Search results for: scapular fracture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 614

Search results for: scapular fracture

374 A Multi-Scale Approach for the Analysis of Fiber-Reinforced Composites

Authors: Azeez Shaik, Amit Salvi, B. P. Gautham

Abstract:

Fiber reinforced polymer resin composite materials are finding wide variety of applications in automotive and aerospace industry because of their high specific stiffness and specific strengths when compared to metals. New class of 2D and 3D textile and woven fabric composites offer excellent fracture toughens as they bridge the cracks formed during fracture. Due to complexity of their fiber architectures and its resulting composite microstructures, optimized design and analysis of these structures is very complicated. A traditional homogenization approach is typically used to analyze structures made up of these materials. This approach usually fails to predict damage initiation as well as damage propagation and ultimate failure of structure made up of woven and textile composites. This study demonstrates a methodology to analyze woven and textile composites by using the multi-level multi-scale modelling approach. In this approach, a geometric repetitive unit cell (RUC) is developed with all its constituents to develop a representative volume element (RVE) with all its constituents and their interaction modeled correctly. The structure is modeled based on the RUC/RVE and analyzed at different length scales with desired levels of fidelity incorporating the damage and failure. The results are passed across (up and down) the scales qualitatively as well as quantitatively from the perspective of material, configuration and architecture.

Keywords: cohesive zone, multi-scale modeling, rate dependency, RUC, woven textiles

Procedia PDF Downloads 340
373 Heterotopic Ossification: DISH and Myositis Ossificans in Human Remains Identification

Authors: Patricia Shirley Almeida Prado, Liz Brito, Selma Paixão Argollo, Gracie Moreira, Leticia Matos Sobrinho

Abstract:

Diffuse idiopathic skeletal hyperostosis (DISH) is a degenerative bone disease also known as Forestier´s disease and ankylosing hyperostosis of the spine is characterized by a tendency toward ossification of half the anterior longitudinal spinal ligament without intervertebral disc disease. DISH is not considered to be osteoarthritis, although the two conditions commonly occur together. Diagnostic criteria include fusion of at least four vertebrae by bony bridges arising from the anterolateral aspect of the vertebral bodies. These vertebral bodies have a 'dripping candle wax' appearance, also can be seen periosteal new bone formation on the anterior surface of the vertebral bodies and there is no ankylosis at zygoapophyseal facet joint. Clinically, patients with DISH tend to be asymptomatic some patients mention moderate pain and stiffness in upper back. This disease is more common in man, uncommon in patients younger than 50 years and rare in patients under 40 years old. In modern populations, DISH is found in association with obesity, (type II) diabetes; abnormal vitamin A metabolism and also associated with higher levels of serum uric acid. There is also some association between the increase of risk of stroke or other cerebrovascular disease. The DISH condition can be confused with Heterotopic Ossification, what is the bone formation in the soft tissues as the result of trauma, wounding, surgery, burnings, prolonged immobility and some central nervous system disorder. All these conditions have been described extensively as myositis ossificans which can be confused with the fibrodysplasia (myositis) ossificans progressive. As in the DISH symptomatology it can be asymptomatic or extensive enough to impair joint function. A third confusion osteoarthritis disease that can bring confusion are the enthesopathies that occur in the entire skeleton being common on the ischial tuberosities, iliac crests, patellae, and calcaneus. Ankylosis of the sacroiliac joint by bony bridges may also be found. CASE 1: this case is skeletal remains presenting skull, some vertebrae and scapulae. This case remains unidentified and due to lack of bone remains. Sex, age and ancestry profile was compromised, however the DISH pathognomonic findings and diagnostic helps to estimate sex and age characteristics. Moreover to presenting DISH these skeletal remains also showed some bone alterations and non-metrics as fusion of the first vertebrae with occipital bone, maxillae and palatine torus and scapular foramen on the right scapulae. CASE 2: this skeleton remains shows an extensive bone heterotopic ossification on the great trochanter area of left femur, right fibula showed a healed fracture in its body however in its inteosseous crest there is an extensive bone growth, also in the Ilium at the region of inferior gluteal line can be observed some pronounced bone growth and the skull presented a pronounced mandibular, maxillary and palatine torus. Despite all these pronounced heterotopic ossification the whole skeleton presents moderate bone overgrowth that is not linked with aging, since the skeleton belongs to a young unidentified individual. The appropriate osteopathological diagnosis support the human identification process through medical reports and also assist with epidemiological data that can strengthen vulnerable anthropological estimates.

Keywords: bone disease, DISH, human identification, human remains

Procedia PDF Downloads 301
372 Association of Extremity Injuries with Safety Gear and Clothing of Hospitalized Motorcycle Riders: A Prospective Study

Authors: Sanjaya N. Munasinghe, R. Gnanasekeram, Dimuthu Tennakoon

Abstract:

During the last few years there has been a dramatic increase in the number of motorcyclists in Sri Lankan roads and thus an increase of motorcycle accidents (MCAs) with a heavy death and casualty toll. Extremity injuries due to MCAs cause a heavy burden on government hospitals. However, data on MCA injuries are limited. This study tries to determine the relationship between extremity injuries with protective gears and clothing motorcycle riders were wearing at the time of the accident. Data were collected from 410 motorcycle riders and passengers involved with MCAs and admitted to orthopedic and emergency observation wards in Teaching Hospital Kurunegala with extremity injuries between 1st February 2015 and 31st July 2015 using an interviewer administered questioner. Data were analyzed using SPSS version 17.0. Distal radial fracture is the most common upper extremity injury (12%), and Tibial fracture is the most common and severe lower extremity injury (23%). Very few participants were wearing safety gloves (2%) and jackets (10%). Most of the participants were wearing slippers (66%), short sleeved upper clothing (96%) and light cloth trousers (49%). According to Chi-square test associations were found between footwear and foot injuries (p-value - 0.001, Cramer's v-value - 0.203) and safety jacket and upper extremity injuries (p-value - 0.002, Cramer's v-value - 0.177). The results indicate that using safety gear can minimize the number of injuries in MCA victims. Thus it is necessary to ensure that motorcycle riders and pillion riders use proper safety gear.

Keywords: extremity injuries, fractures, motorcycle accidents, safety gear

Procedia PDF Downloads 270
371 A Cohesive Zone Model with Parameters Determined by Uniaxial Stress-Strain Curve

Authors: Y.J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model (CZM): The maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is modeled by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 436
370 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor

Procedia PDF Downloads 112
369 Revisiting the Surgical Approaches to Decompression in Quadrangular Space Syndrome: A Cadaveric Study

Authors: Sundip Charmode, Simmi Mehra, Sudhir Kushwaha, Shalom Philip, Pratik Amrutiya, Ranjna Jangal

Abstract:

Introduction: Quadrangular space syndrome involves compression of the axillary nerve and posterior circumflex humeral artery and its management in few cases, requires surgical decompression. The current study reviews the surgical approaches used in the decompression of neurovascular structures and presents our reflections and recommendations. Methods: Four human cadavers, in the Department of Anatomy were used for dissection of the Axillae and the Scapular region by the senior residents of the Department of Anatomy and Department of Orthopedics, who dissected quadrangular space in the eight upper limbs, using anterior and posterior surgical approaches. Observations: Posterior approach to identify the quadrangular space and secure its contents was recognized as the easier and much quicker method by both the Anatomy and Orthopedic residents, but it may result in increased postoperative morbidity. Whereas the anterior (Delto-pectoral) approach involves more skill but reduces postoperative morbidity. Conclusions: Anterior (Delto-pectoral) approach with suggested modifications can prove as an effective method in surgical decompression of quadrangular space syndrome. The authors suggest more cadaveric studies to facilitate anatomists and surgeons with the opportunities to practice and evaluate older and newer surgical approaches.

Keywords: surgical approach, anatomical approach, decompression, axillary nerve, quadrangular space

Procedia PDF Downloads 141
368 Determination of Cohesive Zone Model’s Parameters Based On the Uniaxial Stress-Strain Curve

Authors: Y. J. Wang, C. Q. Ru

Abstract:

A key issue of cohesive zone models is how to determine the cohesive zone model (CZM) parameters based on real material test data. In this paper, uniaxial nominal stress-strain curve (SS curve) is used to determine two key parameters of a cohesive zone model: the maximum traction and the area under the curve of traction-separation law (TSL). To this end, the true SS curve is obtained based on the nominal SS curve, and the relationship between the nominal SS curve and TSL is derived based on an assumption that the stress for cracking should be the same in both CZM and the real material. In particular, the true SS curve after necking is derived from the nominal SS curve by taking the average of the power law extrapolation and the linear extrapolation, and a damage factor is introduced to offset the true stress reduction caused by the voids generated at the necking zone. The maximum traction of the TSL is equal to the maximum true stress calculated based on the damage factor at the end of hardening. In addition, a simple specimen is simulated by Abaqus/Standard to calculate the critical J-integral, and the fracture energy calculated by the critical J-integral represents the stored strain energy in the necking zone calculated by the true SS curve. Finally, the CZM parameters obtained by the present method are compared to those used in a previous related work for a simulation of the drop-weight tear test.

Keywords: dynamic fracture, cohesive zone model, traction-separation law, stress-strain curve, J-integral

Procedia PDF Downloads 480
367 The Prevalence of Intubation Induced Dental Complications among Hospitalized Patients

Authors: Dorsa Rahi, Arghavan Tonkanbonbi, Soheila Manifar, Behzad Jafvarnejad

Abstract:

Background and Aim: Intraoral manipulation is performed during endotracheal intubation for general anesthesia, which can traumatize the soft and hard tissue in the oral cavity and cause postoperative pain and discomfort. Dental trauma is the most common complication of intubation. This study aimed to assess the prevalence of dental complications due to intubation in patients hospitalized in Imam Khomeini Hospital during 2018-2019. Materials and Methods: A total of 805 patients presenting to the Cancer Institute of Imam Khomeini Hospital for preoperative anesthesia consultation were randomly enrolled. A dentist interviewed the patients and performed a comprehensive clinical oral examination preoperatively. The patients underwent clinical oral examination by another dentist postoperatively. Results: No significant correlation was found between dental trauma (tooth fracture, tooth mobility, or soft tissue injury) after intubation with the age or gender of patients. According to the Wilcoxon test and McNemar-Bowker Test, the rate of mobility before the intubation was significantly different from that after the intubation (P=0.000). Maxillary central incisors, maxillary left canine and mandibular right and left central incisors had the highest rate of fracture. Conclusion: Mobile teeth before the intubation are at higher risk of avulsion and aspiration during the procedure. Patients with primary temporomandibular joint disorders are more susceptible to post-intubation trismus.

