Search results for: single-photon emission computed tomography
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2385

Search results for: single-photon emission computed tomography

2355 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters

Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade

Abstract:

Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.

Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose

Procedia PDF Downloads 115
2354 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 330
2353 Comparison of the Classification of Cystic Renal Lesions Using the Bosniak Classification System with Contrast Enhanced Ultrasound and Magnetic Resonance Imaging to Computed Tomography: A Prospective Study

Authors: Dechen Tshering Vogel, Johannes T. Heverhagen, Bernard Kiss, Spyridon Arampatzis

Abstract:

In addition to computed tomography (CT), contrast enhanced ultrasound (CEUS), and magnetic resonance imaging (MRI) are being increasingly used for imaging of renal lesions. The aim of this prospective study was to compare the classification of complex cystic renal lesions using the Bosniak classification with CEUS and MRI to CT. Forty-eight patients with 65 cystic renal lesions were included in this study. All participants signed written informed consent. The agreement between the Bosniak classifications of complex renal lesions ( ≥ BII-F) on CEUS and MRI were compared to that of CT and were tested using Cohen’s Kappa. Sensitivity, specificity, positive and negative predictive values (PPV/NPV) and the accuracy of CEUS and MRI compared to CT in the detection of complex renal lesions were calculated. Twenty-nine (45%) out of 65 cystic renal lesions were classified as complex using CT. The agreement between CEUS and CT in the classification of complex cysts was fair (agreement 50.8%, Kappa 0.31), and was excellent between MRI and CT (agreement 93.9%, Kappa 0.88). Compared to CT, MRI had a sensitivity of 96.6%, specificity of 91.7%, a PPV of 54.7%, and an NPV of 54.7% with an accuracy of 63.1%. The corresponding values for CEUS were sensitivity 100.0%, specificity 33.3%, PPV 90.3%, and NPV 97.1% with an accuracy 93.8%. The classification of complex renal cysts based on MRI and CT scans correlated well, and MRI can be used instead of CT for this purpose. CEUS can exclude complex lesions, but due to higher sensitivity, cystic lesions tend to be upgraded. However, it is useful for initial imaging, for follow up of lesions and in those patients with contraindications to CT and MRI.

Keywords: Bosniak classification, computed tomography, contrast enhanced ultrasound, cystic renal lesions, magnetic resonance imaging

Procedia PDF Downloads 113
2352 Alternating Electric fields-Induced Senescence in Glioblastoma

Authors: Eun Ho Kim

Abstract:

Innovations have conjured up a mode of treating GBM cancer cells in the newly diagnosed patients in a period of 4.9 months at an improved median OS, which brings along only a few minor side effects in the phase III of the clinical trial. This mode has been termed the Alternating Electric Fields (AEF). The study at hand is aimed at determining whether the AEF treatment is beneficial in sensitizing the GBM cancer cells through the process of increasing the AEF –induced senescence. The methodology to obtain the findings for this research ranged across various components, such as obtaining and testing SA-β-gal staining, flow cytometry, Western blotting, morphology, and Positron Emission Tomography (PET) / Computed Tomography (CT), immunohistochemical staining and microarray. The number of cells that displayed a senescence-specific morphology and positive SA-ß-Gal activity gradually increased up to 5 days. These results suggest that p16, p21 and p27 are essential regulators of AEF -induced senescence via NF-κB activation. The results showed that the AEF treatment is functional in enhancing the AEF –induced senescence in the GBM cells via an apoptosis- independent mechanism. This research concludes that this mode of treatment is a trustworthy protocol that can be effectively employed to overcome the limitations of the conventional mode of treatment on GBM.

Keywords: alternating electric fields, senescence, glioblastoma, cell death

Procedia PDF Downloads 51
2351 Cone Beam Computed Tomography: A Useful Diagnostic Tool to Determine Root Canal Morphology in a Sample of Egyptian Population

Authors: H. El-Messiry, M. El-Zainy, D. Abdelkhalek

Abstract:

Cone-beam computed tomography (CBCT) provides high-quality 3-dimensional images of dental structures because of its high spatial resolution. The study of dental morphology is important in research as it provides information about diversities within a population. Many studies have shown different shapes and numbers of roots canals among different races, especially in molars. The aim of this study was to determine the morphology of root canals of mandibular first and third molars in a sample of Egyptian population using CBCT scanning. Fifty mandibular first Molars (M1) and fifty mandibular third (M3) extracted molars were collected. Thick rectangular molds were made using pink wax to hold the samples. Molars were embedded in the wax mold by aligning them in rows leaving arbitrary 0.5cm space between them. The molds with the samples in were submitted for CBCT scan. The number and morphology of root canals were assessed and classified according to Vertucci's classification. The mesial and the distal roots were examined separately. Finally, data was analyzed using Fisher exact test. The most prevalent mesial root canal frequency in M1 was type IV (60%) and type II (40 %), while M3 showed prevalence of type I (40%) and II (40%). Distal root canal morphology showed prevalence of type I in both M1 (66%) and M3 (86%). So, it can be concluded that CBCT scanning provides supplemental information about the root canal configurations of mandibular molars in a sample of Egyptian population. This study may help clinicians in the root canal treatment of mandibular molars.

