Search results for: red blood cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5552

Search results for: red blood cell

5222 Effect of Oxidative Stress from Smoking on Erythrocyte Phosphatidylserine Externalization

Authors: Ratchaneewan Maneemaroj, Paveena Noisuwan, Chonlada Lakhonphon

Abstract:

The smoking is one of the major risk factors in Non-Communicable Disease. Free radicals from cigarette smoke can cause oxidative stress. The oxidative insults can lead to red blood cell (RBC) senescence and are involved in the clearance of red blood cells. The objective of the present study is to assess the association between smoke, oxidative stress evaluated with serum Malondialdehyde (MDA) level and phosphatidylserine (PS) externalization (biomarker of RBC senescence) evaluated with annexin V binding. A total of sixty-four male volunteers aged 25-60 years old were recruited in this study. MDA was measured by colorimetric method. Annexin V binding was detected by flow cytometry. Our results show that there was a significant increase in MDA levels in cigarette smokers as compared to non-smokers (p < 0.001). However, there was no significant different between annexin V binding (% gate) in cigarette smokers and non-smokers (p = 0.978). These results provide evidence of free radical from smoking is associated with oxidative damage to erythrocytes. However, our results suggest that PS externalization is unlikely to have a role in RBC senescence pathway of stressed erythrocytes from cigarette smoke. The other biomarker of RBC senescence should be determined on cigarette smoker erythrocytes.

Keywords: malondialdehyde, phosphatidylserine, RBC senescence, annexin V

Procedia PDF Downloads 408
5221 Nafion Nanofiber Mat in a Single Fuel Cell Test

Authors: Chijioke Okafor, Malik Maaza, Touhami Mokrani

Abstract:

Proton exchange membrane, PEM was developed and tested for potential application in fuel cell. Nafion was electrospun to nanofiber network with the aid of poly(ethylene oxide), PEO, as a carrier polymer. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV after compacting and annealing. The welded nanofiber mat was characterized for morphology, proton conductivity, and methanol permeability, then tested in a single cell test station. The results of the fabricated nanofiber membrane showed a proton conductivity of 0.1 S/cm at 25 oC and higher fiber volume fraction; methanol permeability of 3.6x10^-6 cm2/s and power density of 96.1 and 81.2 mW/cm2 for 5M and 1M methanol concentration respectively.

Keywords: fuel cell, nafion, nanofiber, permeability

Procedia PDF Downloads 456
5220 Online Allocation and Routing for Blood Delivery in Conditions of Variable and Insufficient Supply: A Case Study in Thailand

Authors: Pornpimol Chaiwuttisak, Honora Smith, Yue Wu

Abstract:

Blood is a perishable product which suffers from physical deterioration with specific fixed shelf life. Although its value during the shelf life is constant, fresh blood is preferred for treatment. However, transportation costs are a major factor to be considered by administrators of Regional Blood Centres (RBCs) which act as blood collection and distribution centres. A trade-off must therefore be reached between transportation costs and short-term holding costs. In this paper we propose a number of algorithms for online allocation and routing of blood supplies, for use in conditions of variable and insufficient blood supply. A case study in northern Thailand provides an application of the allocation and routing policies tested. The plan proposed for daily allocation and distribution of blood supplies consists of two components: firstly, fixed routes are determined for the supply of hospitals which are far from an RBC. Over the planning period of one week, each hospital on the fixed routes is visited once. A robust allocation of blood is made to hospitals on the fixed routes that can be guaranteed on a suitably high percentage of days, despite variable supplies. Secondly, a variable daily route is employed for close-by hospitals, for which more than one visit per week may be needed to fulfil targets. The variable routing takes into account the amount of blood available for each day’s deliveries, which is only known on the morning of delivery. For hospitals on the variables routes, the day and amounts of deliveries cannot be guaranteed but are designed to attain targets over the six-day planning horizon. In the conditions of blood shortage encountered in Thailand, and commonly in other developing countries, it is often the case that hospitals request more blood than is needed, in the knowledge that only a proportion of all requests will be met. Our proposal is for blood supplies to be allocated and distributed to each hospital according to equitable targets based on historical demand data, calculated with regard to expected daily blood supplies. We suggest several policies that could be chosen by the decision makes for the daily distribution of blood. The different policies provide different trade-offs between transportation and holding costs. Variations in the costs of transportation, such as the price of petrol, could make different policies the most beneficial at different times. We present an application of the policies applied to a realistic case study in the RBC at Chiang Mai province which is located in Northern region of Thailand. The analysis includes a total of more than 110 hospitals, with 29 hospitals considered in the variable route. The study is expected to be a pilot for other regions of Thailand. Computational experiments are presented. Concluding remarks include the benefits gained by the online methods and future recommendations.