Keywords: oral trauma, dental trauma, intubation, anesthesia

Procedia PDF Downloads 119
366 Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique

Authors: Oluwagbenga B. Fatile, Felix U. Idu, Olajide T. Sanya

Abstract:

This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost.

Keywords: fly ash, hybrid composite, mechanical behaviour, stir-cast

Procedia PDF Downloads 299
365 Borate Crosslinked Fracturing Fluids: Laboratory Determination of Rheology

Authors: Lalnuntluanga Hmar, Hardik Vyas

Abstract:

Hydraulic fracturing has become an essential procedure to break apart the rock and release the oil or gas which are trapped tightly in the rock by pumping fracturing fluids at high pressure down into the well. To open the fracture and to transport propping agent along the fracture, proper selection of fracturing fluids is the most crucial components in fracturing operations. Rheology properties of the fluids are usually considered the most important. Among various fracturing fluids, Borate crosslinked fluids have proved to be highly effective. Borate in the form of Boric Acid, borate ion is the most commonly use to crosslink the hydrated polymers and to produce very viscous gels that can stable at high temperature. Guar and HPG (Hydroxypropyl Guar) polymers are the most often used in these fluids. Borate gel rheology is known to be a function of polymer concentration, borate ion concentration, pH, and temperature. The crosslinking using Borate is a function of pH which means it can be formed or reversed simply by altering the pH of the fluid system. The fluid system was prepared by mixing base polymer with water at pH ranging between 8 to 11 and the optimum borate crosslinker efficiency was found to be pH of about 10. The rheology of laboratory prepared Borate crosslinked fracturing fluid was determined using Anton Paar Rheometer and Fann Viscometer. The viscosity was measured at high temperature ranging from 200ᵒF to 250ᵒF and pressures in order to partially stimulate the downhole condition. Rheological measurements reported that the crosslinking increases the viscosity, elasticity and thus fluid capability to transport propping agent.

Keywords: borate, crosslinker, Guar, Hydroxypropyl Guar (HPG), rheology

Procedia PDF Downloads 179
364 Tensile and Fracture Properties of Cast and Forged Composite Synthesized by Addition of in-situ Generated Al3Ti-Al2O3 Particles to Magnesium

Authors: H. M. Nanjundaswamy, S. K. Nath, S. Ray

Abstract:

TiO2 particles have been added in molten aluminium to result in aluminium based cast Al/Al3Ti-Al2O3 composite, which has been added then to molten magnesium to synthesize magnesium based cast Mg-Al/Al3Ti-Al2O3 composite. The nominal compositions in terms of Mg, Al, and TiO2 contents in the magnesium based composites are Mg-9Al-0.6TiO2, Mg-9Al-0.8TiO2, Mg-9Al-1.0TiO2 and Mg-9Al-1.2TiO2 designated respectively as MA6T, MA8T, MA10T and MA12T. The microstructure of the cast magnesium based composite shows grayish rods of intermetallics Al3Ti, inherited from aluminium based composite but these rods, on hot forging, breaks into smaller lengths decreasing the average aspect ratio (length to diameter) from 7.5 to 3.0. There are also cavities in between the broken segments of rods. β-phase in cast microstructure, Mg17Al12, dissolves during heating prior to forging and re-precipitates as relatively finer particles on cooling. The amount of β-phase also decreases on forging as segregation is removed. In both the cast and forged composite, the Brinell hardness increases rapidly with increasing addition of TiO2 but the hardness is higher in forged composites by about 80 BHN. With addition of higher level of TiO2 in magnesium based cast composite, yield strength decreases progressively but there is marginal increase in yield strength over that of the cast Mg-9 wt. pct. Al, designated as MA alloy. But the ultimate tensile strength (UTS) in the cast composites decreases with the increasing particle content indicating possibly an early initiation of crack in the brittle inter-dendritic region and their easy propagation through the interfaces of the particles. In forged composites, there is a significant improvement in both yield strength and UTS with increasing TiO2 addition and also, over those observed in their cast counterpart, but at higher addition it decreases. It may also be noted that as in forged MA alloy, incomplete recovery of forging strain increases the strength of the matrix in the composites and the ductility decreases both in the forged alloy and the composites. Initiation fracture toughness, JIC, decreases drastically in cast composites compared to that in MA alloy due to the presence of intermetallic Al3Ti and Al2O3 particles in the composite. There is drastic reduction of JIC on forging both in the alloy and the composites, possibly due to incomplete recovery of forging strain in both as well as breaking of Al3Ti rods and the voids between the broken segments of Al3Ti rods in composites. The ratio of tearing modulus to elastic modulus in cast composites show higher ratio, which increases with the increasing TiO2 addition. The ratio decreases comparatively more on forging of cast MA alloy than those in forged composites.

