Search results for: smart braking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1366

Search results for: smart braking

1276 GSM and GPS Based Smart Helmet System for Sudden Accidental Rescue Operation

Authors: A. B. M. Aftabuzzaman, Md. Mahin Hossain, Md. Ifran Sharif Imthi, Md. Razu Ahmed, A. Z. M. Imran

Abstract:

The goals of the study are to develop a safety system that is combined with a smart helmet to reduce the likelihood of two-wheeler bike accidents and cases of drunk driving. The smart helmet and the limit switch both verify when a biker is wearing a helmet. The presence of alcohol in the rider's breath is detected using alcohol sensors. The bike remains turned off if the rider is not wearing a helmet or if the rider's breath contains alcohol. The bike will not start until the rider is wearing a helmet and there is no alcoholic substance present, indicating that the bike rider has not consumed alcohol. When the rider faces in an accident, instantly the smart helmet hits the ground and respective sensors detect the movement and tilt of the protective helmet and instantly sending the information about the location of accident to the rider's relatives and the crisis contact numbers which are introduced in the smart helmet respective device. So this project finding will ensure safe bike journey and improve safe commercial bike services in Bangladesh.

Keywords: smart helmet, GSM, GPS, bike, biker accident

Procedia PDF Downloads 68
1275 Effect of Compressibility of Brake Friction Materials on Vibration Occurrence

Authors: Mostafa Makrahy, Nouby Ghazaly, Ahmad Moaaz

Abstract:

Brakes are one of the most important safety and performance components in automobiles and airplanes. Development of brakes has mainly focused on increasing braking power and stability. Nowadays, brake noise, vibration and harshness (NVH) together with brake dust emission and pad life are very important to vehicle drivers. The main objective of this research is to define the relationship between compressibility of friction materials and their tendency to generate vibration. An experimental study of the friction-induced vibration obtained by the disc brake system of a passenger car is conducted. Three commercial brake pad materials from different manufacturers are tested and evaluated under various brake conditions against cast iron disc brake. First of all, compressibility test for the brake friction material are measured for each pad. Then, brake dynamometer is used to simulate and reproduce actual vehicle braking conditions. Finally, a comparison between the three pad specimens is conducted. The results showed that compressibility have a very significant effect on reduction the vibration occurrence.

Keywords: automotive brake, friction material, brake dynamometer, compressibility test

Procedia PDF Downloads 213
1274 Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine

Authors: Gurlal Singh, Rupinder Singh

Abstract:

The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine.

Keywords: exhaust gas, automobiles, solenoid, airbrake

Procedia PDF Downloads 227
1273 A Study of the Costs and Benefits of Smart City Projects Including the Scenario of Public-Private Partnerships

Authors: Patrick T. I. Lam, Wenjing Yang

Abstract:

A smart city project embraces benefits and costs which can be classified under direct and indirect categories. Externalities come into the picture, but they are often difficult to quantify. Despite this barrier, policy makers need to carry out cost-benefit analysis to justify the huge investments needed to make a city smart. The recent trend is towards the engagement of the private sector to utilize their resources and expertise, especially in the Information and Communication Technology (ICT) areas, where innovations blossom. This study focuses on the identification of costs (on a life cycle basis) and benefits associated with smart city project developments based on a comprehensive literature review and case studies, where public-private partnerships would warrant consideration, the related costs and benefits are highlighted. The findings will be useful for policy makers of cities.

Keywords: smart city projects, costs and benefits, identification, public-private partnerships

Procedia PDF Downloads 304
1272 Application of Supervised Deep Learning-based Machine Learning to Manage Smart Homes

Authors: Ahmed Al-Adaileh

Abstract:

Renewable energy sources, domestic storage systems, controllable loads and machine learning technologies will be key components of future smart homes management systems. An energy management scheme that uses a Deep Learning (DL) approach to support the smart home management systems, which consist of a standalone photovoltaic system, storage unit, heating ventilation air-conditioning system and a set of conventional and smart appliances, is presented. The objective of the proposed scheme is to apply DL-based machine learning to predict various running parameters within a smart home's environment to achieve maximum comfort levels for occupants, reduced electricity bills, and less dependency on the public grid. The problem is using Reinforcement learning, where decisions are taken based on applying the Continuous-time Markov Decision Process. The main contribution of this research is the proposed framework that applies DL to enhance the system's supervised dataset to offer unlimited chances to effectively support smart home systems. A case study involving a set of conventional and smart appliances with dedicated processing units in an inhabited building can demonstrate the validity of the proposed framework. A visualization graph can show "before" and "after" results.