Keywords: cone beam computed tomography, mandibular first molar, mandibular third molar, root canal morphology

Procedia PDF Downloads 288
2350 Visibility of the Borders of the Mandibular Canal: A Comparative in Vitro Study Using Digital Panoramic Radiography, Reformatted Panoramic Radiography and Cross Sectional Cone Beam Computed Tomography

Authors: Keerthilatha Pai, Sakshi Kamra

Abstract:

Objectives: Determining the position of the mandibular canal prior to implant placement and surgeries of the posterior mandible are important to avoid the nerve injury. The visibility of the mandibular canal varies according to the imaging modality. Although panoramic radiography is the most common, slowly cone beam computed tomography is replacing it. This study was conducted with an aim to determine and compare the visibility of superior and inferior borders of the mandibular canal in digital panoramic radiograph, reformatted panoramic radiograph and cross-sectional images of cone beam computed tomography. Study design: digital panoramic, reformatted panoramic radiograph and cross sectional CBCT images of 25 human mandibles were evaluated for the visibility of the superior and inferior borders of the mandibular canal according to a 5 point scoring criteria. Also, the canal was evaluated as completely visible, partially visible and not visible. The mean scores and visibility percentage of all the imaging modalities were determined and compared. The interobserver and intraobserver agreement in the visualization of the superior and inferior borders of the mandibular canal were determined. Results: The superior and inferior borders of the mandibular canal were completely visible in 47% of the samples in digital panoramic, 63% in reformatted panoramic and 75.6% in CBCT cross-sectional images. The mandibular canal was invisible in 24% of samples in digital panoramic, 19% in reformatted panoramic and 2% in cross-sectional CBCT images. Maximum visibility was seen in Zone 5 and least visibility in Zone 1. On comparison of all the imaging modalities, CBCT cross-sectional images showed better visibility of superior border in Zones 2,3,4,6 and inferior border in Zones 2,3,4,6. The difference was statistically significant. Conclusion: CBCT cross-sectional images were much superior in the visualization of the mandibular canal in comparison to reformatted and digital panoramic radiographs. The inferior border was better visualized in comparison to the superior border in digital panoramic imaging. The mandibular canal was maximumly visible in posterior one-third region of the mandible and the visibility decreased towards the mental foramen.

Keywords: cone beam computed tomography, mandibular canal, reformatted panoramic radiograph, visualization

Procedia PDF Downloads 107
2349 COVID-19 Detection from Computed Tomography Images Using UNet Segmentation, Region Extraction, and Classification Pipeline

Authors: Kenan Morani, Esra Kaya Ayana

Abstract:

This study aimed to develop a novel pipeline for COVID-19 detection using a large and rigorously annotated database of computed tomography (CT) images. The pipeline consists of UNet-based segmentation, lung extraction, and a classification part, with the addition of optional slice removal techniques following the segmentation part. In this work, a batch normalization was added to the original UNet model to produce lighter and better localization, which is then utilized to build a full pipeline for COVID-19 diagnosis. To evaluate the effectiveness of the proposed pipeline, various segmentation methods were compared in terms of their performance and complexity. The proposed segmentation method with batch normalization outperformed traditional methods and other alternatives, resulting in a higher dice score on a publicly available dataset. Moreover, at the slice level, the proposed pipeline demonstrated high validation accuracy, indicating the efficiency of predicting 2D slices. At the patient level, the full approach exhibited higher validation accuracy and macro F1 score compared to other alternatives, surpassing the baseline. The classification component of the proposed pipeline utilizes a convolutional neural network (CNN) to make final diagnosis decisions. The COV19-CT-DB dataset, which contains a large number of CT scans with various types of slices and rigorously annotated for COVID-19 detection, was utilized for classification. The proposed pipeline outperformed many other alternatives on the dataset.

Keywords: classification, computed tomography, lung extraction, macro F1 score, UNet segmentation

Procedia PDF Downloads 99
2348 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 105
2347 Radiation Dose and Associated Exposure Parameters in Selected MDCT Scanners in Multiphase Scan of Abdomen-Pelvic Region: A Clinical Study

Authors: P. Sathyathas, H. M. I. S. W. Herath, T. Amalraj, U. J. M. A. L. Jayasinghe

Abstract:

Over two thirds of medical radiation can now be attributed to Computed Tomography (CT). There is little information on amount of radiation received from multiphase CT scan of abdomen- pelvic region in clinical practice. We sought to estimate the radiation dose and associated exposure parameters in the multiphase abdomen - pelvic scan of Multideteror Computed Tomography (MDCT) studies in clinical practice. This was a retrospective cross sectional studies describing radiation dose associated with main exposure parameters in diagnostic multiphase abdomen - pelvic scans performed on 152 consecutive patients by two different sixteen slice CT scanners. Patient information, exposure parameters of CTDI (volume), DLP, kVp, mAs and pitch were recorded for every phases of abdomen- a pelvic study from dose report of MDCT scanners (MDCTs). Age of patients range from 14 years to 87 years in both MDCT scanners. Overall CTDI (volume) median was 63.8 (±10.4) mGy for a multiphase abdominal-pelvic scan with scanner A while it was 35.4 (±15.6) mGy for scanner B. Patients' effective dose for multiphase abdomen - pelvic CT scan range from 8.2 mSv to 58 mSv. Median effective dose for patients, who underwent multiphase abdomen- pelvis scan with scanner A and B were 38.5 (± 8.2) mSv and 21.3 (± 8.6) mSv respectively. Median value of exposure parameters of mAs, kVp and pitch, were 150 (±29.7), 130 (±15.3) and 1.3 (±0.1) respectively in scanner A. In scanner B; they were 60 (±14.5), 120 and 1. The median effective dose for patients between multiphase abdomen-pelvic scan of both MDCT, a significant different (P<0.05) was observed. Multiphase abdomen – pelvic scan of clinical study shows significant different of effective dose with reference level of phantom studies (8-14mSv) and it depends on the type of vendors.

Keywords: abdomen-pelvic region, computed tomography, exposure parameters, radiation dose

Procedia PDF Downloads 290
2346 Transformation of Positron Emission Tomography Raw Data into Images for Classification Using Convolutional Neural Network

Authors: Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Dominik Panek, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa łucja Stępień, Faranak Tayefi, Paweł Moskal

Abstract:

This paper develops the transformation of non-image data into 2-dimensional matrices, as a preparation stage for classification based on convolutional neural networks (CNNs). In positron emission tomography (PET) studies, CNN may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, much PET data still exists in non-image format and this fact opens a question on whether they can be used for training CNN. In this contribution, the main focus of this paper is the problem of processing vectors with a small number of features in comparison to the number of pixels in the output images. The proposed methodology was applied to the classification of PET coincidence events.

Keywords: convolutional neural network, kernel principal component analysis, medical imaging, positron emission tomography

Procedia PDF Downloads 104
2345 Sparse-View CT Reconstruction Based on Nonconvex L1 − L2 Regularizations

Authors: Ali Pour Yazdanpanah, Farideh Foroozandeh Shahraki, Emma Regentova

Abstract:

The reconstruction from sparse-view projections is one of important problems in computed tomography (CT) limited by the availability or feasibility of obtaining of a large number of projections. Traditionally, convex regularizers have been exploited to improve the reconstruction quality in sparse-view CT, and the convex constraint in those problems leads to an easy optimization process. However, convex regularizers often result in a biased approximation and inaccurate reconstruction in CT problems. Here, we present a nonconvex, Lipschitz continuous and non-smooth regularization model. The CT reconstruction is formulated as a nonconvex constrained L1 − L2 minimization problem and solved through a difference of convex algorithm and alternating direction of multiplier method which generates a better result than L0 or L1 regularizers in the CT reconstruction. We compare our method with previously reported high performance methods which use convex regularizers such as TV, wavelet, curvelet, and curvelet+TV (CTV) on the test phantom images. The results show that there are benefits in using the nonconvex regularizer in the sparse-view CT reconstruction.

Keywords: computed tomography, non-convex, sparse-view reconstruction, L1-L2 minimization, difference of convex functions

Procedia PDF Downloads 284
2344 Anomalous Course of Left Ovarian Vein Associated with Pelvic Congestion Syndrome

Authors: Viyango Pandian, Kumaresh Athiyappan

Abstract:

Pelvic congestion Syndrome (PCS) is usually seen in multiparous women who give history of chronic dull-aching pelvic pain. We report a case of a 17 year old unmarried female, who presented with acute onset of chronic dull-aching abdominal pain in the left iliac fossa, which particularly increased during menstruation and was finally diagnosed to be pelvic congestion syndrome. On ultrasonography, multiple tortuous and dilated veins were observed in the left adnexa. Both ovaries appeared normal in size, volume and echotexture. Computed tomography (CT) angiography was performed to precisely delineate the venous pathway and to assess any associated abnormality; which showed a dilated and tortuous left ovarian vein with an anomalous course around the left kidney and draining into the left renal vein. Clinical parameters and hormonal levels were within normal limits. This is a rare case of anomalous course of left ovarian vein associated with pelvic congestion syndrome.