Keywords: composite, fracture toughness, forging, tensile properties

Procedia PDF Downloads 221
363 Evaluation of Actual Nutrition Patients of Osteoporosis

Authors: Aigul Abduldayeva, Gulnar Tuleshova

Abstract:

Osteoporosis (OP) is a major socio-economic problem and is a major cause of disability, reduced quality of life and premature death of elderly people. In Astana, the study involved 93 respondents, of whom 17 were men (18.3%), and 76 were women (81.7%). Age distribution of the respondents is as follows: 40-59 (66.7%), 60-75 (29.0%), 75-90 (4.3%). In the city of Astana general breach of bone mass (CCM) was determined in 83.8% (nationwide figure - RRP - 79.0%) of the patients, and normal levels of ultrasound densitometry were detected in 16.1% (RRP 21.0%) of the patients. OP was diagnosed in 20.4% of people over 40 (RRP for citizens is 19.0%), 25.4% in the group older than 50 (23.4% PIU), 22,6% in the group older than 60 (RRP 32.6%), 25.0% in the group older than 70 (47.6% of RRP). OPN was detected in 63.4% (RRP 59.6%) of the surveyed population. These data indicate that, there is no sharp difference between Astana and other cities in the country regarding the incidence of OP, that is, the situation with the OP is not aggravated by any regional characteristics. In the distribution of respondents by clusters it was found that 80.0% of the respondents with CCM were in the "best urban cluster", 93.8% were in "average urban cluster", and 77.4% were in a "poor urban cluster". There is a high rate construction of new buildings in Astana, presumably, that the new settlers inhabit the outskirts of the city, and very difficult to trace the socio-economic differences there. Based on these data the following conclusions can be made: 1. According to the ultrasound densitometry of the calcaneus the prevalence rate of NCM among the residents of Astana is 83.3%, OP - 20.4%, which generally coincides with data elsewhere in the country. 2. The urban population of Astana is under a high degree of risk for low energetic fracture, 46.2% of the population had medium and high risks of fracture, while the nationwide index is 26.7%. 3. In the development of CCM residents of Akmola region play a significant role gender, age, ethnic factors. According to the ultrasound densitometry women are more prone to Astana OP - 22.4% of respondents than men - 11.8% of respondents.

Keywords: nutrition, osteoporosis, elderly, urban population

Procedia PDF Downloads 447
362 Discrete Element Simulations of Composite Ceramic Powders

Authors: Julia Cristina Bonaldo, Christophe L. Martin, Severine Romero Baivier, Stephane Mazerat

Abstract:

Alumina refractories are commonly used in steel and foundry industries. These refractories are prepared through a powder metallurgy route. They are a mixture of hard alumina particles and graphite platelets embedded into a soft carbonic matrix (binder). The powder can be cold pressed isostatically or uniaxially, depending on the application. The compact is then fired to obtain the final product. The quality of the product is governed by the microstructure of the composite and by the process parameters. The compaction behavior and the mechanical properties of the fired product depend greatly on the amount of each phase, on their morphology and on the initial microstructure. In order to better understand the link between these parameters and the macroscopic behavior, we use the Discrete Element Method (DEM) to simulate the compaction process and the fracture behavior of the fired composite. These simulations are coupled with well-designed experiments. Four mixes with various amounts of Al₂O₃ and binder were tested both experimentally and numerically. In DEM, each particle is modelled and the interactions between particles are taken into account through appropriate contact or bonding laws. Here, we model a bimodal mixture of large Al₂O₃ and small Al₂O₃ covered with a soft binder. This composite is itself mixed with graphite platelets. X-ray tomography images are used to analyze the morphologies of the different components. Large Al₂O₃ particles and graphite platelets are modelled in DEM as sets of particles bonded together. The binder is modelled as a soft shell that covers both large and small Al₂O₃ particles. When two particles with binder indent each other, they first interact through this soft shell. Once a critical indentation is reached (towards the end of compaction), hard Al₂O₃ - Al₂O₃ contacts appear. In accordance with experimental data, DEM simulations show that the amount of Al₂O₃ and the amount of binder play a major role for the compaction behavior. The graphite platelets bend and break during the compaction, also contributing to the macroscopic stress. Firing step is modeled in DEM by ascribing bonds to particles which contact each other after compaction. The fracture behavior of the compacted mixture is also simulated and compared with experimental data. Both diametrical tests (Brazilian tests) and triaxial tests are carried out. Again, the link between the amount of Al₂O₃ particles and the fracture behavior is investigated. The methodology described here can be generalized to other particulate materials that are used in the ceramic industry.

Keywords: cold compaction, composites, discrete element method, refractory materials, x-ray tomography

Procedia PDF Downloads 114
361 An Criterion to Minimize FE Mesh-Dependency in Concrete Plate Subjected to Impact Loading

Authors: Kwak, Hyo-Gyung, Gang, Han Gul

Abstract:

In the context of an increasing need for reliability and safety in concrete structures under blast and impact loading condition, the behavior of concrete under high strain rate condition has been an important issue. Since concrete subjected to impact loading associated with high strain rate shows quite different material behavior from that in the static state, several material models are proposed and used to describe the high strain rate behavior under blast and impact loading. In the process of modelling, in advance, mesh dependency in the used finite element (FE) is the key problem because simulation results under high strain-rate condition are quite sensitive to applied FE mesh size. It means that the accuracy of simulation results may deeply be dependent on FE mesh size in simulations. This paper introduces an improved criterion which can minimize the mesh-dependency of simulation results on the basis of the fracture energy concept, and HJC (Holmquist Johnson Cook), CSC (Continuous Surface Cap) and K&C (Karagozian & Case) models are examined to trace their relative sensitivity to the used FE mesh size. To coincide with the purpose of the penetration test with a concrete plate under a projectile (bullet), the residual velocities of projectile after penetration are compared. The correlation studies between analytical results and the parametric studies associated with them show that the variation of residual velocity with the used FE mesh size is quite reduced by applying a unique failure strain value determined according to the proposed criterion.

