Search results for: silicon nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1884

Search results for: silicon nanoparticles

1614 Green Synthesis and Characterisation of Gold Nanoparticles from the Stem Bark and Leaves of Khaya Senegalensis and Its Cytotoxicity on MCF7 Cell Lines

Authors: Stephen Daniel Iduh, Evans Chidi Egwin, Oluwatosin Kudirat Shittu

Abstract:

The process for the development of reliable and eco-friendly metallic Nanoparticles is an important step in the field of Nanotechnology for biomedical application. To achieve this, use of natural sources like biological systems becomes essential. In the present work, extracellular biosynthesis of gold Nanoparticles using aqueous leave and stembark extracts of K. senegalensis has been attempted. The gold Nanoparticles produced were characterized using High Resolution scanning electron microscopy, Ultra Violet–Visible spectroscopy, zeta-sizer Nano, Energy-Dispersive X-ray (EDAX) Spectroscopy and Fourier Transmission Infrared (FTIR) Spectroscopy. The cytotoxicity of the synthesized gold nanoparticles on MCF-7 cell line was evaluated using MTT assay. The result showed a rapid development of Nano size and shaped particles within 5 minutes of reaction with Surface Plasmon Resonance at 520 and 525nm respectively. An average particle size of 20-90nm was confirmed. The amount of the extracts determines the core size of the AuNPs. The core size of the AuNPs decreases as the amount of extract increases and it causes the shift of Surface Plasmon Resonance band. The FTIR confirms the presence of biomolecules serving as reducing and capping agents on the synthesised gold nanoparticles. The MTT assay shows a significant effect of gold nanoparticles which is concentration dependent. This environment-friendly method of biological gold Nanoparticle synthesis has the potential and can be directly applied in cancer therapy.

Keywords: biosynthesis, gold nanoparticles, characterization, calotropis procera, cytotoxicity

Procedia PDF Downloads 458
1613 Size Selective Synthesis of Sulfur Nanoparticles and Their Anticancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, syn-thesis of nano-composites for lithium batteries, modification of carbon nano tubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work Sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM and TEM in order to confirm their sizes and structures.Application of nanotechnology is suggested for diag-nosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, XRD

Procedia PDF Downloads 622
1612 Size Selective Synthesis of Sulfur Nanoparticles and Their Anti Cancer Activity

Authors: Anas Al-Ali, Mohammed Suleiman, Ayman Hussein

Abstract:

Sulfur is an important element has many practical applications in present as nanoparticles. Nanosize sulfur particles also have many important applications like in pharmaceuticals, medicine, synthesis of nanocomposites for lithium batteries, modification of carbon nanotubes. Different methods were used for nano-sized particle synthesis; among those, chemical precipitation, electrochemical method, micro-emulsion technique, composing of oil, surfactant, co-surfactant, aqueous phases with the specific compositions and ultrasonic treatment of sulfur-cystine solution. In this work, sulfur nanoparticles (S NPs) were prepared by a quick precipitation method with and without using a surfactant to stabilize the formed S NPs. The synthesized S NPs were characterized by XRD, SEM, and TEM in order to confirm their sizes and structures. Application of nanotechnology is suggested for diagnosis and treatment of cancer. The anticancer activity of the prepared S NPs has been tested on various types of cancer cell clones including leukemia, kidney and colon cancers.

Keywords: sulfur nanoparticles (S-NPs), TEM, SEM, anti cancer activity, XRD

Procedia PDF Downloads 485
1611 Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications

Authors: Manel Bouloudenine, Karima Djeddou, Hadjer Ben Manser, Hana Soualah Alila, Mohmed Bououdina

Abstract:

This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones.