Keywords: anomalous course of ovarian vein, computed tomography, pelvic congestion syndrome, ultrasonography

Procedia PDF Downloads 393
2343 Iterative Reconstruction Techniques as a Dose Reduction Tool in Pediatric Computed Tomography Imaging: A Phantom Study

Authors: Ajit Brindhaban

Abstract:

Background and Purpose: Computed Tomography (CT) scans have become the largest source of radiation in radiological imaging. The purpose of this study was to compare the quality of pediatric Computed Tomography (CT) images reconstructed using Filtered Back Projection (FBP) with images reconstructed using different strengths of Iterative Reconstruction (IR) technique, and to perform a feasibility study to assess the use of IR techniques as a dose reduction tool. Materials and Methods: An anthropomorphic phantom representing a 5-year old child was scanned, in two stages, using a Siemens Somatom CT unit. In stage one, scans of the head, chest and abdomen were performed using standard protocols recommended by the scanner manufacturer. Images were reconstructed using FBP and 5 different strengths of IR. Contrast-to-Noise Ratios (CNR) were calculated from average CT number and its standard deviation measured in regions of interest created in the lungs, bone, and soft tissues regions of the phantom. Paired t-test and the one-way ANOVA were used to compare the CNR from FBP images with IR images, at p = 0.05 level. The lowest strength value of IR that produced the highest CNR was identified. In the second stage, scans of the head was performed with decreased mA(s) values relative to the increase in CNR compared to the standard FBP protocol. CNR values were compared in this stage using Paired t-test at p = 0.05 level. Results: Images reconstructed using IR technique had higher CNR values (p < 0.01.) in all regions compared to the FBP images, at all strengths of IR. The CNR increased with increasing IR strength of up to 3, in the head and chest images. Increases beyond this strength were insignificant. In abdomen images, CNR continued to increase up to strength 5. The results also indicated that, IR techniques improve CNR by a up to factor of 1.5. Based on the CNR values at strength 3 of IR images and CNR values of FBP images, a reduction in mA(s) of about 20% was identified. The images of the head acquired at 20% reduced mA(s) and reconstructed using IR at strength 3, had similar CNR as FBP images at standard mA(s). In the head scans of the phantom used in this study, it was demonstrated that similar CNR can be achieved even when the mA(s) is reduced by about 20% if IR technique with strength of 3 is used for reconstruction. Conclusions: The IR technique produced better image quality at all strengths of IR in comparison to FBP. IR technique can provide approximately 20% dose reduction in pediatric head CT while maintaining the same image quality as FBP technique.

Keywords: filtered back projection, image quality, iterative reconstruction, pediatric computed tomography imaging

Procedia PDF Downloads 123
2342 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V

Authors: Bryce R. Jolley, Michael Uchic

Abstract:

This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.

Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation

Procedia PDF Downloads 111
2341 Predictive Value of ¹⁸F-Fdg Accumulation in Visceral Fat Activity to Detect Colorectal Cancer Metastases

Authors: Amil Suleimanov, Aigul Saduakassova, Denis Vinnikov

Abstract:

Objective: To assess functional visceral fat (VAT) activity evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in colorectal cancer (CRC). Materials and methods: We assessed 60 patients with histologically confirmed CRC who underwent 18F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVmax) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also report the best areas under the curve (AUC) for SUVmax with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted for age regression models and ROC analysis, 18F-FDG accumulation in RLH (cutoff SUVmax 0.74; Se 75%; Sp 61%; AUC 0.668; p = 0.049), RU (cutoff SUVmax 0.78; Se 69%; Sp 61%; AUC 0.679; p = 0.035), RRL (cutoff SUVmax 1.05; Se 69%; Sp 77%; AUC 0.682; p = 0.032) and RRI (cutoff SUVmax 0.85; Se 63%; Sp 61%; AUC 0.672; p = 0.043) could predict later metastases in CRC patients, as opposed to age, sex, primary tumor location, tumor grade and histology. Conclusions: VAT SUVmax is significantly associated with later metastases in CRC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, colorectal cancer, predictive value

Procedia PDF Downloads 95
2340 Predictive Value of ¹⁸F-Fluorodeoxyglucose Accumulation in Visceral Fat Activity to Detect Epithelial Ovarian Cancer Metastases

Authors: A. F. Suleimanov, A. B. Saduakassova, V. S. Pokrovsky, D. V. Vinnikov

Abstract:

Relevance: Epithelial ovarian cancer (EOC) is the most lethal gynecological malignancy, with relapse occurring in about 70% of advanced cases with poor prognoses. The aim of the study was to evaluate functional visceral fat activity (VAT) evaluated by ¹⁸F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography/computed tomography (PET/CT) as a predictor of metastases in epithelial ovarian cancer (EOC). Materials and methods: We assessed 53 patients with histologically confirmed EOC who underwent ¹⁸F-FDG PET/CT after a surgical treatment and courses of chemotherapy. Age, histology, stage, and tumor grade were recorded. Functional VAT activity was measured by maximum standardized uptake value (SUVₘₐₓ) using ¹⁸F-FDG PET/CT and tested as a predictor of later metastases in eight abdominal locations (RE – Epigastric Region, RLH – Left Hypochondriac Region, RRL – Right Lumbar Region, RU – Umbilical Region, RLL – Left Lumbar Region, RRI – Right Inguinal Region, RP – Hypogastric (Pubic) Region, RLI – Left Inguinal Region) and pelvic cavity (P) in the adjusted regression models. We also identified the best areas under the curve (AUC) for SUVₘₐₓ with the corresponding sensitivity (Se) and specificity (Sp). Results: In both adjusted-for regression models and ROC analysis, ¹⁸F-FDG accumulation in RE (cut-off SUVₘₐₓ 1.18; Se 64%; Sp 64%; AUC 0.669; p = 0.035) could predict later metastases in EOC patients, as opposed to age, sex, primary tumor location, tumor grade, and histology. Conclusions: VAT SUVₘₐₓ is significantly associated with later metastases in EOC patients and can be used as their predictor.

Keywords: ¹⁸F-FDG, PET/CT, EOC, predictive value

Procedia PDF Downloads 43
2339 Calculation of Organ Dose for Adult and Pediatric Patients Undergoing Computed Tomography Examinations: A Software Comparison

Authors: Aya Al Masri, Naima Oubenali, Safoin Aktaou, Thibault Julien, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: The increased number of performed 'Computed Tomography (CT)' examinations raise public concerns regarding associated stochastic risk to patients. In its Publication 102, the ‘International Commission on Radiological Protection (ICRP)’ emphasized the importance of managing patient dose, particularly from repeated or multiple examinations. We developed a Dose Archiving and Communication System that gives multiple dose indexes (organ dose, effective dose, and skin-dose mapping) for patients undergoing radiological imaging exams. The aim of this study is to compare the organ dose values given by our software for patients undergoing CT exams with those of another software named "VirtualDose". Materials and methods: Our software uses Monte Carlo simulations to calculate organ doses for patients undergoing computed tomography examinations. The general calculation principle consists to simulate: (1) the scanner machine with all its technical specifications and associated irradiation cases (kVp, field collimation, mAs, pitch ...) (2) detailed geometric and compositional information of dozens of well identified organs of computational hybrid phantoms that contain the necessary anatomical data. The mass as well as the elemental composition of the tissues and organs that constitute our phantoms correspond to the recommendations of the international organizations (namely the ICRP and the ICRU). Their body dimensions correspond to reference data developed in the United States. Simulated data was verified by clinical measurement. To perform the comparison, 270 adult patients and 150 pediatric patients were used, whose data corresponds to exams carried out in France hospital centers. The comparison dataset of adult patients includes adult males and females for three different scanner machines and three different acquisition protocols (Head, Chest, and Chest-Abdomen-Pelvis). The comparison sample of pediatric patients includes the exams of thirty patients for each of the following age groups: new born, 1-2 years, 3-7 years, 8-12 years, and 13-16 years. The comparison for pediatric patients were performed on the “Head” protocol. The percentage of the dose difference were calculated for organs receiving a significant dose according to the acquisition protocol (80% of the maximal dose). Results: Adult patients: for organs that are completely covered by the scan range, the maximum percentage of dose difference between the two software is 27 %. However, there are three organs situated at the edges of the scan range that show a slightly higher dose difference. Pediatric patients: the percentage of dose difference between the two software does not exceed 30%. These dose differences may be due to the use of two different generations of hybrid phantoms by the two software. Conclusion: This study shows that our software provides a reliable dosimetric information for patients undergoing Computed Tomography exams.

Keywords: adult and pediatric patients, computed tomography, organ dose calculation, software comparison

Procedia PDF Downloads 130
2338 Investigation of Ductile Failure Mechanisms in SA508 Grade 3 Steel via X-Ray Computed Tomography and Fractography Analysis

Authors: Suleyman Karabal, Timothy L. Burnett, Egemen Avcu, Andrew H. Sherry, Philip J. Withers

Abstract:

SA508 Grade 3 steel is widely used in the construction of nuclear pressure vessels, where its fracture toughness plays a critical role in ensuring operational safety and reliability. Understanding the ductile failure mechanisms in this steel grade is crucial for designing robust pressure vessels that can withstand severe nuclear environment conditions. In the present study, round bar specimens of SA508 Grade 3 steel with four distinct notch geometries were subjected to tensile loading while capturing continuous 2D images at 5-second intervals in order to monitor any alterations in their geometries to construct true stress-strain curves of the specimens. 3D reconstructions of X-ray computed tomography (CT) images at high-resolution (a spatial resolution of 0.82 μm) allowed for a comprehensive assessment of the influences of second-phase particles (i.e., manganese sulfide inclusions and cementite particles) on ductile failure initiation as a function of applied plastic strain. Additionally, based on 2D and 3D images, plasticity modeling was executed, and the results were compared to experimental data. A specific ‘two-parameter criterion’ was established and calibrated based on the correlation between stress triaxiality and equivalent plastic strain at failure initiation. The proposed criterion demonstrated substantial agreement with the experimental results, thus enhancing our knowledge of ductile fracture behavior in this steel grade. The implementation of X-ray CT and fractography analysis provided new insights into the diverse roles played by different populations of second-phase particles in fracture initiation under varying stress triaxiality conditions.