Keywords: high strain rate concrete, penetration simulation, failure strain, mesh-dependency, fracture energy

Procedia PDF Downloads 497
360 Metallurgy of Friction Welding of Porous Stainless Steel-Solid Iron Billets

Authors: S. D. El Wakil

Abstract:

The research work reported here was aimed at investigating the feasibility of joining high-porosity stainless steel discs and wrought iron bars by friction welding. The sound friction-welded joints were then subjected to a metallurgical investigation and an analysis of failure resulting from tensile loading. Discs having 50 mm diameter and 10 mm thickness were produced by loose sintering of stainless steel powder at a temperature of 1350 oC in an argon atmosphere for one hour. Minor machining was then carried out to control the dimensions of the discs, and the density of each disc could then be determined. The level of porosity was calculated and was found to be about 40% in all of those discs. Solid wrought iron bars were also machined to facilitate tensile testing of the joints produced by friction welding. Using our previously gained experience, the porous stainless steel disc and the wrought iron tube were successfully friction welded. SEM was employed to examine the fracture surface after a tensile test of the joint in order to determine the type of failure. It revealed that the failure did not occur in the joint, but rather in the in the porous metal in the area adjacent to the joint. The load carrying capacity was actually determined by the strength of the porous metal and not by that of the welded joint. Macroscopic and microscopic metallographic examinations were also performed and showed that the welded joint involved a dense heat-affected zone where the porous metal underwent densification at elevated temperature, explaining and supporting the findings of the SEM study.

Keywords: fracture of friction-welded joints, metallurgy of friction welding, solid-porous structures, strength of joints

Procedia PDF Downloads 209
359 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt

Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya

Abstract:

In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.

Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests

Procedia PDF Downloads 101
358 Forming Limit Analysis of DP600-800 Steels

Authors: Marcelo Costa Cardoso, Luciano Pessanha Moreira

Abstract:

In this work, the plastic behaviour of cold-rolled zinc coated dual-phase steel sheets DP600 and DP800 grades is firstly investigated with the help of uniaxial, hydraulic bulge and Forming Limit Curve (FLC) tests. The uniaxial tensile tests were performed in three angular orientations with respect to the rolling direction to evaluate the strain-hardening and plastic anisotropy. True stress-strain curves at large strains were determined from hydraulic bulge testing and fitted to a work-hardening equation. The limit strains are defined at both localized necking and fracture conditions according to Nakajima’s hemispherical punch procedure. Also, an elasto-plastic localization model is proposed in order to predict strain and stress based forming limit curves. The investigated dual-phase sheets showed a good formability in the biaxial stretching and drawing FLC regions. For both DP600 and DP800 sheets, the corresponding numerical predictions overestimated and underestimated the experimental limit strains in the biaxial stretching and drawing FLC regions, respectively. This can be attributed to the restricted failure necking condition adopted in the numerical model, which is not suitable to describe the tensile and shear fracture mechanisms in advanced high strength steels under equibiaxial and biaxial stretching conditions.

Keywords: advanced high strength steels, forming limit curve, numerical modelling, sheet metal forming

Procedia PDF Downloads 345
357 Relation between Biochemical Parameters and Bone Density in Postmenopausal Women with Osteoporosis

Authors: Shokouh Momeni, Mohammad Reza Salamat, Ali Asghar Rastegari

Abstract:

Background: Osteoporosis is the most prevalent metabolic bone disease in postmenopausal women associated with reduced bone mass and increased bone fracture. Measuring bone density in the lumbar spine and hip is a reliable measure of bone mass and can therefore specify the risk of fracture. Dual-energy X-ray absorptiometry(DXA) is an accurate non-invasive system measuring the bone density, with low margin of error and no complications. The present study aimed to investigate the relationship between biochemical parameters with bone density in postmenopausal women. Materials and methods: This cross-sectional study was conducted on 87 postmenopausal women referred to osteoporosis centers in Isfahan. Bone density was measured in the spine and hip area using DXA system. Serum levels of calcium, phosphorus, alkaline phosphatase and magnesium were measured by autoanalyzer and serum levels of vitamin D were measured by high-performance liquid chromatography(HPLC). Results: The mean parameters of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium did not show a significant difference between the two groups(P-value>0.05). In the control group, the relationship between alkaline phosphatase and BMC and BA in the spine was significant with a correlation coefficient of -0.402 and 0.258, respectively(P-value<0.05) and BMD and T-score in the femoral neck area showed a direct and significant relationship with phosphorus(Correlation=0.368; P-value=0.038). There was a significant relationship between the Z-score with calcium(Correlation=0.358; P-value=0.044). Conclusion: There was no significant relationship between the values ​​of calcium, phosphorus, alkaline phosphatase, vitamin D and magnesium parameters and bone density (spine and hip) in postmenopaus

Keywords: osteoporosis, menopause, bone mineral density, vitamin d, calcium, magnesium, alkaline phosphatase, phosphorus

Procedia PDF Downloads 135
356 Percentage Change in the Selected Skinfold Measurements of Male Students of University of Delhi Due to Progressive and Constant Load of Physical Training