Keywords: smart homes systems, machine learning, deep learning, Markov Decision Process

Procedia PDF Downloads 159
1271 Influence of Natural Rubber on the Frictional and Mechanical Behavior of the Composite Brake Pad Materials

Authors: H. Yanar, G. Purcek, H. H. Ayar

Abstract:

The ingredients of composite materials used for the production of composite brake pads play an important role in terms of safety braking performance of automobiles and trains. Therefore, the ingredients must be selected carefully and used in appropriate ratios in the matrix structure of the brake pad materials. In the present study, a non-asbestos organic composite brake pad materials containing binder resin, space fillers, solid lubricants, and friction modifier was developed, and its fillers content was optimized by adding natural rubber with different rate into the specified matrix structure in order to achieve the best combination of tribo-performance and mechanical properties. For this purpose, four compositions with different rubber content (2.5wt.%, 5.0wt.%, 7.5wt.% and 10wt.%) were prepared and then test samples with the diameter of 20 mm and length of 15 mm were produced to evaluate the friction and mechanical behaviors of the mixture. The friction and wear tests were performed using a pin-on-disc type test rig which was designed according to NF-F-11-292 French standard. All test samples were subjected to two different types of friction tests defined as periodic braking and continuous braking (also known as fade test). In this way, the coefficient of friction (CoF) of composite sample with different rubber content were determined as a function of number of braking cycle and temperature of the disc surface. The results demonstrated that addition of rubber into the matrix structure of the composite caused a significant change in the CoF. Average CoF of the composite samples increased linearly with increasing rubber content into the matrix. While the average CoF was 0.19 for the rubber-free composite, the composite sample containing 20wt.% rubber had the maximum CoF of about 0.24. Although the CoF of composite sample increased, the amount of specific wear rate decreased with increasing rubber content into the matrix. On the other hand, it was observed that the CoF decreased with increasing temperature generated in-between sample and disk depending on the increasing rubber content. While the CoF decreased to the minimum value of 0.15 at 400 °C for the rubber-free composite sample, the sample having the maximum rubber content of 10wt.% exhibited the lowest one of 0.09 at the same temperature. Addition of rubber into the matrix structure decreased the hardness and strength of the samples. It was concluded from the results that the composite matrix with 5 wt.% rubber had the best composition regarding the performance parameters such as required frictional and mechanical behavior. This composition has the average CoF of 0.21, specific wear rate of 0.024 cm³/MJ and hardness value of 63 HRX.

Keywords: brake pad composite, friction and wear, rubber, friction materials

Procedia PDF Downloads 113
1270 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)

Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali

Abstract:

The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.

Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking

Procedia PDF Downloads 72
1269 Distributed Manufacturing (DM)- Smart Units and Collaborative Processes

Authors: Hermann Kuehnle

Abstract:

Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability.

Keywords: autonomous unit, networkability, smart manufacturing unit, virtualization

Procedia PDF Downloads 501
1268 Addressing Security and Privacy Issues in a Smart Environment by Using Block-Chain as a Preemptive Technique

Authors: Shahbaz Pervez, Aljawharah Almuhana, Zahida Parveen, Samina Naz, Hira Tariq, Seyed Hosseini, Muhammad Awais Azam

Abstract:

With the latest development in the field of cutting-edge technologies, there is a rapid increase in the use of technology-oriented gadgets. In a recent scenario of the tech era, there is increasing demand to fulfill our day-to-day routine tasks with the help of technological gadgets. We are living in an era of technology where trends have been changing, and a race to introduce a new technology gadget has already begun. Smart cities are getting more popular with every passing day; city councils and governments are under enormous pressure to provide the latest services for their citizens and equip them with all the latest facilities. Thus, ultimately, they are going more into smart cities infrastructure building, providing services to their inhabitants with a single click from their smart devices. This trend is very exciting, but on the other hand, if some incident of security breach happens due to any weaker link, the results would be catastrophic. This paper addresses potential security and privacy breaches with a possible solution by using Blockchain technology in IoT enabled environment.