Keywords: silvers nanoparticles, microwaves, EDS, TEM

Procedia PDF Downloads 124
1610 Biosynthesis of Silver Nanoparticles from Leaf Extract of Tithonia diversifolia and Its Antimicrobial Properties

Authors: Babatunde Oluwole Ogunsile, Omosola Monisola Fasoranti

Abstract:

High costs and toxicological hazards associated with the physicochemical methods of producing nanoparticles have limited their widespread use in clinical and biomedical applications. An ethically sound alternative is the utilization of plant bioresources as a low cost and eco–friendly biological approach. Silver nanoparticles (AgNPs) were synthesized from aqueous leaf extract of Tithonia diversifolia plant. The UV-Vis Spectrophotometer was used to monitor the formation of the AgNPs at different time intervals and different ratios of plant extract to the AgNO₃ solution. The biosynthesized AgNPs were characterized by FTIR, X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Antimicrobial activities of the AgNPs were investigated against ten human pathogens using agar well diffusion method. The AgNPs yields were modeled using a second-order factorial design. The result showed that the rate of formation of the AgNPs increased with respect to time while the optimum ratio of plant extract to the AgNO₃ solution was 1:1. The hydroxyl group was strongly involved in the bioreduction of the silver salt as indicated by the FTIR spectra. The synthesized AgNPs were crystalline in nature, with a uniformly distributed network of the web-like structure. The factorial model predicted the nanoparticles yields with minimal errors. The nanoparticles were active against all the tested pathogens and thus have great potentials as antimicrobial agents.

Keywords: antimicrobial activities, green synthesis, silver nanoparticles, Tithonia diversifolia

Procedia PDF Downloads 119
1609 Preparation of MgO Nanoparticles by Green Methods

Authors: Maryam Sabbaghan, Pegah Sofalgar

Abstract:

Over the past few decades, a significant amount of research activities in the chemical community has been directed towards green synthesis. This area of chemistry has received extensive attention because of environmentally benign processes as well as economically viable. In this article, the MgO nanoparticles were prepared by different methods in the present of ionic liquids. A wide range of Magnesium oxide particle sizes within the nanometer scale is obtained by these methods. The structure of these MgO particles was studied by using X-ray diffraction (XRD), Infrared spectroscopy (IR), and scanning electron microscopy (SEM). It was found that the formation of nanoparticle could involve the role of performed 'nucleus' and used template to control the growth rate of nucleuses. The crystallite size of the MgO products was in a range from 31 to 77 nm.

Keywords: MgO, ionic liquid, nanoparticles, green chemistry

Procedia PDF Downloads 259
1608 Adsorption and Kinetic Studies on Removal of NH3-N from Wastewater onto 2 Different Nanoparticles Loaded Coconut Coir

Authors: Khushboo Bhavsar, Nisha K. Shah, Neha Parekh

Abstract:

The status of wastewater treatment needs a novel and quick method for treating the wastewater containing ammoniacal nitrogen. Adsorption behavior of ammoniacal nitrogen from wastewater using the nanoparticles loaded coconut coir was investigated in the present work. Manganese Oxide (MnO2) and Zinc Oxide (ZnO) nanoparticles were prepared and used for the further adsorption study. Manganese nanoparticles loaded coconut coir (MNLCC) and Zinc nanoparticles loaded coconut coir (ZNLCC) were prepared via a simple method and was fully characterized. The properties of both MNLCC and ZNLCC were characterized by Scanning electron microscopy, Fourier Transform Infrared Spectroscopy and X-ray diffraction. Adsorption characteristics were studied using batch technique considering various parameters like pH, adsorbent dosage, time, temperature and agitation time. The NH3-N adsorption process for MNLCC and ZNLCC was thoroughly studied from both kinetic and equilibrium isotherm view-points. The results indicated that the adsorption efficiency of ZNLCC was better when compared to MNLCC. The adsorption kinetics at different experimental conditions showed that second order kinetic model best fits ensuring the monovalent binding sites existing in the present experimental system. The outcome of the entire study suggests that the ZNLCC can be a smart option for the treatment of the ammoniacal nitrogen containing wastewater.