Authors: Seema Kaushik

Abstract:

Skinfold measurements provide considerably meaningful and consistent information about subcutaneous fat and its distribution. Physical activities in the form of conditioning and/or training leads to various structural, functional and mechanical changes and numerous training programmes exist for the improvement of physical fitness, however, most of the studies are conducted on foreign soil with foreign population as sample, which may/may not be applicable to the Indian conditions. Moreover, there is not even a single training/ conditioning programme that caters to the need of male students of University of Delhi with regard to various skinfold thickness measurements. Hence, the present study aimed at studying the effect of progressive and constant load training on selected skinfold measurements of male students of University of Delhi in form of percentage change. The sample size for the study was 90 having three groups of male; 30 samples in each group (mean age = 20.04±0.49 years). The variables included triceps, sub-scapular, supra-iliac and calf skinfolds. The experimental design adopted for the study was multi-group repeated measure design. Three different groups were measured four times repeatedly at an interval of 6 weeks, on completion of each of the three meso-cycles. Standard landmarks and protocols were followed to measure the selected variables. Mean, standard deviation and percentage were computed to analyze the data statistically. The study concluded that both the progressive and constant load of physical training bring changes in the skinfold thickness measurements of male students of University of Delhi.

Keywords: constant load, progressive load, physical training, skinfold measurements

Procedia PDF Downloads 300
355 External Vacuum Dressing: Optimising Non-Operative Management of Flail Sternum Post CPR

Authors: Nicholas Bayfield, Mark Newman

Abstract:

Case Presentation: A 48-year-old male was brought in by ambulance after an out-of-hospital cardiac arrest, with 20 minutes of good-quality cardiopulmonary resuscitation in the community. Return of spontaneous circulation was achieved with defibrillation, revealing an inferior ST-elevation myocardial infarction. He was revascularized emergently in the cath lab and stabilised. Following the procedure, he was noted to have paradoxical respiratory movements of the sternum and high oxygen requirements. CT imaging demonstrated a flail chest with bilateral anterior rib 1-7 fractures as well as a large left-sided extra-pleural haematoma and small haemopneumothorax, secondary to CPR. The patient’s ventilation was stabilised with oxygen via a high-flow humidifier. Pain relief was provided. The anatomy of his rib fractures was not easily amenable to operative fixation. In addition, he was considered to be a high-risk operative candidate due to his recent arrest. He was managed thus non-operatively with an external vacuum dressing applied to the anterior chest wall to minimise respiratory compromise and minimise pain from the motion around the rib fracture sites. Non-operative management was successful, and the patient was reviewed one month later. The paradoxical sternal movement had abated. Discussion: External vacuum dressing has been trialled for non-operative management of rib fractures with varying success. It provides an external brace to minimise fracture site movement during respiration and coughing, thus minimising pain. This modality should be considered a low-cost, high-reward adjunct to non-operative management of bony thoracic trauma.

Keywords: thoracic surgery, thoracic trauma, rib fractures, negative pressure dressing

Procedia PDF Downloads 127
354 Numerical and Experimental Investigation of Fracture Mechanism in Paintings on Wood

Authors: Mohammad Jamalabadi, Noemi Zabari, Lukasz Bratasz

Abstract:

Panel paintings -complex multi-layer structures consisting of wood support and a paint layer composed of a preparatory layer of gesso, paints, and varnishes- are among the category of cultural objects most vulnerable to relative humidity fluctuations and frequently found in museum collections. The current environmental specifications in museums have been derived using the criterion of crack initiation in an undamaged, usually new gesso layer laid on wood. In reality, historical paintings exhibit complex crack patterns called craquelures. The present paper analyses the structural response of a paint layer with a virtual network of rectangular cracks under environmental loadings using a three-dimensional model of a panel painting. Two modes of loading are considered -one induced by one-dimensional moisture response of wood support, termed the tangential loading, and the other isotropic induced by drying shrinkage of the gesso layer. The superposition of the two modes is also analysed. The modelling showed that minimum distances between cracks parallel to the wood grain depended on the gesso stiffness under the tangential loading. In spite of a non-zero Poisson’s ratio, gesso cracks perpendicular to the wood grain could not be generated by the moisture response of wood support. The isotropic drying shrinkage of gesso produced cracks that were almost evenly spaced in both directions. The modelling results were cross-checked with crack patterns obtained on a mock-up of a panel painting exposed to a number of extreme environmental variations in an environmental chamber.

Keywords: fracture saturation, surface cracking, paintings on wood, wood panels

Procedia PDF Downloads 229
353 Impact of Aging on Fatigue Performance of Novel Hybrid HMA

Authors: Faizan Asghar, Mohammad Jamal Khattak

Abstract:

Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.

Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life

Procedia PDF Downloads 40
352 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 121
351 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System

Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan

Abstract:

Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.

Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle

Procedia PDF Downloads 266
350 Thiopental-Fentanyl versus Midazolam-Fentanyl for Emergency Department Procedural Sedation and Analgesia in Patients with Shoulder Dislocation and Distal Radial Fracture-Dislocation: A Randomized Double-Blind Controlled Trial

Authors: D. Farsi, G. Dokhtvasi, S. Abbasi, S. Shafiee Ardestani, E. Payani

Abstract:

Background and aim:It has not been well studied whether fentanyl-thiopental (FT) is effective and safe for PSA in orthopedic procedures in Emergency Department (ED). The aim of this trial was to evaluate the effectiveness of intravenous FTversusfentanyl-midazolam (FM)in patients who suffered from shoulder dislocation or distal radial fracture-dislocation. Methods:In this randomized double-blinded study, Seventy-six eligible patients were entered the study and randomly received intravenous FT or FM. The success rate, onset of action and recovery time, pain score, physicians’ satisfaction and adverse events were assessed and recorded by treating emergency physicians. The statistical analysis was intention to treat. Results: The success rate after administrating loading dose in FT group was significantly higher than FM group (71.7% vs. 48.9%, p=0.04); however, the ultimate unsuccess rate after 3 doses of drugs in the FT group was higher than the FM group (3 to 1) but it did not reach to significant level (p=0.61). Despite near equal onset of action time in two study group (P=0.464), the recovery period in patients receiving FT was markedly shorter than FM group (P<0.001). The occurrence of adverse effects was low in both groups (p=0.31). Conclusion: PSA using FT is effective and appears to be safe for orthopedic procedures in the ED. Therefore, regarding the prompt onset of action, short recovery period of thiopental, it seems that this combination can be considered more for performing PSA in orthopedic procedures in ED.

Keywords: procedural sedation and analgesia, thiopental, fentanyl, midazolam, orthopedic procedure, emergency department, pain

Procedia PDF Downloads 232
349 Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo

Authors: Vladimir A. Vinnikov

Abstract:

The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing.

Keywords: degree of rock disturbance, non-destructive testing, thermally induced acoustic emission memory effects, structure and texture of rocks

Procedia PDF Downloads 235
348 Anesthesia for Spinal Stabilization Using Neuromuscular Blocking Agents in Dog: Case Report

Authors: Agata Migdalska, Joanna Berczynska, Ewa Bieniek, Jacek Sterna

Abstract:

Muscle relaxation is considered important during general anesthesia for spine stabilization. In a presented case peripherally acting muscle relaxant was applied during general anesthesia for spine stabilization surgery. The patient was a dog, 11-years old, 26 kg, male, mix breed. Spine fracture was situated between Th13-L1-L2, probably due to the car accident. Preanesthetic physical examination revealed no sign underlying health issues. The dog was premedicated with midazolam 0.2 mg IM and butorphanol 2.4 mg IM. General anesthesia was induced with propofol IV. After the induction, the dog was intubated with an endotracheal tube and connected to an open-ended rebreathing system and maintained with the use of inhalation anesthesia with isoflurane in oxygen. 0,5 mg/ kg of rocuronium was given IV. Use of muscle relaxant was accompanied by an assessment of the degree of neuromuscular blockade by peripheral nerve stimulator. Electrodes were attached to the skin overlying at the peroneal nerve at the lateral cranial tibia. Four electrical pulses were applied to the nerve over a 2 second period. When satisfying nerve block was detected dog was prepared for the surgery. No further monitoring of the effectiveness of blockade was performed during surgery. Mechanical ventilation was kept during anesthesia. During surgery dog maintain stable, and no anesthesiological complication occur. Intraoperatively surgeon claimed that neuromuscular blockade results in a better approach to the spine and easier muscle manipulation which was helpful in order to see the fracture and replace bone fragments. Finally, euthanasia was performed intraoperatively as a result of vast myelomalacia process of the spinal cord. This prevented examination of the recovering process. Neuromuscular blocking agents act at the neuromuscular junction to provide profound muscle relaxation throughout the body. Muscle blocking agents are neither anesthetic nor analgesic; therefore inappropriately used may cause paralysis in fully conscious and feeling pain patient. They cause paralysis of all skeletal muscles, also diaphragm and intercostal muscles when given in higher doses. Intraoperative management includes maintaining stable physiological conditions, which involves adjusting hemodynamic parameters, ensuring proper ventilation, avoiding variations in temperature, maintain normal blood flow to promote proper oxygen exchange. Neuromuscular blocking agent can cause many side effects like residual paralysis, anaphylactic or anaphylactoid reactions, delayed recovery from anesthesia, histamine release, recurarization. Therefore reverse drug like neostigmine (with glikopyrolat) or edrofonium (with atropine) should be used in case of a life-threatening situation. Another useful drug is sugammadex, although the cost of this drug strongly limits its use. Muscle relaxant improves surgical conditions during spinal surgery, especially in heavily muscled individuals. They are also used to facilitate the replacement of dislocated joints as they improve conditions during fracture reduction. It is important to emphasize that in a patient with muscle weakness neuromuscular blocking agents may result in intraoperative and early postoperative cardiovascular and respiratory complications, as well as prolonged recovery from anesthesia. This should not appear in patients with recent spine fracture or luxation. Therefore it is believed that neuromuscular blockers could be useful during spine stabilization procedures.