Keywords: blockchain, cybersecurity, DDOS, intrusion detection, IoT, RFID, smart devices security, smart services

Procedia PDF Downloads 84
1267 Extending Smart City Infrastructure to Cover Natural Disasters

Authors: Nina Dasari, Satvik Dasari

Abstract:

Smart city solutions are being developed across the globe to transform urban areas. However, the infrastructure enablement for alerting natural disasters such as floods and wildfires is deficient. This paper discusses an innovative device that could be used as part of the smart city initiative to detect and provide alerts in case of floods at road crossings and wildfires. An Internet of Things (IoT) smart city node was designed, tested, and deployed with collaboration from the City of Austin. The end to end solution includes a 3G enabled IoT device, flood and fire sensors, cloud, a mobile app, and IoT analytics. The real-time data was collected and analyzed using IoT analytics to refine the solution for the past year. The results demonstrate that the proposed solution is reliable and provides accurate results. This low-cost solution is viable, and it can replace the current solution which costs tens of thousands of dollars.

Keywords: analytics, internet of things, natural disasters, smart city

Procedia PDF Downloads 196
1266 Cybersecurity Assessment of Decentralized Autonomous Organizations in Smart Cities

Authors: Claire Biasco, Thaier Hayajneh

Abstract:

A smart city is the integration of digital technologies in urban environments to enhance the quality of life. Smart cities capture real-time information from devices, sensors, and network data to analyze and improve city functions such as traffic analysis, public safety, and environmental impacts. Current smart cities face controversy due to their reliance on real-time data tracking and surveillance. Internet of Things (IoT) devices and blockchain technology are converging to reshape smart city infrastructure away from its centralized model. Connecting IoT data to blockchain applications would create a peer-to-peer, decentralized model. Furthermore, blockchain technology powers the ability for IoT device data to shift from the ownership and control of centralized entities to individuals or communities with Decentralized Autonomous Organizations (DAOs). In the context of smart cities, DAOs can govern cyber-physical systems to have a greater influence over how urban services are being provided. This paper will explore how the core components of a smart city now apply to DAOs. We will also analyze different definitions of DAOs to determine their most important aspects in relation to smart cities. Both categorizations will provide a solid foundation to conduct a cybersecurity assessment of DAOs in smart cities. It will identify the benefits and risks of adopting DAOs as they currently operate. The paper will then provide several mitigation methods to combat cybersecurity risks of DAO integrations. Finally, we will give several insights into what challenges will be faced by DAO and blockchain spaces in the coming years before achieving a higher level of maturity.

Keywords: blockchain, IoT, smart city, DAO

Procedia PDF Downloads 70
1265 Research on Control Strategy of Differential Drive Assisted Steering of Distributed Drive Electric Vehicle

Authors: J. Liu, Z. P. Yu, L. Xiong, Y. Feng, J. He

Abstract:

According to the independence, accuracy and controllability of the driving/braking torque of the distributed drive electric vehicle, a control strategy of differential drive assisted steering was designed. Firstly, the assisted curve under different speed and steering wheel torque was developed and the differential torques were distributed to the right and left front wheels. Then the steering return ability assisted control algorithm was designed. At last, the joint simulation was conducted by CarSim/Simulink. The result indicated: the differential drive assisted steering algorithm could provide enough steering drive-assisted under low speed and improve the steering portability. Along with the increase of the speed, the provided steering drive-assisted decreased. With the control algorithm, the steering stiffness of the steering system increased along with the increase of the speed, which ensures the driver’s road feeling. The control algorithm of differential drive assisted steering could avoid the understeer under low speed effectively.

Keywords: differential assisted steering, control strategy, distributed drive electric vehicle, driving/braking torque

Procedia PDF Downloads 451
1264 Electricity Market Categorization for Smart Grid Market Testing

Authors: Rebeca Ramirez Acosta, Sebastian Lenhoff

Abstract:

Decision makers worldwide need to determine if the implementation of a new market mechanism will contribute to the sustainability and resilience of the power system. Due to smart grid technologies, new products in the distribution and transmission system can be traded; however, the impact of changing a market rule will differ between several regions. To test systematically those impacts, a market categorization has been compiled and organized in a smart grid market testing toolbox. This toolbox maps all actual energy products and sets the basis for running a co-simulation test with the new rule to be implemented. It will help to measure the impact of the new rule, based on the sustainable and resilience indicators.