Keywords: ammoniacal nitrogen, MnO2, Nanoparticles, ZnO

Procedia PDF Downloads 331
1607 Enhancing the Oxidation Resistance of Copper at High Temperature by Surface Fluorination

Authors: Jae-Ho Kim, Ryosuke Yokochi, Miho Fuzihashi, Susumu Yonezawa

Abstract:

The use of silver nanoparticles in conductive inks and their printing by injecting technology has been known for years. However, the very high cost of silver limits wide industrial applications. Since copper is much cheaper but possesses a very high conductivity (only 6% less than that of Ag), Cu nanoparticles can be considered as a replacement for silver nanoparticles. However, a major problem in utilizing their copper nanoparticles is their inherent tendency to oxidize in ambient conditions. In conductive printing applications, the presence of copper oxide on the surface of nanoparticles has two negative consequences: it increases the required sintering temperature and reduces the electrical conductivity. Only a limited number of reports have attempted to address the oxidation problem, which in general is based on minimizing the exposure of the copper nanoparticles to oxygen by a protective layer composed of a second material at the surface of the particles. To form the protective layer on the surface, carbon-based materials, surfactants, metals, and so on. In this study, we tried to modify the oxide on Cu particles using fluorine gas. And the creation effects of oxyfluorides or fluorides on the oxidation resistance of Cu particles were investigated. Compared with untreated sample (a), the fluorinated samples can restrain the weight increase even at 200℃ from the TG-DTA results. It might be considered that the substantial oxyfluorides on the surface play a role in protecting metal oxidation.

Keywords: copper metal, electrical conductivity, oxidation resistance, surface fluorination

Procedia PDF Downloads 79
1606 Characteristics of the Particle Size Distribution and Exposure Concentrations of Nanoparticles Generated from the Laser Metal Deposition Process

Authors: Yu-Hsuan Liu, Ying-Fang Wang

Abstract:

The objectives of the present study are to characterize nanoparticles generated from the laser metal deposition (LMD) process and to estimate particle concentrations deposited in the head (H), that the tracheobronchial (TB) and alveolar (A) regions, respectively. The studied LMD chamber (3.6m × 3.8m × 2.9m) is installed with a robot laser metal deposition machine. Direct-reading instrument of a scanning mobility particle sizer (SMPS, Model 3082, TSI Inc., St. Paul, MN, USA) was used to conduct static sampling inside the chamber for nanoparticle number concentration and particle size distribution measurements. The SMPS obtained particle number concentration at every 3 minutes, the diameter of the SMPS ranged from 11~372 nm when the aerosol and sheath flow rates were set at 0.6 and 6 L / min, respectively. The resultant size distributions were used to predict depositions of nanoparticles at the H, TB, and A regions of the respiratory tract using the UK National Radiological Protection Board’s (NRPB’s) LUDEP Software. Result that the number concentrations of nanoparticles in indoor background and LMD chamber were 4.8×10³ and 4.3×10⁵ # / cm³, respectively. However, the nanoparticles emitted from the LMD process was in the form of the uni-modal with number median diameter (NMD) and geometric standard deviation (GSD) as 142nm and 1.86, respectively. The fractions of the nanoparticles deposited on the alveolar region (A: 69.8%) were higher than the other two regions of the head region (H: 10.9%), tracheobronchial region (TB: 19.3%). This study conducted static sampling to measure the nanoparticles in the LMD process, and the results show that the fraction of particles deposited on the A region was higher than the other two regions. Therefore, applying the characteristics of nanoparticles emitted from LMD process could be provided valuable scientific-based evidence for exposure assessments in the future.