Keywords: online algorithm, blood distribution, developing country, insufficient blood supply

Procedia PDF Downloads 309
5219 Anaplasmosis among Camels in Iran and Observation of Abnormalities in Infected Blood Films

Authors: Khosro Ghazvinian, Touba Khodaiean

Abstract:

Anaplasma organisms are obligatory intracellular bacteria belonging to the order Rickettsiales, family Anaplasmataceae. This disease is distributed around the globe and infected ticks are the most important vectors in anaplasmosis transmission. There is a little information about anaplasmosis in camels. This research investigated the blood films of 35 (20 male, 15 female) camels randomly selected from a flock of 150 camels. Samples were stained with Giemsa and Anaplasma sp. organisms were observed in six out of 35 (17.14 %) blood films. There were also some changes in Diff-Quick and morphology of leukocytes. No significant difference between male and female camels was observed (P>0.05). According to the results anaplasmosis is presented among camels in Iran.

Keywords: anaplasma, anaplasmosis, camel, Iran

Procedia PDF Downloads 224
5218 Optimal Design of InGaP/GaAs Heterojonction Solar Cell

Authors: Djaafar F., Hadri B., Bachir G.

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300°K led to the following result Icc =14.22 mA/cm2, Voc =2.42V, FF =91.32 %, η = 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η =23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell. This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, silvaco ATLAS

Procedia PDF Downloads 602
5217 Effectiveness of Micania micrantha Extract on Woven Wound Dressing Materials

Authors: Md. Lutfor Rahman, Shaikh Md. Mominul Alam

Abstract:

Sometimes it causes external bleeding when human skin gets seriously injured. Natural source-based blood-clotting bandages are rarely used. The available chemically treated blood clotting materials sometimes show adverse effects and are not effective in quick recovery. Considering these facts, a new blood clotting woven wound dressing product has been developed which is a combination of Micania micrantha extract with woven fabric by absorption process. This product can be represented as an important addition to medical textiles. To develop a dressing material, Micania micrantha leaf juice was applied on bleached woven fabric, followed by sun drying. The effectiveness of this woven sample was tested on volunteers. It was observed that Micania micrantha containing woven sample has a tremendous effect over conventional wound dressing materials. This result is a milestone for the textile and medical sector.

Keywords: blood clotting, Micania micrantha, medical textiles, woven fabric

Procedia PDF Downloads 104
5216 Understanding Nanocarrier Efficacy in Drug Delivery Systems Using Molecular Dynamics

Authors: Maedeh Rahimnejad, Bahman Vahidi, Bahman Ebrahimi Hoseinzadeh, Fatemeh Yazdian, Puria Motamed Fath, Roghieh Jamjah

Abstract:

Introduction: The intensive labor and high cost of developing new vehicles for controlled drug delivery highlights the need for a change in their discovery process. Computational models can be used to accelerate experimental steps and control the high cost of experiments. Methods: In this work, to better understand the interaction of anti-cancer drug and the nanocarrier with the cell membrane, we have done molecular dynamics simulation using NAMD. We have chosen paclitaxel for the drug molecule and dipalmitoylphosphatidylcholine (DPPC) as a natural phospholipid nanocarrier. Results: Next, center of mass (COM) between molecules and the van der Waals interaction energy close to the cell membrane has been analyzed. Furthermore, the simulation results of the paclitaxel interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane have been compared. Discussion: Analysis by molecular dynamics (MD) showed that not only the energy between the nanocarrier and the cell membrane is low, but also the center of mass amount decreases in the nanocarrier and the cell membrane system during the interaction; therefore they show significantly better interaction in comparison to the individual drug with the cell membrane.