Keywords: co-simulation, electricity market, smart grid market, market testing

Procedia PDF Downloads 155
1263 Preference Aggregation and Mechanism Design in the Smart Grid

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Smart Grid is the vision of the future power system that combines advanced monitoring and communication technologies to provide energy in a smart, efficient, and user-friendly manner. This proposal considers a demand response model in the Smart Grid based on utility maximization. Given a set of consumers with conflicting preferences in terms of consumption and a utility company that aims to minimize the peak demand and match demand to supply, we study the problem of aggregating these preferences while modelling the problem as a game. We also investigate whether an equilibrium can be reached to maximize the social benefit. Based on such equilibrium, we propose a dynamic pricing heuristic that computes the equilibrium and sets the prices accordingly. The developed approach was analysed theoretically and evaluated experimentally using real appliances data. The results show that our proposed approach achieves a substantial reduction in the overall energy consumption.

Keywords: heuristics, smart grid, aggregation, mechanism design, equilibrium

Procedia PDF Downloads 78
1262 Modeling, Analysis and Control of a Smart Composite Structure

Authors: Nader H. Ghareeb, Mohamed S. Gaith, Sayed M. Soleimani

Abstract:

In modern engineering, weight optimization has a priority during the design of structures. However, optimizing the weight can result in lower stiffness and less internal damping, causing the structure to become excessively prone to vibration. To overcome this problem, active or smart materials are implemented. The coupled electromechanical properties of smart materials, used in the form of piezoelectric ceramics in this work, make these materials well-suited for being implemented as distributed sensors and actuators to control the structural response. The smart structure proposed in this paper is composed of a cantilevered steel beam, an adhesive or bonding layer, and a piezoelectric actuator. The static deflection of the structure is derived as function of the piezoelectric voltage, and the outcome is compared to theoretical and experimental results from literature. The relation between the voltage and the piezoelectric moment at both ends of the actuator is also investigated and a reduced finite element model of the smart structure is created and verified. Finally, a linear controller is implemented and its ability to attenuate the vibration due to the first natural frequency is demonstrated.

Keywords: active linear control, lyapunov stability theorem, piezoelectricity, smart structure, static deflection

Procedia PDF Downloads 365
1261 Modeling Activity Pattern Using XGBoost for Mining Smart Card Data

Authors: Eui-Jin Kim, Hasik Lee, Su-Jin Park, Dong-Kyu Kim

Abstract:

Smart-card data are expected to provide information on activity pattern as an alternative to conventional person trip surveys. The focus of this study is to propose a method for training the person trip surveys to supplement the smart-card data that does not contain the purpose of each trip. We selected only available features from smart card data such as spatiotemporal information on the trip and geographic information system (GIS) data near the stations to train the survey data. XGboost, which is state-of-the-art tree-based ensemble classifier, was used to train data from multiple sources. This classifier uses a more regularized model formalization to control the over-fitting and show very fast execution time with well-performance. The validation results showed that proposed method efficiently estimated the trip purpose. GIS data of station and duration of stay at the destination were significant features in modeling trip purpose.

Keywords: activity pattern, data fusion, smart-card, XGboost

Procedia PDF Downloads 214
1260 The Role of the Municipal Executive in the Process of Creating a Smart City

Authors: Jakub Bryla

Abstract:

Cities are now seen as business entities, and their executive body is similar to a chief executive officer. However, it is not enough for the legal system to provide a strong role for the executive branch. It seems that the authority must take the form of a managerial body. This solution answers the demands of smart governance, which in such a regulated relation between the unit head and the city see a guarantee of reliable implementation of the municipal strategy proposed during the recruitment and of the motivation to carry out statutory tasks to communes and their residents.

Keywords: smart cities, local government, executive organ, municipality, city management

Procedia PDF Downloads 53
1259 Context Aware Anomaly Behavior Analysis for Smart Home Systems

Authors: Zhiwen Pan, Jesus Pacheco, Salim Hariri, Yiqiang Chen, Bozhi Liu

Abstract:

The Internet of Things (IoT) will lead to the development of advanced Smart Home services that are pervasive, cost-effective, and can be accessed by home occupants from anywhere and at any time. However, advanced smart home applications will introduce grand security challenges due to the increase in the attack surface. Current approaches do not handle cybersecurity from a holistic point of view; hence, a systematic cybersecurity mechanism needs to be adopted when designing smart home applications. In this paper, we present a generic intrusion detection methodology to detect and mitigate the anomaly behaviors happened in Smart Home Systems (SHS). By utilizing our Smart Home Context Data Structure, the heterogeneous information and services acquired from SHS are mapped in context attributes which can describe the context of smart home operation precisely and accurately. Runtime models for describing usage patterns of home assets are developed based on characterization functions. A threat-aware action management methodology, used to efficiently mitigate anomaly behaviors, is proposed at the end. Our preliminary experimental results show that our methodology can be used to detect and mitigate known and unknown threats, as well as to protect SHS premises and services.