Keywords: exposure assessment, laser metal deposition process, nanoparticle, respiratory region

Procedia PDF Downloads 260
1605 One Step Green Synthesis of Silver Nanoparticles and Their Biological Activity

Authors: Samy M. Shaban, Ismail Aiad, Mohamed M. El-Sukkary, E. A. Soliman, Moshira Y. El-Awady

Abstract:

In situ and green synthesis of cubic and spherical silver nanoparticles were developed using sun light as reducing agent in the presence of newly prepared cationic surfactant which acting as capping agents. The morphology of prepared silver nanoparticle was estimated by transmission electron microscope (TEM) and the size distribution determined by dynamic light scattering (DLS). The hydrophobic chain length of the prepared surfactant effect on the stability of the prepared silver nanoparticles as clear from zeta-potential values. Also by increasing chain length of the used capping agent the amount of formed nanoparticle increase as indicated by increasing the absorbance. Both prepared surfactants and surfactants capping silver nanoparticles showed high antimicrobial activity against gram positive and gram-negative bacteria.

Keywords: photosynthesis, hexaonal shapes, zetapotential, biological activity

Procedia PDF Downloads 427
1604 A Review on Silicon Based Induced Resistance in Plants against Insect Pests

Authors: Asim Abbasi, Muhammad Sufyan, Muhammad Kamran, Iqra

Abstract:

Development of resistance in insect pests against various groups of insecticides has prompted the use of alternative integrated pest management approaches. Among these induced host plant resistance represents an important strategy as it offers a practical, cheap and long lasting solution to keep pests populations below economic threshold level (ETL). Silicon (Si) has a major role in regulating plant eco-relationship by providing strength to the plant in the form of anti-stress mechanism which was utilized in coping with the environmental extremes to get a better yield and quality end produce. Among biotic stresses, insect herbivore signifies one class against which Si provide defense. Silicon in its neutral form (H₄SiO₄) is absorbed by the plants via roots through an active process accompanied by the help of different transporters which were located in the plasma membrane of root cells or by a passive process mostly regulated by transpiration stream, which occurs via the xylem cells along with the water. Plants tissues mainly the epidermal cell walls are the sinks of absorbed silicon where it polymerizes in the form of amorphous silica or monosilicic acid. The noteworthy function of this absorbed silicon is to provide structural rigidity to the tissues and strength to the cell walls. Silicon has both direct and indirect effects on insect herbivores. Increased abrasiveness and hardness of epidermal plant tissues and reduced digestibility as a result of deposition of Si primarily as phytoliths within cuticle layer is now the most authenticated mechanisms of Si in enhancing plant resistance to insect herbivores. Moreover, increased Si content in the diet also impedes the efficiency by which insects transformed consumed food into the body mass. The palatability of food material has also been changed by Si application, and it also deters herbivore feeding for food. The production of defensive compounds of plants like silica and phenols have also been amplified by the exogenous application of silicon sources which results in reduction of the probing time of certain insects. Some studies also highlighted the role of silicon at the third trophic level as it also attracts natural enemies of insects attacking the crop. Hence, the inclusion of Si in pest management approaches can be a healthy and eco-friendly tool in future.

Keywords: defensive, phytoliths, resistance, stresses

Procedia PDF Downloads 162
1603 Biologically Synthesized Palladium Nanoparticles Impregnated Porous Aluminium Catalyst in CO2 Detection

Authors: I. B. Patel, K. A. Mistry, A. H. Prajapati

Abstract:

Biologically synthesized colloidal Pd nanoparticles were impregnated on porous aluminium. In this paper, the obtained Pd/Al2O3 catalysts were characterized by XRD, SEM, and TEM. The effects of deposited films on the performances of Pd/Al2O3 in adsorption, reduction, and catalytic reaction of CO2 were investigated. The results showed that the deposited films can remarkably improve the dispersion of active components and enhance the reactivity of Pd/Al2O3 catalyst. The catalytic performance of Pd/Al2O3 in term of surface reaction is also enhanced in terms of sensitivity (SF = 850) obtained through conventional CBD method.