Keywords: anti-cancer drug, center of mass, interaction energy, molecular dynamics simulation, nanocarrier

Procedia PDF Downloads 267
5215 Intelligent CRISPR Design for Bone Regeneration

Authors: Yu-Chen Hu

Abstract:

Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.

Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation

Procedia PDF Downloads 59
5214 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 293
5213 Hexane Extract of Thymus serpyllum L.: GC-MS Profile, Antioxidant Potential and Anticancer Impact on HepG2 (Liver Carcinoma) Cell Line

Authors: Salma Baig, Bakrudeen Ali Ahmad, Ainnul Hamidah Syahadah Azizan, Hapipah Mohd Ali, Elham Rouhollahi, Mahmood Ameen Abdulla

Abstract:

Free radical damage induced by reactive oxygen species (ROS) contributes to etiology of many chronic diseases, cancer being one of them. Recent studies have been successful in ROS targeted therapies via antioxidants using mouse models in cancer therapeutics. The present study was designed to scrutinize anticancer activity, antioxidant activity of 5 different extracts of Thymus serpyllum in MDA-MB-231, MCF-7, HepG2, HCT-116, PC3, and A549. Identification of the phytochemicals present in the most active extract of Thymus serpyllum was conducted using gas chromatography coupled with mass spectrophotometry and antioxidant activity was measured by using DPPH radical scavenging and FRAP assay. Anticancer impact of the extract in terms of IC50 was evaluated using MTT cell viability assay. Results revealed that the hexane extract showed the best anticancer activity in HepG2 (Liver Carcinoma Cell Line) with an IC50 value of 23 ± 0.14 µg/ml followed by 25 µg/ml in HCT-116 (Colon Cancer Cell Line), 30 µm/ml in MCF-7 (Breast Cancer Cell Line), 35 µg/ml in MDA-MB-231 (Breast Cancer Cell Line), 57 µg/ml in PC3 (Prostate Cancer Cell Line) and 60 µg/ml in A549 (Lung Carcinoma Cell Line). GC-MS profile of the hexane extract showed the presence of 31 compounds with carvacrol, thymol and thymoquione being the major compounds. Phenolics such as Vitamin E, terpinen-4-ol, borneol and phytol were also identified. Hence, here we present the first report on cytotoxicity of hexane extract of Thymus serpyllum extract in HepG2 cell line with a robust anticancer activity with an IC50 of 23 ± 0.14 µg/ml.

Keywords: Thymus serpyllum L., hexane extract, GC-MS profile, antioxidant activity, anticancer activity, HepG2 cell line

Procedia PDF Downloads 471
5212 Hemocompatible Thin-Film Materials Recreating the Structure of the Cell Niches with High Potential for Endothelialization

Authors: Roman Major, Klaudia Trembecka- Wojciga, Juergen Markus Lackner, Boguslaw Major

Abstract:

The future and the development of science is therefore seen in interdisciplinary areas such as bio medical engineering. Self-assembled structures, similar to stem cell niches would inhibit fast division process and subsequently capture the stem cells from the blood flow. By means of surface topography and the stiffness as well as micro structure progenitor cells should be differentiated towards the formation of endothelial cells monolayer which effectively will inhibit activation of the coagulation cascade. The idea of the material surface development met the interest of the clinical institutions, which support the development of science in this area and are waiting for scientific solutions that could contribute to the development of heart assist systems. This would improve the efficiency of the treatment of patients with myocardial failure, supported with artificial heart assist systems. Innovative materials would enable the redesign, in the post project activity, construction of ventricular heart assist.