Keywords: ductile fracture, two-parameter criterion, x-ray computed tomography, stress triaxiality

Procedia PDF Downloads 56
2337 Multiscale Simulation of Absolute Permeability in Carbonate Samples Using 3D X-Ray Micro Computed Tomography Images Textures

Authors: M. S. Jouini, A. Al-Sumaiti, M. Tembely, K. Rahimov

Abstract:

Characterizing rock properties of carbonate reservoirs is highly challenging because of rock heterogeneities revealed at several length scales. In the last two decades, the Digital Rock Physics (DRP) approach was implemented successfully in sandstone rocks reservoirs in order to understand rock properties behaviour at the pore scale. This approach uses 3D X-ray Microtomography images to characterize pore network and also simulate rock properties from these images. Even though, DRP is able to predict realistic rock properties results in sandstone reservoirs it is still suffering from a lack of clear workflow in carbonate rocks. The main challenge is the integration of properties simulated at different scales in order to obtain the effective rock property of core plugs. In this paper, we propose several approaches to characterize absolute permeability in some carbonate core plugs samples using multi-scale numerical simulation workflow. In this study, we propose a procedure to simulate porosity and absolute permeability of a carbonate rock sample using textures of Micro-Computed Tomography images. First, we discretize X-Ray Micro-CT image into a regular grid. Then, we use a textural parametric model to classify each cell of the grid using supervised classification. The main parameters are first and second order statistics such as mean, variance, range and autocorrelations computed from sub-bands obtained after wavelet decomposition. Furthermore, we fill permeability property in each cell using two strategies based on numerical simulation values obtained locally on subsets. Finally, we simulate numerically the effective permeability using Darcy’s law simulator. Results obtained for studied carbonate sample shows good agreement with the experimental property.

Keywords: multiscale modeling, permeability, texture, micro-tomography images

Procedia PDF Downloads 159
2336 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 166
2335 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy

Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu

Abstract:

In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.

Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics

Procedia PDF Downloads 280
2334 Cardiothoracic Ratio in Postmortem Computed Tomography: A Tool for the Diagnosis of Cardiomegaly

Authors: Alex Eldo Simon, Abhishek Yadav

Abstract:

This study aimed to evaluate the utility of postmortem computed tomography (CT) and heart weight measurements in the assessment of cardiomegaly in cases of sudden death due to cardiac origin by comparing the results of these two diagnostic methods. The study retrospectively analyzed postmortem computed tomography (PMCT) data from 54 cases of sudden natural death and compared the findings with those of the autopsy. The study involved measuring the cardiothoracic ratio (CTR) from coronal computed tomography (CT) images and determining the actual cardiac weight by weighing the heart during the autopsy. The inclusion criteria for the study were cases of sudden death suspected to be caused by cardiac pathology, while exclusion criteria included death due to unnatural causes such as trauma or poisoning, diagnosed natural causes of death related to organs other than the heart, and cases of decomposition. Sensitivity, specificity, and diagnostic accuracy were calculated, and to evaluate the accuracy of using the cardiothoracic ratio (CTR) to detect an enlarged heart, the study generated receiver operating characteristic (ROC) curves. The cardiothoracic ratio (CTR) is a radiological tool used to assess cardiomegaly by measuring the maximum cardiac diameter in relation to the maximum transverse diameter of the chest wall. The clinically used criteria for CTR have been modified from 0.50 to 0.57 for use in postmortem settings, where abnormalities can be detected by comparing CTR values to this threshold. A CTR value of 0.57 or higher is suggestive of hypertrophy but not conclusive. Similarly, heart weight is measured during the traditional autopsy, and a cardiac weight greater than 450 grams is defined as hypertrophy. Of the 54 cases evaluated, 22 (40.7%) had a cardiothoracic ratio (CTR) ranging from > 0.50 to equal 0.57, and 12 cases (22.2%) had a CTR greater than 0.57, which was defined as hypertrophy. The mean CTR was calculated as 0.52 ± 0.06. Among the 54 cases evaluated, the weight of the heart was measured, and the mean was calculated as 369.4 ± 99.9 grams. Out of the 54 cases evaluated, 12 were found to have hypertrophy as defined by PMCT, while only 9 cases were identified with hypertrophy in traditional autopsy. The sensitivity and specificity of the test were calculated as 55.56% and 84.44%, respectively. The sensitivity of the hypertrophy test was found to be 55.56% (95% CI: 26.66, 81.12¹), the specificity was 84.44% (95% CI: 71.22, 92.25¹), and the diagnostic accuracy was 79.63% (95% CI: 67.1, 88.23¹). The limitation of the study was a low sample size of only 54 cases, which may limit the generalizability of the findings. The comparison of the cardiothoracic ratio with heart weight in this study suggests that PMCT may serve as a screening tool for medico-legal autopsies when performed by forensic pathologists. However, it should be noted that the low sensitivity of the test (55.5%) may limit its diagnostic accuracy, and therefore, further studies with larger sample sizes and more diverse populations are needed to validate these findings.