Keywords: Internet of Things, network security, context awareness, intrusion detection

Procedia PDF Downloads 149
1258 Development and Performance Analysis of Multifunctional City Smart Card System

Authors: Vedat Coskun, Fahri Soylemezgiller, Busra Ozdenizci, Kerem Ok

Abstract:

In recent years, several smart card solutions for transportation services of cities with different technical infrastructures and business models has emerged considerably, which triggers new business and technical opportunities. In order to create a unique system, we present a novel, promising system called Multifunctional City Smart Card System to be used in all cities that provides transportation and loyalty services based on the MasterCard M/Chip Advance standards. The proposed system provides a unique solution for transportation services of large cities over the world, aiming to answer all transportation needs of citizens. In this paper, development of the Multifunctional City Smart Card System and system requirements are briefly described. Moreover, performance analysis results of M/Chip Advance Compatible Validators which is the system's most important component are presented.

Keywords: smart card, m/chip advance standard, city transportation, performance analysis

Procedia PDF Downloads 443
1257 Evaluating India's Smart Cities against the Sustainable Development Goals

Authors: Suneet Jagdev

Abstract:

17 Sustainable Development Goals were adopted by the world leaders in September 2015 at the United Nations Sustainable Development Summit. These goals were adopted by UN member states to promote prosperity, health and human rights while protecting the planet. Around the same time, the Government of India launched the Smart City Initiative to speed up development of state of the art infrastructure and services in 100 cities with a focus on sustainable and inclusive development. These cities are meant to become role models for other cities in India and promote sustainable regional development. This paper examines goals set under the Smart City Initiative and evaluates them in terms of the Sustainable Development Goals, using case studies of selected Smart Cities in India. The study concludes that most Smart City projects at present actually consist of individual solutions to individual problems identified in a community rather than comprehensive models for complex issues in cities across India. Systematic, logical and comparative analysis of important literature and data has been done, collected from government sources, government papers, research papers by various experts on the topic, and results from some online surveys. Case studies have been used for a graphical analysis highlighting the issues of migration, ecology, economy and social equity in these Smart Cities.

Keywords: housing, migration, smart cities, sustainable development goals, urban infrastructure

Procedia PDF Downloads 381
1256 A Survey on Intelligent Connected-Vehicle Applications Based on Intercommunication Techniques in Smart Cities

Authors: B. Karabuluter, O. Karaduman

Abstract:

Connected-Vehicles consists of intelligent vehicles, each of which can communicate with each other. Smart Cities are the most prominent application area of intelligent vehicles that can communicate with each other. The most important goal that is desired to be realized in Smart Cities planned for facilitating people's lives is to make transportation more comfortable and safe with intelligent/autonomous/driverless vehicles communicating with each other. In order to ensure these, the city must have communication infrastructure in the first place, and the vehicles must have the features to communicate with this infrastructure and with each other. In this context, intelligent transport studies to solve all transportation and traffic problems in classical cities continue to increase rapidly. In this study, current connected-vehicle applications developed for smart cities are considered in terms of communication techniques, vehicular networking, IoT, urban transportation implementations, intelligent traffic management, road safety, self driving. Taxonomies and assessments performed in the work show the trend of studies in inter-vehicle communication systems in smart cities and they are contributing to by ensuring that the requirements in this area are revealed.