Keywords: anesthesia, dog, neuromuscular block, spine surgery

Procedia PDF Downloads 150
347 Value of Unilateral Spinal Anaesthesia For Hip Fracture Surgery In The Elderly (75 Cases)

Authors: Fedili Benamar, Beloulou Mohamed Lamine, Ouahes Hassane, Ghattas Samir

Abstract:

Background and aims: While in Western countries, unilateral spinal anesthesia has been widely practiced for a long time, it remains little known in the local anesthesia community, and has not been the object of many studies. However, it is a simple, practical and effective technique. Our objective was to evaluate this practice in emergency anesthesia management in frail patients and to compare it with conventional spinal anesthesia. Methods: This is a prospective, observational, comparative study between hypobaric unilateral and conventional spinal anaesthesia for hip fracture surgery carried out in the operating room of the university military hospital of Staoueli. The work was spread over of 12-month period from 2019 to 2020. The parameters analyzed were hemodynamic variations, vasopressor use, block efficiency, postoperative adverse events, and postoperative morphine consumption. Results: -75 cases (mean age 72±14 years) -Group1= 41 patients (54.6%) divided into (ASA1=14.6% ASA2=60.98% ASA3=24.39%) single shoot spinal anaesthesia -Group2= 34 patients (45.3%) divided into (ASA1=2.9%, ASA2=26.4% ASA3=61.7%, ASA4=8.8%) unilateral hypobaric spinal anesthesia. -Hemodynamic variations were more severe in group 1 (51% hypotension) compared to 30% in group 2 RR=1.69 and odds ratio=2.4 -these variations were more marked in the ASA3 subgroup (group 1=70% hypotension versus group 2=30%) with an RR=2.33 and an odds ratio=5.44 -39% of group 1 required vasoactive drugs (15mg +/- 11) versus 32% of group 2 (8mg+/- 6.49) - no difference in the use of morphine in post-op. Conclusions: Within the limits of the population studied, this work demonstrates the clinical value of unilateral spinal anesthesia in ortho-trauma surgery in the frail patient.

Keywords: spinal anaesthesia, vasopressor, morphine, hypobaric unilateral spinal anesthesia, ropivacaine, hip surgery, eldery, hemodynamic

Procedia PDF Downloads 42
346 Role of Zinc in Catch-Up Growth of Low-Birth Weight Neonates

Authors: M. A. Abdel-Wahed, Nayera Elmorsi Hassan, Safaa Shafik Imam, Ola G. El-Farghali, Khadija M. Alian

Abstract:

Low-birth-weight is a challenging public health problem. Aim: to clarify role of zinc on enhancing catch-up growth of low-birth-weight and find out a proposed relationship between zinc effect on growth and the main growth hormone mediator, IGF-1. Methods: Study is a double-blind-randomized-placebo-controlled trial conducted on low-birth-weight-neonates delivered at Ain Shams University Maternity Hospital. It comprised 200 Low-birth-weight-neonates selected from those admitted to NICU. Neonates were randomly allocated into one of the following two groups: group I: low-birth-weight; AGA or SGA on oral zinc therapy at dose of 10 mg/day; group II: Low-birth-weight; AGA or SGA on placebo. Anthropometric measurements were taken including birth weight, length; head, waist, chest, mid-upper arm circumferences, triceps and sub-scapular skin-fold thicknesses. Results: At 12-month-old follow-up visit, mean weight, length; head (HC), waist, chest, mid-upper arm circumferences and triceps; also, infant’s proportions had values ≥ 10th percentile for weight, length and HC were significantly higher among infants of group I when compared to those of group II. Oral zinc therapy was associated with 24.88%, 25.98% and 19.6% higher proportion of values ≥ 10th percentile regarding weight, length and HC at 12-month-old visit, respectively [NNT = 4, 4 and 5, respectively]. Median IGF-1 levels measured at 6 months were significantly higher in group I compared to group II (median (range): 90 (19 – 130) ng/ml vs. 74 (21 – 130) ng/ml, respectively, p=0.023). Conclusion: Oral zinc therapy in low-birth-weight neonates was associated with significantly more catch-up growth at 12-months-old and significantly higher serum IGF-1 at 6-month-old.

Keywords: low-birth-weight, zinc, catch-up growth, neonates

Procedia PDF Downloads 379
345 A Case of Survival with Self-Draining Haemopericardium Secondary to Stabbing

Authors: Balakrishna Valluru, Ruth Suckling

Abstract:

A 16 year old male was found collapsed on the road following stab injuries to the chest and abdomen and was transported to the emergency department by ambulance. On arrival in the emergency department the patient was breathless and appeared pale. He was maintaining his airway with spontaneous breathing and had a heart rate of 122 beats per minute with a blood pressure of 83/63 mmHg. He was resuscitated initially with three units of packed red cells. Clinical examination identified three incisional wounds each measuring 2 cm. These were in the left para-sternal region, right infra-scapular region and left upper quadrant of the abdomen. The chest wound over the left parasternal area at the level of 4tth intercostal space was bleeding intermittently on leaning forwards and was relieving his breathlessness intermittently. CT imaging was performed to characterize his injuries and determine his management. CT scan of chest and abdomen showed moderate size haemopericardium with left sided haemopneumothorax. The patient underwent urgent surgical repair of the left ventricle and left anterior descending artery. He recovered without complications and was discharged from the hospital. This case highlights the fact that the potential to develop a life threatening cardiac tamponade was mitigated by the left parasternal stab wound. This injury fortuitously provided a pericardial window through which the bleeding from the injured left ventricle and left anterior descending artery could drain into the left hemithorax providing an opportunity for timely surgical intervention to repair the cardiac injuries.

Keywords: stab, incisional, haemo-pericardium, haemo-pneumothorax

Procedia PDF Downloads 171