Keywords: palladium nanoparticles, Pd/Al2O3, carbon dioxide, aluminium catalyst

Procedia PDF Downloads 417
1602 Silver Nanoparticles in Drinking Water Purification

Authors: S. Pooja Pragati, B. Sudarsan, S. Rajkumar

Abstract:

Silver nanoparticles (AgNP) are known for their excellent antimicrobial agents, and thus can be used as alternative disinfectant agents. However, released silver nanoparticles is a threat to naturally occurring microorganisms. This paper exhibits information on the environmental fate, toxicological effects, and application of AgNP and the current estimate on the physicochemical and antimicrobial properties of AgNP in different aqueous solutions, as well as their application as alternative disinfectants in water-treatment systems. It also gives a better approximation and experimental data of AgNP’s antimicrobial properties at different water chemistry conditions. A saturation-type fitting curve was established, showing the survival of bacteria under different water chemistry conditions as a function of the size of the nanoparticles. The results obtained show that silver nanoparticles in surface water, ground water, and brackish water are stable. The paper demonstrates the comparative study of AgNP-impregnated point-of-use ceramic water filters and ceramic filters impregnated with silver nitrate. It is observed that AgNP-impregnated ceramic water filters are more appropriate for this application due to the lesser amount of silver desorbed. Experimental data of the comparison of a polymer-based quaternary amine functionalized silsesquioxanes compound and AgNP are also tabulated and conclusions are analysed with the goal of optimizing. The simplicity of synthesis and application of Silver nanoparticles enables us to consider its effective modified version for the purification of water.

Keywords: disinfectant agent, purification of water, nano particles, water treatment

Procedia PDF Downloads 305
1601 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were water, SBF and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia PDF Downloads 53
1600 Titanium Dioxide Modified with Glutathione as Potential Drug Carrier with Reduced Toxic Properties

Authors: Olga Długosz, Jolanta Pulit-Prociak, Marcin Banach

Abstract:

The paper presents a process to obtain glutathione-modified titanium oxide nanoparticles. The processes were carried out in a microwave radiation field. The influence of the molar ratio of glutathione to titanium oxide and the effect of the fold of NaOH vs. stoichiometric amount on the size of the formed TiO₂ nanoparticles was determined. The physicochemical properties of the obtained products were evaluated using dynamic light scattering (DLS), transmission electron microscope- energy-dispersive X-ray spectroscopy (TEM-EDS), low-temperature nitrogen adsorption method (BET), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) microscopy methods. The size of TiO₂ nanoparticles was characterized from 30 to 336 nm. The release of titanium ions from the prepared products was evaluated. These studies were carried out using different media in which the powders were incubated for a specific time. These were: water, SBF, and Ringer's solution. The release of titanium ions from modified products is weaker compared to unmodified titanium oxide nanoparticles. The reduced release of titanium ions may allow the use of such modified materials as substances in drug delivery systems.

Keywords: titanium dioxide, nanoparticles, drug carrier, glutathione

Procedia PDF Downloads 130
1599 Chitosan Functionalized Fe3O4@Au Core-Shell Nanomaterials for Targeted Drug Delivery

Authors: S. S. Pati, L. Herojit Singh, A. C. Oliveira, V. K. Garg

Abstract:

Chitosan functionalized Fe3O4-Au core shell nanoparticles have been prepared using a two step wet chemical approach using NaBH4 as reducing agent for formation of Au inethylene glycol. X-ray diffraction studies shows individual phases of Fe3O4 and Au in the as prepared samples with crystallite size of 5.9 and 11.4 nm respectively. The functionalization of the core-shell nanostructure with Chitosan has been confirmed using Fourier transform infrared spectroscopy along with signatures of octahedral and tetrahedral sites of Fe3O4 below 600cm-1. Mössbauer spectroscopy shows decrease in particle-particle interaction in presence of Au shell (72% sextet) than pure oleic coated Fe3O4 nanoparticles (88% sextet) at room temperature. At 80K, oleic acid coated Fe3O4 shows only sextets whereas the Chitosan functionalized Fe3O4 and Chitosan functionalized Fe3O4@Au core shell show presence of 5 and 11% doublet, respectively.

