Authors: Alija Uzunovic, Sasa Pilipovic, Aida Sapcanin, Zahida Ademovic, Berina Pilipović

Abstract:

Capsaicin is a naturally occurring alkaloid extracted from capsicum fruit extracts of different of Capsicum species. It has been employed topically to treat many diseases such as rheumatoid arthritis, osteoarthritis, cancer pain and nerve pain in diabetes. The high degree of pre-systemic metabolism of intragastrical capsaicin and the short half-life of capsaicin by intravenous administration made topical application of capsaicin advantageous. In this study, we have evaluated differences in the dissolution characteristics of capsaicin patch 11 mg (purchased from market) at different dissolution rotation speed. The proposed patch area is 308 cm2 (22 cm x 14 cm; it contains 36 µg of capsaicin per square centimeter of adhesive). USP Apparatus 5 (Paddle Over Disc) is used for transdermal patch testing. The dissolution study was conducted using USP apparatus 5 (n=6), ERWEKA DT800 dissolution tester (paddle-type) with addition of a disc. The fabricated patch of 308 cm2 is to be cut into 9 cm2 was placed against a disc (delivery side up) retained with the stainless-steel screen and exposed to 500 mL of phosphate buffer solution pH 7.4. All dissolution studies were carried out at 32 ± 0.5 °C and different rotation speed (50± 5; 100± 5 and 150± 5 rpm). 5 ml aliquots of samples were withdrawn at various time intervals (1, 4, 8 and 12 hours) and replaced with 5 ml of dissolution medium. Withdrawn were appropriately diluted and analyzed by reversed-phase liquid chromatography (RP-LC). A Reversed Phase Liquid Chromatography (RP-LC) method has been developed, optimized and validated for the separation and quantitation of capsaicin in a transdermal patch. The method uses a ProntoSIL 120-3-C18 AQ 125 x 4,0 mm (3 μm) column maintained at 600C. The mobile phase consisted of acetonitrile: water (50:50 v/v), the flow rate of 0.9 mL/min, the injection volume 10 μL and the detection wavelength 222 nm. The used RP-LC method is simple, sensitive and accurate and can be applied for fast (total chromatographic run time was 4.0 minutes) and simultaneous analysis of capsaicin and dihydrocapsaicin in a transdermal patch. According to the results obtained in this study, we can conclude that the relative difference of dissolution rate of capsaicin after 12 hours was elevated by increase of dissolution rotation speed (100 rpm vs 50 rpm: 84.9± 11.3% and 150 rpm vs 100 rpm: 39.8± 8.3%). Although several apparatus and procedures (USP apparatus 5, 6, 7 and a paddle over extraction cell method) have been used to study in vitro release characteristics of transdermal patches, USP Apparatus 5 (Paddle Over Disc) could be considered as a discriminatory test. would be able to point out the differences in the dissolution rate of capsaicin at different rotation speed.

Keywords: capsaicin, in vitro, patch, RP-LC, transdermal

Procedia PDF Downloads 201
128 Understanding the Effect of Material and Deformation Conditions on the “Wear Mode Diagram”: A Numerical Study

Authors: A. Mostaani, M. P. Pereira, B. F. Rolfe

Abstract:

The increasing application of Advanced High Strength Steel (AHSS) in the automotive industry to fulfill crash requirements has introduced higher levels of wear in stamping dies and parts. Therefore, understanding wear behaviour in sheet metal forming is of great importance as it can help to reduce the high costs currently associated with tool wear. At the contact between the die and the sheet, the tips of hard tool asperities interact with the softer sheet material. Understanding the deformation that occurs during this interaction is important for our overall understanding of the wear mechanisms. For these reasons, the scratching of a perfectly plastic material by a rigid indenter has been widely examined in the literature; with finite element modelling (FEM) used in recent years to further understand the behaviour. The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation, and cutting. This diagram, which is based on 2D slip line theory and upper bound method for perfectly plastic work-piece and rigid indenter, relates different wear modes to attack angle and interfacial strength. This diagram has been the basis for many wear studies and wear models to date. Additionally, it has been concluded that galling is most likely to occur during the wedge formation mode. However, there has been little analysis in the literature of how the material behaviour and deformation conditions associated with metal forming processes influence the wear behaviour. Therefore, the first aim of this work is first to use a commercial FEM package (Abaqus/Explicit) to build a 3D model to capture wear modes during scratching with indenters with different attack angles and different interfacial strengths. The second goal is to utilise the developed model to understand how wear modes might change in the presence of bulk deformation of the work-piece material as a result of the metal forming operation. Finally, the effect of the work-piece material properties, including strain hardening, will be examined to understand how these influence the wear modes and wear behaviour. The results show that both strain hardening and substrate deformation can change the critical attack angle at which the wedge formation regime is activated.