Keywords: smart city, connected vehicles, infrastructures, VANET, wireless communication, intelligent traffic management

Procedia PDF Downloads 498
1255 Security Issues on Smart Grid and Blockchain-Based Secure Smart Energy Management Systems

Authors: Surah Aldakhl, Dafer Alali, Mohamed Zohdy

Abstract:

The next generation of electricity grid infrastructure, known as the "smart grid," integrates smart ICT (information and communication technology) into existing grids in order to alleviate the drawbacks of existing one-way grid systems. Future power systems' efficiency and dependability are anticipated to significantly increase thanks to the Smart Grid, especially given the desire for renewable energy sources. The security of the Smart Grid's cyber infrastructure is a growing concern, though, as a result of the interconnection of significant power plants through communication networks. Since cyber-attacks can destroy energy data, beginning with personal information leaking from grid members, they can result in serious incidents like huge outages and the destruction of power network infrastructure. We shall thus propose a secure smart energy management system based on the Blockchain as a remedy for this problem. The power transmission and distribution system may undergo a transformation as a result of the inclusion of optical fiber sensors and blockchain technology in smart grids. While optical fiber sensors allow real-time monitoring and management of electrical energy flow, Blockchain offers a secure platform to safeguard the smart grid against cyberattacks and unauthorized access. Additionally, this integration makes it possible to see how energy is produced, distributed, and used in real time, increasing transparency. This strategy has advantages in terms of improved security, efficiency, dependability, and flexibility in energy management. An in-depth analysis of the advantages and drawbacks of combining blockchain technology with optical fiber is provided in this paper.

Keywords: smart grids, blockchain, fiber optic sensor, security

Procedia PDF Downloads 71
1254 Smart Forms and Intelligent Transportation Network Patterns, an Integrated Spatial Approach to Smart Cities and Intelligent Transport Systems in India Cities

Authors: Geetanjli Rani

Abstract:

The physical forms and network pattern of the city is expected to be enhanced with the advancement of technology. Reason being, the era of virtualisation and digital urban realm convergence with physical development. By means of comparative Spatial graphics and visuals of cities, the present paper attempts to revisit the very base of efficient physical forms and patterns to sync the emergence of virtual activities. Thus, the present approach to integrate spatial Smartness of Cities and Intelligent Transportation Systems is a brief assessment of smart forms and intelligent transportation network pattern to the dualism of physical and virtual urban activities. Finally, the research brings out that the grid iron pattern, radial, ring-radial, orbital etc. stands to be more efficient, effective and economical transit friendly for users, resource optimisation as well as compact urban and regional systems. Moreover, this paper concludes that the idea of flow and contiguity hidden in such smart forms and intelligent transportation network pattern suits to layering, deployment, installation and development of Intelligent Transportation Systems of Smart Cities such as infrastructure, facilities and services.

Keywords: smart form, smart infrastructure, intelligent transportation network pattern, physical and virtual integration

Procedia PDF Downloads 125
1253 Smart Cities’ Sustainable Modular Houses Architecture

Authors: Khaled Elbehiery, Hussam Elbehiery

Abstract:

Smart cities are a framework of technologies along with sustainable infrastructure to provide their citizens an improved quality of life, safer environment, affordability, and more, which in turn helps with the society's economic growth. The proposed research will focus on the primary building block of the smart city; the infrastructure of the house itself. The traditional method of building houses has been, for a long time, nothing but a costly manufacturing process, and consequently, buying a house becomes not an option for everyone anymore. The smart cities' Modular Houses are not using traditional building construction materials; the design reduces the common lengthy construction times and associated high costs. The Modular Houses are technological homes, low-cost and customizable based on a family's requirements. In addition, the Modular Houses are environmentally friendly and healthy enough to assist with the pandemic situation.

Keywords: smart cities, modular houses, single-unit property, multi-unit property, mobility features, chain-supply, livable environment, carbon footprint

Procedia PDF Downloads 95
1252 Characterization of the Worn Surfaces of Brake Discs and Friction Materials after Dynobench Tests

Authors: Ana Paula Gomes Nogueira, Pietro Tonolini, Andrea Bonfanti

Abstract:

Automotive braking systems must convert kinetic into thermal energy by friction. Nowadays, the disc brake system is the most widespread configuration on the automotive market, which its specific configuration provides a very efficient heat dissipation. At the same time, both discs and pads wear out. Different wear mechanisms can act during the braking, which makes the understanding of the phenomenon essential for the strategies to be applied when an increased lifetime of the components is required. In this study, a specific characterization approach was conducted to analyze the worn surfaces of commercial pad friction materials and its conterface cast iron disc after dynobench tests. Scanning electronic microscope (SEM), confocal microscope, and focus ion beam microscope (FIB) were used as the main tools of the analysis, and they allowed imaging of the footprint of the different wear mechanisms presenting on the worn surfaces. Aspects such as the temperature and specific ingredients of the pad friction materials are discussed since they play an important role in the wear mechanisms.