Keywords: core shell, drug delivery, gold nanoparticles, magnetic nanoparticles

Procedia PDF Downloads 346
1598 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method

Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain

Abstract:

The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.

Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR

Procedia PDF Downloads 286
1597 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel

Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar

Abstract:

High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.

Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation

Procedia PDF Downloads 321
1596 Wet Spun Graphene Fibers With Silver Nanoparticles For Flexible Electronic Applications

Authors: Syed W. Hasan, Zhiqun Tian

Abstract:

Wet spinning provides a facile and economic route to fabricate graphene nanofibers (GFs) on mass scale. Nevertheless, the pristine GFs exhibit significantly low electrical and mechanical properties owing to stacked graphene sheets and weak inter-atomic bonding. In this report, we present highly conductive Ag-decorated-GFs (Ag/GFs). The SEM micrographs show Ag nanoparticles (NPs) (dia ~10 nm) are homogeneously distributed throughout the cross-section of the fiber. The Ag NPs provide a conductive network for the electrons flow raising the conductivity to 1.8(10^4) S/m which is 4 times higher than the pristine GFs. Our results surpass the conductivities of graphene fibers doped with CNTs, Nanocarbon, fullerene, and Cu. The chemical and structural attributes of Ag/GFs are further elucidated through XPS, AFM and Raman spectroscopy.

Keywords: Ag nanoparticles, Conductive fibers, Graphene, Wet spinning

Procedia PDF Downloads 106
1595 Analysis of Sulphur-Oxidizing Bacteria Attack on Concrete Based on Waste Materials

Authors: A. Eštoková, M. Kovalčíková, A. Luptáková, A. Sičáková, M. Ondová

Abstract:

Concrete durability as an important engineering property of concrete, determining the service life of concrete structures very significantly, can be threatened and even lost due to the interactions of concrete with external environment. Bio-corrosion process caused by presence and activities of microorganisms producing sulphuric acid is a special type of sulphate deterioration of concrete materials. The effects of sulphur-oxidizing bacteria Acidithiobacillus thiooxidans on various concrete samples, based on silica fume and zeolite, were investigated in laboratory during 180 days. A laboratory study was conducted to compare the performance of concrete samples in terms of the concrete deterioration influenced by the leaching of calcium and silicon compounds from the cement matrix. The changes in the elemental concentrations of calcium and silicon in both solid samples and liquid leachates were measured by using X – ray fluorescence method. Experimental studies confirmed the silica fume based concrete samples were found out to have the best performance in terms of both silicon and calcium ions leaching.

Keywords: biocorrosion, concrete, leaching, bacteria

Procedia PDF Downloads 422
1594 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan

Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte

Abstract:

The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.

Keywords: nanoparticles, whiskers, chitosan, chromium

Procedia PDF Downloads 106
1593 Synthesis and Characterization of PVDF, FG, PTFE, and PES Membrane Distillation Modified with Silver Nanoparticles

Authors: Lopez J., Mehrvar M., Quinones E., Suarez A., RomeroC.

Abstract:

The Silver Nanoparticles (AgNP) are used as deliver of heat on surface of Membrane Distillation in order to fight against Thermal Polarization and improving the Desalination Process. In this study AgNPwere deposited by dip coating process over PVDF, FG hydrophilic, and PTFE hydrophobic commercial membranes as substrate. Membranes were characterized by SEM, EDS, contact angle, Pore size distributionand using a UV lamp and a thermal camera were measured the performance of heat deliver. The presence of AgNP 50 – 150 nm and the increase in absorption of energy over membrane were verified.