Keywords: bio-inspired materials, electron microscopy, haemocompatibility, niche-like structures, thin coatings

Procedia PDF Downloads 459
5211 Neutrophil-to-Lymphocyte Ratio: A Predictor of Cardiometabolic Complications in Morbid Obese Girls

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is a low-grade inflammatory state. Childhood obesity is a multisystem disease, which is associated with a number of complications as well as potentially negative consequences. Gender is an important universal risk factor for many diseases. Hematological indices differ significantly by gender. This should be considered during the evaluation of obese children. The aim of this study is to detect hematologic indices that differ by gender in morbid obese (MO) children. A total of 134 MO children took part in this study. The parents filled an informed consent form and the approval from the Ethics Committee of Namik Kemal University was obtained. Subjects were divided into two groups based on their genders (64 females aged 10.2±3.1 years and 70 males aged 9.8±2.2 years; p ≥ 0.05). Waist-to-hip as well as head-to-neck ratios and body mass index (BMI) values were calculated. The children, whose WHO BMI-for age and sex percentile values were > 99 percentile, were defined as MO. Hematological parameters [haemoglobin, hematocrit, erythrocyte count, mean corpuscular volume, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, red blood cell distribution width, leukocyte count, neutrophil %, lymphocyte %, monocyte %, eosinophil %, basophil %, platelet count, platelet distribution width, mean platelet volume] were determined by the automatic hematology analyzer. SPSS was used for statistical analyses. P ≤ 0.05 was the degree for statistical significance. The groups included children having mean±SD value of BMI as 26.9±3.4 kg/m2 for males and 27.7±4.4 kg/m2 for females (p ≥ 0.05). There was no significant difference between ages of females and males (p ≥ 0.05). Males had significantly increased waist-to-hip ratios (0.95±0.08 vs 0.91±0.08; p=0.005) and mean corpuscular hemoglobin concentration values (33.6±0.92 vs 33.1±0.83; p=0.001) compared to those of females. Significantly elevated neutrophil (4.69±1.59 vs 4.02±1.42; p=0.011) and neutrophil-to-lymphocyte ratios (1.70±0.71 vs 1.39±0.48; p=0.004) were detected in females. There was no statistically significant difference between groups in terms of C-reactive protein values (p ≥ 0.05). Adipose tissue plays important roles during the development of obesity and associated diseases such as metabolic syndrom and cardiovascular diseases (CVDs). These diseases may cause changes in complete blood cell count parameters. These alterations are even more important during childhood. Significant gender effects on the changes of neutrophils, one of the white blood cell subsets, were observed. The findings of the study demonstrate the importance of considering gender in clinical studies. The males and females may have distinct leukocyte-trafficking profiles in inflammation. Female children had more circulating neutrophils, which may be the indicator of an increased risk of CVDs, than male children within this age range during the late stage of obesity. In recent years, females represent about half of deaths from CVDs; therefore, our findings may be the indicator of the increasing tendency of this risk in females starting from childhood.

Keywords: children, gender, morbid obesity, neutrophil-to-lymphocyte ratio

Procedia PDF Downloads 248
5210 Retrospective Study of Positive Blood Cultures Carried out in the Microbiology Department of General Hospital of Ioannina in 2017

Authors: M. Gerasimou, S. Mantzoukis, P. Christodoulou, N. Varsamis, G. Kolliopoulou, N. Zotos

Abstract:

Purpose: Microbial infection of the blood is a serious condition where bacteria invade the bloodstream and cause systemic disease. In such cases, blood cultures are performed. Blood cultures are a key diagnostic test for intensive care unit (ICU) patients. Material and method: The BacT/Alert system, which measures the production of carbon dioxide with metabolic organisms, is used. The positive result in the BacT/Alert system is followed by culture in the following selective media: Blood, Mac Conkey No 2, Chocolate, Mueller Hinton, Chapman and Sabaureaud agar. Gram staining method was used to differentiate bacterial species. The microorganisms were identified by biochemical techniques in the automated Microscan (Siemens) system and followed by a sensitivity test on the same system using the minimum inhibitory concentration MIC technique. The sensitivity test is verified by a Kirby Bauer-based test. Results: In 2017 the Laboratory of Microbiology received 3347 blood cultures. Of these, 170 came from the ICU. 116 found positive. Of these S. epidermidis was identified in 42, A. baumannii in 27, K. pneumoniae in 12 (4 of these KPC ‘Klebsiella pneumoniae carbapenemase’), S. hominis in 8, E. faecium in 7, E. faecalis in 5, P. aeruginosa in 3, C. albicans in 3, S. capitis in 2, K. oxytoca in 2, P. mirabilis in 2, E. coli in 1, S. intermidius in 1 and S. lugdunensis in 1. Conclusions: The study of epidemiological data and microbial resistance phenotypes is essential for the choice of therapeutic regimen for the early treatment and limitation of multivalent strains, while it is a crucial factor to solve diagnostic problems.