Keywords: finite element, pile-up, scratch test, wear mode

Procedia PDF Downloads 303
127 Structural Performance of Mechanically Connected Stone Panels under Cyclic Loading: Application to Aesthetic and Environmental Building Skin Design

Authors: Michel Soto Chalhoub

Abstract:

Building designers in the Mediterranean region and other parts of the world utilize natural stone panels on the exterior façades as skin cover. This type of finishing is not only intended for aesthetic reasons but also environmental. The stone, since the earliest ages of civilization, has been used in construction and to-date some of the most appealing buildings owe their beauty to stone finishing. The stone also provides warmth in winter and freshness in summer as it moderates heat transfer and absorbs radiation. However, as structural codes became increasingly stringent about the dynamic performance of buildings, it became essential to study the performance of stone panels under cyclic loading – a condition that arises under the building is subjected to wind or earthquakes. The present paper studies the performance of stone panels using mechanical connectors when subjected to load reversal. In this paper, we present a theoretical model that addresses modes of failure in the steel connectors, by yield, and modes of failure in the stone, by fracture. Then we provide an experimental set-up and test results for rectangular stone panels of varying thickness. When the building is subjected to an earthquake, its rectangular panels within the structural system are subjected to shear deformations, which in turn impart stress into the stone cover. Rectangular stone panels, which typically range from 40cmx80cm to 60cmx120cm, need to be designed to withstand transverse loading from the direct application of lateral loads, and to withstand simultaneously in-plane loading (membrane stress) caused by inter-story drift and overall building lateral deflection. Results show correlation between the theoretical model which we derive from solid mechanics fundamentals and the experimental results, and lead to practical design recommendations. We find that for panel thickness below a certain threshold, it is more advantageous to utilize structural adhesive materials to connect stone panels to the main structural system of the building. For larger panel thicknesses, it is recommended to utilize mechanical connectors with special detailing to ensure a minimum level of ductility and energy dissipation.

Keywords: solid mechanics, cyclic loading, mechanical connectors, natural stone, seismic, wind, building skin

Procedia PDF Downloads 236
126 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 348
125 Maternal and Newborn Health Care Program Implementation and Integration by Maternal Community Health Workers, Africa: An Integrative Review

Authors: Nishimwe Clemence, Mchunu Gugu, Mukamusoni Dariya

Abstract:

Background: Community health workers and extension workers can play an important role in supporting families to adopt health practices, encourage delivery in a health care facility, and ensure time referral of mothers and newborns if needed. Saving the lives of neonates should, therefore, be a significant health outcome in any maternal and newborn health program that is being implemented. Furthermore, about half of a million mothers die from pregnancy-related causes. Maternal and newborn deaths related to the period of postnatal care are neglected. Some authors emphasized that in developing countries, newborn mortality rates have been reduced much more slowly because of the lack of many necessary facility-based and outreach service. The aim of this review was to critically analyze the implementation and integration process of the maternal and newborn health care program by maternal community health workers, into the health care system, in Africa. Furthermore, it aims to reduce maternal and newborn mortality. We addressed the following review question: (1) what process is involved in the implementation and integration of the maternal and newborn health care program by maternal community health workers during antenatal, delivery and postnatal care into health system care in Africa? Methods: The database searched was from Health Source: Nursing/Academic Edition through academic search complete via EBSCO Host. An iterative approach was used to go through Google scholarly papers. The reviewers considered adapted Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidance, and the Mixed Methods Appraisal Tool (MMAT) was used. Synthesis method in integrative review following elements of noting patterns and themes, seeing plausibility, clustering, counting, making contrasts and comparisons, discerning commons and unusual patterns, subsuming particulars into general, noting relations between variability, finding intervening factors and building a logical chain of evidence, using data–based convergent synthesis design. Results: From the seventeen of studies included, results focused on three dimensions inspired by the literature on antenatal, delivery, and postnatal interventions. From this, further conceptual framework was elaborated. The conceptual framework process of implementation and integration of maternal and newborn health care program by maternal community health workers was elaborated in order to ensure the sustainability of community based intervention. Conclusions: the review revealed that the implementation and integration of maternal and newborn health care program require planning. We call upon governments, non-government organizations, the global health community, all stakeholders including policy makers, program managers, evaluators, educators, and providers to be involved in implementation and integration of maternal and newborn health program in updated policy and community-based intervention. Furthermore, emphasis should be placed on competence, responsibility, and accountability of maternal community health workers, their training and payment, collaboration with health professionals in health facilities, and reinforcement of outreach service. However, the review was limited in focus to the African context, where the process of maternal and newborn health care program has been poorly implemented.

Keywords: Africa, implementation of integration, maternal, newborn

Procedia PDF Downloads 130
124 Scrutinizing the Effective Parameters on Cuttings Movement in Deviated Wells: Experimental Study

Authors: Siyamak Sarafraz, Reza Esmaeil Pour, Saeed Jamshidi, Asghar Molaei Dehkordi

Abstract:

Cutting transport is one of the major problems in directional and extended reach oil and gas wells. Lack of sufficient attention to this issue may bring some troubles such as casing running, stuck pipe, excessive torque and drag, hole pack off, bit wear, decreased the rate of penetration (ROP), increased equivalent circulation density (ECD) and logging. Since it is practically impossible to directly observe the behavior of deep wells, a test setup was designed to investigate cutting transport phenomena. This experimental work carried out to scrutiny behavior of the effective variables in cutting transport. The test setup contained a test section with 17 feet long that made of a 3.28 feet long transparent glass pipe with 3 inch diameter, a storage tank with 100 liters capacity, drill pipe rotation which made of stainless steel with 1.25 inches diameter, pump to circulate drilling fluid, valve to adjust flow rate, bit and a camera to record all events which then converted to RGB images via the Image Processing Toolbox. After preparation of test process, each test performed separately, and weights of the output particles were measured and compared with each other. Observation charts were plotted to assess the behavior of viscosity, flow rate and RPM in inclinations of 0°, 30°, 60° and 90°. RPM was explored with other variables such as flow rate and viscosity in different angles. Also, effect of different flow rate was investigated in directional conditions. To access the precise results, captured image were analyzed to find out bed thickening and particles behave in the annulus. The results of this experimental study demonstrate that drill string rotation helps particles to be suspension and reduce the particle deposition cutting movement increased significantly. By raising fluid velocity, laminar flow converted to turbulence flow in the annulus. Increases in flow rate in horizontal section by considering a lower range of viscosity is more effective and improved cuttings transport performance.

Keywords: cutting transport, directional drilling, flow rate, hole cleaning, pipe rotation

Procedia PDF Downloads 259
123 Assessing the Feasibility of Italian Hydrogen Targets with the Open-Source Energy System Optimization Model TEMOA - Italy

Authors: Alessandro Balbo, Gianvito Colucci, Matteo Nicoli, Laura Savoldi

Abstract:

Hydrogen is expected to become a game changer in the energy transition, especially enabling sector coupling possibilities and the decarbonization of hard-to-abate end-uses. The Italian National Recovery and Resilience Plan identifies hydrogen as one of the key elements of the ecologic transition to meet international decarbonization objectives, also including it in several pilot projects for the early development in Italy. This matches the European energy strategy, which aims to make hydrogen a leading energy carrier of the future, setting ambitious goals to be accomplished by 2030. The huge efforts needed to achieve the announced targets require to carefully investigate of their feasibility in terms of economic expenditures and technical aspects. In order to quantitatively assess the hydrogen potential within the Italian context and the feasibility of the planned investments and projects, this work uses the TEMOA-Italy energy system model to study pathways to meet the strict objectives above cited. The possible hydrogen development has been studied both in the supply-side and demand-side of the energy system, also including storage options and distribution chains. The assessment comprehends alternative hydrogen production technologies involved in a competition market, reflecting the several possible investments declined by the Italian National Recovery and Resilience Plan to boost the development and spread of this infrastructure, including the sector coupling potential with natural gas through the currently existing infrastructure and CO2 capture for the production of synfuels. On the other hand, the hydrogen end-uses phase covers a wide range of consumption alternatives, from fuel-cell vehicles, for which both road and non-road transport categories are considered, to steel, and chemical industries uses and cogeneration for residential and commercial buildings. The model includes both high and low TRL technologies in order to provide a consistent outcome for the future decades as it does for the present day, and since it is developed through the use of an open-source code instance and database, transparency and accessibility are fully granted.

Keywords: decarbonization, energy system optimization models, hydrogen, open-source modeling, TEMOA

Procedia PDF Downloads 76
122 The Evaporation Study of 1-ethyl-3-methylimidazolium chloride

Authors: Kirill D. Semavin, Norbert S. Chilingarov, Eugene.V. Skokan

Abstract:

The ionic liquids (ILs) based on imidazolium cation are well known nowadays. The changing anions and substituents in imidazolium ring may lead to different physical and chemical properties of ILs. It is important that such ILs with halogen as anion are characterized by a low thermal stability. The data about thermal stability of 1-ethyl-3-methylimidazolium chloride are ambiguous. In the works of last years, thermal stability of this IL was investigated by thermogravimetric analysis and obtained results are contradictory. Moreover, in the last study, it was shown that the observed temperature of the beginning of decomposition significantly depends on the experimental conditions, for example, the heating rate of the sample. The vapor pressure of this IL is not presented at the literature. In this study, the vapor pressure of 1-ethyl-3-methylimidazolium chloride was obtained by Knudsen effusion mass-spectrometry (KEMS). The samples of [ЕMIm]Cl (purity > 98%) were supplied by Sigma–Aldrich and were additionally dried at dynamic vacuum (T = 60 0C). Preliminary procedures with Il were derived into glove box. The evaporation studies of [ЕMIm]Cl were carried out by KEMS with using original research equipment based on commercial MI1201 magnetic mass spectrometer. The stainless steel effusion cell had an effective evaporation/effusion area ratio of more than 6000. The cell temperature, measured by a Pt/Pt−Rh (10%) thermocouple, was controlled by a Termodat 128K5 device with an accuracy of ±1 K. In first step of this study, the optimal temperature of experiment and heating rate of samples were customized: 449 K and 5 K/min, respectively. In these conditions the sample is decomposed, but the experimental measurements of the vapor pressures are possible. The thermodynamic activity of [ЕMIm]Cl is close to 1 and products of decomposition don’t affect it at firstly 50 hours of experiment. Therefore, it lets to determine the saturated vapor pressure of IL. The electronic ionization mass-spectra shows that the decomposition of [ЕMIm]Cl proceeds with two ways. Nonetheless, the MALDI mass spectra of the starting sample and residue in the cell were similar. It means that the main decomposition products are gaseous under experimental conditions. This result allows us to obtain information about the kinetics of [ЕMIm]Cl decomposition. Thus, the original KEMS-based procedure made it possible to determine the IL vapor pressure under decomposition conditions. Also, the loss of sample mass due to the evaporation was obtained.

Keywords: ionic liquids, Knudsen effusion mass spectrometry, thermal stability, vapor pressure

Procedia PDF Downloads 163