Keywords: wear mechanism, surface characterization, brake tests, friction materials, disc brake

Procedia PDF Downloads 21
1251 Approximation Algorithms for Peak-Demand Reduction

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.

Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics

Procedia PDF Downloads 65
1250 A Systematic Approach for Analyzing Multiple Cyber-Physical Attacks on the Smart Grid

Authors: Yatin Wadhawan, Clifford Neuman, Anas Al Majali

Abstract:

In this paper, we evaluate the resilience of the smart grid system in the presence of multiple cyber-physical attacks on its distinct functional components. We discuss attack-defense scenarios and their effect on smart grid resilience. Through contingency simulations in the Network and PowerWorld Simulator, we analyze multiple cyber-physical attacks that propagate from the cyber domain to power systems and discuss how such attacks destabilize the underlying power grid. The analysis of such simulations helps system administrators develop more resilient systems and improves the response of the system in the presence of cyber-physical attacks.

Keywords: smart grid, gas pipeline, cyber- physical attack, security, resilience

Procedia PDF Downloads 283
1249 Smart Transportation: Bringing Back Sunshine City Harare

Authors: R. Shayamapiki

Abstract:

This study explores the applicability of applying new urbanism principles in cities of developing countries as a panacea towards building sustainable cities through implementing smart transportation. Smart transportation approach to planning has been growing remarkably around the globe in the past decade. In conquest to curb traffic congestion and reducing automobile dependency in the inner-city Harare, Smart Transportation has been a strong drive towards building sustainable cities. Conceptually, Smart Transportation constitutes of principles which include walking, cycling and mass transit. The Smart Transportation approach has been a success story in the cities of developing world but its application in the cities of developing countries has been doubtful. Cities of developing countries being multifaceted with several urban sustainability challenges, the study consolidates that there are no robust policy, legislative and institutional frameworks to govern the application of Smart Transportation in urban planning hence no clear roadway towards its success story. Questions regarding this investigation proliferate to; how capable are cities of developing countries to transform Smart Transportation principles to a success story? What victory can Smart Transportation bring to sustainable urban development? What are constraints of embracing the principles and how can they be manipulated? Methodologically the case study of urban syntax in Harare Central Business District and arterial roads of the city, legislation and institutional settings underpins various research outcomes. The study finds out the hindrances of policy, legislative and institutional incapacities cooked with economic constraints, lack of political will and technically inflexible zoning regulations. The study also elucidates that there is need to adopt a localized approach to Smart Transportation. The paper then calls for strengthening of institutional and legal reform in conquest to embrace the concept, policy and legislative support, feasible financial mechanism, coordination of responsible stakeholders, planning standards and regulatory frameworks reform to celebrate the success story of Smart Transportation in the developing world.

Keywords: inner-city Harare, new urbanism, smart transportation, sustainable cities

Procedia PDF Downloads 448
1248 Comparison of the Performance of a Brake Energy Regeneration System in Hybrid Vehicles

Authors: Miguel Arlenzo Duran Sarmiento, Luis Alfonso Del Portillo Valdés, Carlos Borras Pinilla

Abstract:

Brake energy regeneration systems have the capacity to transform part of the vehicle's kinetic energy during deceleration into useful energy. These systems can be implemented in hybrid vehicles, which can be electric or hydraulic in type, and contribute to reducing the energy required to propel the vehicle thanks to the accumulation of energy. This paper presents the modeling and simulation of a braking energy regeneration system applied in hydraulic hybrid vehicles configured in parallel, the modeling and simulation were performed in Simulink of Matlab, where a performance comparison of the regenerated torque as a function of vehicle load, the displacement of the hydraulic regeneration device and the vehicle speed profile. The speed profiles used in the simulation are standard profiles such as the NEDC and WLTP profiles. The vehicle loads range from 1500 kg to 12000 kg. The results show the comparison of the torque required by the vehicle, the torque regenerated by the system subjected to the different speed and load conditions.

Keywords: braking energy, energy regeneration, hybrid vehicles, kinetic energy, torque

Procedia PDF Downloads 91
1247 Logistics and Supply Chain Management Using Smart Contracts on Blockchain

Authors: Armen Grigoryan, Milena Arakelyan

Abstract:

The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management.

Keywords: smart contracts, smart logistics, smart supply chain management, blockchain and smart contracts in logistics, smart contracts for controlling supply chain management

Procedia PDF Downloads 67