Keywords: PMCT, virtopsy, CTR, cardiothoracic ratio

Procedia PDF Downloads 50
2333 Comparison Of Virtual Non-Contrast To True Non-Contrast Images Using Dual Layer Spectral Computed Tomography

Authors: O’Day Luke

Abstract:

Purpose: To validate virtual non-contrast reconstructions generated from dual-layer spectral computed tomography (DL-CT) data as an alternative for the acquisition of a dedicated true non-contrast dataset during multiphase contrast studies. Material and methods: Thirty-three patients underwent a routine multiphase clinical CT examination, using Dual-Layer Spectral CT, from March to August 2021. True non-contrast (TNC) and virtual non-contrast (VNC) datasets, generated from both portal venous and arterial phase imaging were evaluated. For every patient in both true and virtual non-contrast datasets, a region-of-interest (ROI) was defined in aorta, liver, fluid (i.e. gallbladder, urinary bladder), kidney, muscle, fat and spongious bone, resulting in 693 ROIs. Differences in attenuation for VNC and TNV images were compared, both separately and combined. Consistency between VNC reconstructions obtained from the arterial and portal venous phase was evaluated. Results: Comparison of CT density (HU) on the VNC and TNC images showed a high correlation. The mean difference between TNC and VNC images (excluding bone results) was 5.5 ± 9.1 HU and > 90% of all comparisons showed a difference of less than 15 HU. For all tissues but spongious bone, the mean absolute difference between TNC and VNC images was below 10 HU. VNC images derived from the arterial and the portal venous phase showed a good correlation in most tissue types. The aortic attenuation was somewhat dependent however on which dataset was used for reconstruction. Bone evaluation with VNC datasets continues to be a problem, as spectral CT algorithms are currently poor in differentiating bone and iodine. Conclusion: Given the increasing availability of DL-CT and proven accuracy of virtual non-contrast processing, VNC is a promising tool for generating additional data during routine contrast-enhanced studies. This study shows the utility of virtual non-contrast scans as an alternative for true non-contrast studies during multiphase CT, with potential for dose reduction, without loss of diagnostic information.

Keywords: dual-layer spectral computed tomography, virtual non-contrast, true non-contrast, clinical comparison

Procedia PDF Downloads 112
2332 3D Vision Transformer for Cervical Spine Fracture Detection and Classification

Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi

Abstract:

In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.

Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score

Procedia PDF Downloads 71
2331 High-Resolution Computed Tomography Imaging Features during Pandemic 'COVID-19'

Authors: Sahar Heidary, Ramin Ghasemi Shayan

Abstract:

By the development of new coronavirus (2019-nCoV) pneumonia, chest high-resolution computed tomography (HRCT) has been one of the main investigative implements. To realize timely and truthful diagnostics, defining the radiological features of the infection is of excessive value. The purpose of this impression was to consider the imaging demonstrations of early-stage coronavirus disease 2019 (COVID-19) and to run an imaging base for a primary finding of supposed cases and stratified interference. The right prophetic rate of HRCT was 85%, sensitivity was 73% for all patients. Total accuracy was 68%. There was no important change in these values for symptomatic and asymptomatic persons. These consequences were besides free of the period of X-ray from the beginning of signs or interaction. Therefore, we suggest that HRCT is a brilliant attachment for early identification of COVID-19 pneumonia in both symptomatic and asymptomatic individuals in adding to the role of predictive gauge for COVID-19 pneumonia. Patients experienced non-contrast HRCT chest checkups and images were restored in a thin 1.25 mm lung window. Images were estimated for the existence of lung scratches & a CT severity notch was allocated separately for each patient based on the number of lung lobes convoluted.

Keywords: COVID-19, radiology, respiratory diseases, HRCT

Procedia PDF Downloads 118
2330 Experiment on Artificial Recharge of Groundwater Implemented Project: Effect on the Infiltration Velocity by Vegetation Mulch

Authors: Cheh-Shyh Ting, Jiin-Liang Lin

Abstract:

This study was conducted at the Wanglung Farm in Pingtung County to test the groundwater seepage influences on the implemented project for artificial groundwater recharge. The study was divided into three phases. The first phase, conducted on natural groundwater that was recharged through the local climate and growing conditions, observed the natural form of vegetation species. The original plants were flooded, and after 60 days it was observed that of the original plants only Goosegrass (Eleusine indica) and Black heart (Polygonum lapathifolium Linn.) remained. Direct infiltration tests were carried out, and calculations for the effect of vegetation on infiltration velocity of the recharge pool were noted. The second phase was an indoor test. Bahia grass and wild amaranth were selected as vegetation roots. After growth, the distribution of different grassroots was observed in order to facilitate a comparison permeability coefficient calculated by the amount of penetration and to explore the relationship between density and the efficiency to groundwater recharge. The third phase was the root tomography analysis, further observation of the development of plant roots using computed tomography technology. Computed Tomography, also known as (CT), is a diagnostic imaging examination, normally used in the medical field. In the first phase of the feasibility study, most non-aquatic plants wilted and died within seven days. In seven days, the remaining plants were used for experimental infiltration analysis. Results showed that in eight hours of infiltration test, Eleusine indica stems averaged 0.466 m/day and wild amaranth averaged 0.014 m/day. The second phase of the experiment was conducted on the remains of the plant a week in it had died and rotted, and the infiltration experiment was performed under these conditions. The results showed eight hours in end of the infiltration test, Eleusine indica stems averaged 0.033 m/day, and wild amaranth averaged 0.098 m/day. Non-aquatic plants died within two weeks, and their rotted remains clogged the pores of bottom soil particles, causing obstruction of recharge pool infiltration. Experiment results showed that eight hours in the test the average infiltration velocity for Eleusine indica stems was 0.0229 m/day and wild amaranth averaged 0.0117 m/day. Since the rotted roots of the plants blocked the pores of the soil in the recharge pool, which resulted in the obstruction of the artificial infiltration pond and showed an immediate impact on recharge efficiency. In order to observe the development of plant roots, the third phase used computed tomography imaging. Iodine developer was injected into the Black heart, allowing its cross-sectional images to be shown on CT and to be used to observe root development.

Keywords: artificial recharge of groundwater, computed tomography, infiltration velocity, vegetation root system

Procedia PDF Downloads 276
2329 Micro-CT Imaging Of Hard Tissues

Authors: Amir Davood Elmi

Abstract:

From the earliest light microscope to the most innovative X-ray imaging techniques, all of them have refined and improved our knowledge about the organization and composition of living tissues. The old techniques are time consuming and ultimately destructive to the tissues under the examination. In recent few decades, thanks to the boost of technology, non-destructive visualization techniques, such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), selective plane illumination microscopy (SPIM), and optical projection tomography (OPT), have come to the forefront. Among these techniques, CT is excellent for mineralized tissues such as bone or dentine. In addition, CT it is faster than other aforementioned techniques and the sample remains intact. In this article, applications, advantages, and limitations of micro-CT is discussed, in addition to some information about micro-CT of soft tissue.

Keywords: Micro-CT, hard tissue, bone, attenuation coefficient, rapid prototyping

Procedia PDF Downloads 113
2328 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 31
2327 A Rare Case of Taenia solium Induced Ileo-Cecal Intussusception in an Adult

Authors: Naraporn Taemaitree, Pruet Areesawangvong, Satchachon Changthom, Tanin Titipungul

Abstract:

Adult intussusception, unlike childhood intussusception, is rare. Approximately 5-15% of cases are idiopathic without a lead point lesion. Secondary intussusception is caused by pathological conditions such as inflammatory bowel disease, postoperative adhesions, Meckel’s diverticulum, benign and malignant lesions, metastatic neoplasms, or even iatrogenically due to the presence of intestinal tubes, jejunostomy feeding tubes or after gastric surgery. Diagnosis can be delayed because of its longstanding, intermittent, and non-specific symptoms. Computed tomography is the most sensitive diagnostic modality and can help distinguish between intussusceptions with and without a lead point and lesion localization. This report presents the case of a 49-year-old man presented with increasing abdominal pain over the past three days, loss of appetite, constipation, and frequent vomiting. Computed tomography revealed distal small bowel obstruction at the right lower quadrant with thickened outer wall and internal non-dilated small bowel loop. Emergency exploratory laparotomy was performed to clear the obstruction, which upon inspection was caused by extremely long Taenia solium parasites.

Keywords: intussusception, tape worm, Taenia solium, abdominal pain

Procedia PDF Downloads 103
2326 Measuring the Cavitation Cloud by Electrical Impedance Tomography

Authors: Michal Malik, Jiri Primas, Darina Jasikova, Michal Kotek, Vaclav Kopecky

Abstract:

This paper is a case study dealing with the viability of using Electrical Impedance Tomography for measuring cavitation clouds in a pipe setup. The authors used a simple passive cavitation generator to cause a cavitation cloud, which was then recorded for multiple flow rates using electrodes in two measuring planes. The paper presents the results of the experiment, showing the used industrial grade tomography system ITS p2+ is able to measure the cavitation cloud and may be particularly useful for identifying the inception of cavitation in setups where other measuring tools may not be viable.

Keywords: cavitation cloud, conductivity measurement, electrical impedance tomography, mechanically induced cavitation

Procedia PDF Downloads 220