Keywords: blood culture, bloodstream, infection, intensive care unit

Procedia PDF Downloads 129
5209 Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects

Authors: S. AliReza Mirghasemi, Zameer Hussain, Mohammad Saleh Sadeghi, Narges Rahimi Gabaran, Mohamadreza Baghaban Eslaminejad

Abstract:

Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes.

Keywords: structural bone allograft, partial demineralization, laser perforation, mesenchymal stem cell

Procedia PDF Downloads 393
5208 Hemato-Biochemical Studies on Naturally Infected Camels with Trypanosomiasis

Authors: Khalid Mehmood, Riaz Hussain, Rao Z. Abbas, Tariq Abbas, Abdul Ghaffar, Ahmad J. Sabir

Abstract:

Blood born diseases such as trypanosomiasis have negative impacts on health, production and working efficiency of camels in different camel-rearing areas of the world including Pakistan. In present study blood samples were collected from camels kept at the desert condition of cholistan to estimate the prevalence of trypanosomiasis and hemato-biochemical changes in naturally infected cases. Results showed an overall 9.31% prevalence of trypanosomiasis in camels. Various clinical signs such as pyrexia, occasional shivering, inappetence, urticaria, swelling, lethargy, going down in condition and edema of pads were observed in few cases. The statistical analysis did not show significant association of age and sex with trypanosomiasis. However, results revealed significantly decreased values of total erythrocyte counts, packed cell volume, hemoglobin concentration, mean corpuscular hemoglobin concentration, serum total proteins and albumin while increased values of mean corpuscular volume was recorded in infected animals as compared to healthy. A significant (P<0.01) increased values of total leukocyte count, monocyte, lymphocyte, neutrophils, and eosinophils was recorded in infected animals. Moreover, microscopic examination of blood films obtained from naturally infected cases showed the presence of parasite and various morphological changes in cells such as stomatocyte, hyperchromasia, and polychromasia. Significantly increased values of different hepatic enzymes including alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) were also recorded.

Keywords: camel, hematological indices, serum enzymes, Trypanosomiasis

Procedia PDF Downloads 505
5207 Relationship Salt Sensitivity and с825т Polymorphism of gnb3 Gene in Patients with Essential Hypertension

Authors: Aleksandr Nagay, Gulnoz Khamidullayeva

Abstract:

It is known that an unbalanced intake of salt (NaCI), lifestyle and genetic predisposition to pathology is a key component of the risk and the development of essential hypertension (EH). Purpose: To study the relationship between salt-sensitivity and blood pressure (BP) on systolic (SBP) and diastolic (DBP) blood pressure, depending on the C825T polymorphism of GNB3 in individuals of Uzbek nationality with EH. Method: studied 148 healthy and 148 patients with EH with I-II degree (WHO/ISH, 2003) with disease duration 6,5±1,3 years. Investigation of the gene GNB3 was produced by PCR-RFLP method. Determination of salt-sensitivity was performed by the method of R. Henkin. Results: For a comparative analysis of BP, the groups with carriage of CТ and TT genotypes were combined. The analysis showed that carriers of CC genotype and low salt-sensitivity were determined by higher levels of SBP compared with carriers of CT and TT genotypes, and low salt-sensitivity of SBP: 166,2±4,3 against 158,2±9,1 mm Hg (p=0,000). A similar analysis on the values of DBP also showed significantly higher values of blood pressure in carriers of CC genotype DBP: 105,8±10,6 vs. 100,5±7,2 mm Hg, respectively (p=0,001). The average values of SBP and DBP in groups with carriers of CC genotype at medium or high salt-sensitivity in comparison with carriers of CT or TT genotype did not differ statistically SBP: 165,0±0,1 vs. 160,0±8,6 mm Hg (p=0,275) and DBP: 100,1±0,1 vs. 101,6±7,6 mm Hg (p=0,687), respectively. Conclusion: It is revealed that in patients with EH CC genotype of the gene GNB3 given salt-sensitivity has a negative effect on blood pressure profile. Since patients with EH with the CC genotype of GNB3 gene with low-salt taste sensitivity is determined by a higher level of blood pressure, both on SBP and DBP.