Keywords: silver nanoparticles, membrane distillation, plasmon effect, heat deliver

Procedia PDF Downloads 94
1592 Restoration and Conservation of Historical Textiles Using Covalently Immobilized Enzymes on Nanoparticles

Authors: Mohamed Elbehery

Abstract:

Historical textiles in the burial environment or in museums are exposed to many types of stains and dirt that are associated with historical textiles by multiple chemical bonds that cause damage to historical textiles. The cleaning process must be carried out with great care, with no irreversible damage, and sediments removed without affecting the original material of the surface being cleaned. Science and technology continue to provide innovative systems in the bio-cleaning process (using pure enzymes) of historical textiles and artistic surfaces. Lipase and α-amylase were immobilized on nanoparticles of alginate/κ-carrageenan nanoparticle complex and used in historical textiles cleaning. Preparation of nanoparticles, activation, and enzymes immobilization were characterized. Optimization of loading time and units of the two enzymes were done. It was found that, the optimum time and units of amylase were 4 hrs and 25U, respectively. While, the optimum time and units of lipase were 3 hrs and 15U, respectively. The methods used to examine the fibers using a scanning electron microscope equipped with an X-ray energy dispersal unit: SEM with EDX unit.

Keywords: nanoparticles, enzymes, immobilization, textiles

Procedia PDF Downloads 65
1591 Preparation of Zinc Oxide Nanoparticles and Its Anti-diabetic Effect with Momordica Charantia Plant Extract in Diabetic Mice

Authors: Zahid Hussain, Nayyab Sultan

Abstract:

This study describes the preparation of zinc oxide nanoparticles and their anti-diabetic effect individually and with the combination of Momordica charantia plant extract. This plant is termed bitter melon, balsam pear, bitter gourd, or karela. Blood glucose levels in mice were monitored in their random state before and after the administration of zinc oxide nanoparticles and plant extract. The powdered form of nanoparticles and the selected plant were used as an oral treatment. Diabetes was induced in mice by using a chemical named as streptozotocin. It is an artificial diabetes-inducing chemical. In the case of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg); the maximum anti-diabetic effect observed was 70% ± 1.6 and 75% ± 1.3, respectively. In the case of the combination of zinc oxide nanoparticles (3mg/kg) and Momordica charantia plant extract (500mg/kg), the maximum anti-diabetic effect observed was 86% ± 2.0. The results obtained were more effective as compared to standard drugs Amaryl (3mg/kg), having an effectiveness of 52% ± 2.4, and Glucophage (500mg/kg), having an effectiveness of 29% ± 2.1. Results indicate that zinc oxide nanoparticles and plant extract in combination are more helpful in treating diabetes as compared to their individual treatments. It is considered a natural treatment without any side effects rather than using standard drugs, which shows adverse side effects on health, and most probably detoxifies in liver and kidneys. More experimental work and extensive research procedures are still required in order to make them applicable to pharmaceutical industries.

Keywords: albino mice, amaryl, anti-diabetic effect, blood glucose level, Camellia sinensis, diabetes mellitus, Momordica charantia plant extract, streptozotocin, zinc oxide nanoparticles

Procedia PDF Downloads 75
1590 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery

Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim

Abstract:

Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).

Keywords: butylglycerols, dextran, nanoparticles, transdermal

Procedia PDF Downloads 98
1589 Experimental Design for Formulation Optimization of Nanoparticle of Cilnidipine

Authors: Arti Bagada, Kantilal Vadalia, Mihir Raval

Abstract:

Cilnidipine is practically insoluble in water which results in its insufficient oral bioavailability. The purpose of the present investigation was to formulate cilnidipine nanoparticles by nanoprecipitation method to increase the aqueous solubility and dissolution rate and hence bioavailability by utilizing various experimental statistical design modules. Experimental design were used to investigate specific effects of independent variables during preparation cilnidipine nanoparticles and corresponding responses in optimizing the formulation. Plackett Burman design for independent variables was successfully employed for optimization of nanoparticles of cilnidipine. The influence of independent variables studied were drug concentration, solvent to antisolvent ratio, polymer concentration, stabilizer concentration and stirring speed. The dependent variables namely average particle size, polydispersity index, zeta potential value and saturation solubility of the formulated nanoparticles of cilnidipine. The experiments were carried out according to 13 runs involving 5 independent variables (higher and lower levels) employing Plackett-Burman design. The cilnidipine nanoparticles were characterized by average particle size, polydispersity index value, zeta potential value and saturation solubility and it results were 149 nm, 0.314, 43.24 and 0.0379 mg/ml, respectively. The experimental results were good correlated with predicted data analysed by Plackett-Burman statistical method.

Keywords: dissolution enhancement, nanoparticles, Plackett-Burman design, nanoprecipitation

Procedia PDF Downloads 137
1588 Thermo-Physical and Morphological Properties of Pdlcs Films Doped with Tio2 Nanoparticles.

Authors: Salima Bouadjela, Fatima Zohra Abdoune, Lahcene Mechernene

Abstract:

PDLCs are currently considered as promising materials for specific applications such as creation of window blinds controlled by electric field, fog simulators, UV protective glasses, high data storage device etc. We know that the electrical field inside the liquid crystal is low compare with the external electric field [1,2]. An addition of high magnetic and electrical, properties containing compounds to the polymer dispersed liquid crystal (PDLC) will enhance the electrical, optical, and magnetic properties of the PDLC [3,4]. Low Concentration of inorganic nanoparticles TiO2 added to nematic liquid crystals (E7) and also combined with monomers (TPGDA) and cured monomer/LC mixture to elaborate polymer-LC-NP dispersion. The presence of liquid crystal and nanoparticles in TPGDA matrix were conformed and the modified properties of PDLC due to doped nanoparticle were studied and explained by the results of FTIR, POM, UV. Incorporation of nanoparticles modifies the structure of PDLC and thus it makes increase the amount of droplets and decrease in droplet size. we found that the presence of TiO2 nanoparticles leads to a shift the nematic-isotropic transition temperature TNI.

Keywords: nanocomposites, PDLC, phases diagram, TiO2

Procedia PDF Downloads 332
1587 Antimicrobial Activity of Biosynthesized Silver Nanoparticles with Handroanthus Chrysanthus Flower Extract

Authors: Eduardo Padilla, Luis Daniel Rodriguez, Ivan Sanchez, Angelica Sofia Go

Abstract:

The synthesis and application of metallic nanoparticles have increased in recent years. Biological methods go beyond the chemical and physical synthesis that is expensive and not friendly to the environment. Therefore, in this study, silver nanoparticles were synthesized biologically in an environmentally friendly way by Handroanthus chrysanthus flower aqueous extract (AgNPs) that contains phytochemicals capable of reducing silver nitrate. AgNPs were characterized visually by UV-visible spectroscopy and TEM. The antimicrobial activity of the AgNPs was tested by determining the minimum inhibitory concentration (MIC), and minimal bactericidal concentration (MBC) in Escherichia coli and Staphylococcus aureus strains AgNPs showed potent antimicrobial activity against gram-negative and gram-positive bacteria. MIC and MBC values were as low as 41.6, and 83.2 ug/mL using AgNPs biosynthesized by H. chrysanthus flower extract. This nanoparticle could be the basis for the formulation of disinfectants for use in the food and pharmaceutical industry.

Keywords: antimicrobial, silver nanoparticles, flower extract, Handroanthus

Procedia PDF Downloads 70
1586 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.

Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property

Procedia PDF Downloads 326
1585 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur Nidhi

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67 % at magnetic field 2-5kG, respectively at particle concentration 0.6 mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44 % by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67 % by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: capture efficiency, implant assisted-Magnetic drug targeting (IA-MDT), magnetic nanoparticles, In-vitro study

Procedia PDF Downloads 278