Keywords: salt sensitivity, essential hypertension EH, blood pressure BP, genetic predisposition

Procedia PDF Downloads 252
5206 Antimicrobial and Haemostatic Effect of Chitosan/Polyacrylic Acid Hybrid Membranes

Authors: F. A. Abdel-Mohdy, M. K. El-Bisi, A. Abou-Okeil, A. A. Sleem, S. El-Sabbagh, Kawther El-Shafei, Hoda S. El-Sayed, S. M. ElSawy

Abstract:

Chitosan/ polyacrylic acid membranes containing different amounts of Al2(SO4) and/or TiO2 were prepared. The prepared membranes were characterized by measuring mechanical properties, such as tensile strength and elongation at break, swelling properties, antimicrobial properties against gram-positive and gram-negative bacteria and blood clotting. The results obtained indicate that the presence of Al2(SO4) and TiO2 in the membrane formulations have an incremental effect on the antimicrobial properties and blood clotting in albino rate.

Keywords: Chitosan, acrylic acid, antibacterial, blood clotting, membrane

Procedia PDF Downloads 466
5205 Developing Customizable Scaffolds With Antimicrobial Properties for Vascular Tissue Regeneration Using Low Temperature Plasma

Authors: Komal Vig, Syamala Soumyakrishnan, Yadav Baral

Abstract:

Bypass surgery, using the autologous vein has been one of the most effective treatments for cardiovascular diseases (CVD). More recently tissue engineering including engineered vascular grafts to synthesize blood vessels is gaining usage. Dacron and ePTFE has been employed for vascular grafts, however, these does not work well for small diameter grafts (<6 mm) due to intimal hyperplasia and thrombosis. In the present study PTFE was treated with LTP to improve the endothelialization of intimal surface of graft. Scaffolds were also modified with polyvinylpyrrolidone coated silver nanoparticles (Ag-PVP) and the antimicrobial peptides, p753 and p359. Human umbilical vein endothelial cells (HUVEC) were plated on the developed scaffolds and cell proliferation was determined by the MTT assay. Cells attachment on scaffolds was visualized by microscopy. mRNA expressions levels of different cell markers were investigated using quantitative real-time PCR (qPCR). X ray photoelectron spectroscopic confirmed the introduction of oxygenated functionalities from LTP air plasma. Microscopic and MTT assays indicated increase in cell viability in LTP treated scaffolds. Gene expression studies shows enhanced expression of cell adhesion marker Integrin- α 5 gene after LTP treatment. The KB test displayed a zone of inhibition for Ag-PVP, p753 and p359 of 19mm, 14mm, and 12mm respectively. To determine toxicity of antimicrobial agents to cells, MTT Assay was performed using HEK293 cells. MTT Assay exhibited that Ag-PVP and the peptides were non-toxic to cells at 100μg/mL and 50μg/mL, respectively. Live/dead analysis and plate count of treated bacteria exhibited bacterial inhibition on develop scaffold compared to non-treated scaffold. SEM was performed to analyze the structural changes of bacteria after treatment with antimicrobial agents. Gene expression studies were conducted on RNA from bacteria treated with Ag-PVP and peptides using qRT-PCR. Based on our initial results, more scaffolds alternatives will be developed and investigated for cell growth and vascularization studies.

Keywords: low temperature plasma, vascular graft, HUVEC cells, antimicrobial

Procedia PDF Downloads 214
5204 Safety Assessment and Prophylactic Efficacy of Moringa stenopetala Leaf Extract Through Mitigation of Oxidative Stress in BV-2 Microglial Cell

Authors: Stephen Adeniyi Adefegha, Vitor Mostardeiro, Vera Maria Morsch, Ademir F. Morel, Ivana Beatrice Manica Da Cruz, Sabrina Somacal Maria Rosa Chitolina Schetinger

Abstract:

Moringa stenopetala is often consumed as food and used in folkloric medicine for the management of several diseases. Purpose: This study was set up in order to assess the effect of aqueous extract of Moringa stenopetala on cell viability and oxidative stress biomarkers in BV-2 microglial cells. Aqueous extracts of M. stenopetala were prepared, lyophilized and reconstituted in 0.5% dimethylsulphoxide (DMSO). Cells were treated with M. stenopetala extracts (0.1 - 100 µg/ml) for cell viability and nitric oxide (NO) production tests. However, M. stenopetala extract (50 µg/ml) was used in the treatment of cells for the determination of protein carbonyl content and reactive oxygen species (ROS) level. Incubation of BV-2 microglia cell with M. stenopetala extract maintained cell viability, diminished NO and ROS levels, and reduced protein carbonyl contents Chlorogenic acid, rutin, kaempferol and quercetin derivatives were the main phenolic compounds identified in M. stenopetala leaf extract. These phenolic compounds present in M. stenopetala may be responsible for the mitigation of oxidative stress in BV-2 microglial cells.

Keywords: oxidative stress, BV-2 microglial cell, Moringa stenopetala, cell viability, antioxidant

Procedia PDF Downloads 80
5203 Effect of Coronary Insulators in Increasing the Lifespan of Electrolytic Cells: Short-circuit and Heat Resistance

Authors: Robert P. Dufresne, Hamid Arabzadeh

Abstract:

The current study investigates the effectiveness of a new form of permanent baseboard insulators with an umbrella action, hereinafter referred to as Coronary Insulator, in supporting and protecting the assembly of electrodes immersed in an electrolytic cell and in increasing the lifespan of the lateral sides of the electrolytic cell, in both electro-winning and electro-refinery method. The advantages of using a coronary insulator in addition to the top capping board (equipotential insulator) were studied compared to the conventional assembly of an electrolytic cell. Then, a thermal imaging technique was utilized during high-temperature thermal (heat transfer) tests for sample cell walls with and without coronary insulators in their assembly to show the effectiveness of coronary insulators in protecting the cell wall under extreme conditions. It was shown that, unlike the conventional assembly, which is highly prone to damages to the cell wall under thermal shocks, the presence of coronary insulator can significantly increase the level of protection of the cell due to their ultra-high thermal and chemical resistance, as well as decreasing the replacement frequency of insulators to almost zero. Besides, the results of the study showed that the test assembly with the coronary insulator provides better consistency in positioning and, subsequently, better contact, compared to the conventional method, which reduces the chance of electric short-circuit in the system.

Keywords: capping board, coronary insulator, electrolytic cell, thermal shock.

Procedia PDF Downloads 162
5202 Detection, Isolation, and Raman Spectroscopic Characterization of Acute and Chronic Staphylococcus aureus Infection in an Endothelial Cell Culture Model

Authors: Astrid Tannert, Anuradha Ramoji, Christina Ebert, Frederike Gladigau, Lorena Tuchscherr, Jürgen Popp, Ute Neugebauer

Abstract:

Staphylococcus aureus is a facultative intracellular pathogen, which by entering host cells may evade immunologic host response as well as antimicrobial treatment. In that way, S. aureus can cause persistent intracellular infections which are difficult to treat. Depending on the strain, S. aureus may persist at different intracellular locations like the phagolysosome. The first barrier invading pathogens from the blood stream that they have to cross are the endothelial cells lining the inner surface of blood and lymphatic vessels. Upon proceeding from an acute to a chronic infection, intracellular pathogens undergo certain biochemical and structural changes including a deceleration of metabolic processes to adopt for long-term intracellular survival and the development of a special phenotype designated as small colony variant. In this study, the endothelial cell line Ea.hy 926 was used as a model for acute and chronic S. aureus infection. To this end, Ea.hy 926 cells were cultured on QIAscout™ Microraft Arrays, a special graded cell culture substrate that contains around 12,000 microrafts of 200 µm edge length. After attachment to the substrate, the endothelial cells were infected with GFP-expressing S. aureus for 3 weeks. The acute infection and the development of persistent bacteria was followed by confocal laser scanning microscopy, scanning the whole Microraft Array for the presence and for detailed determination of the intracellular location of fluorescent intracellular bacteria every second day. After three weeks of infection representative microrafts containing infected cells, cells with protruded infections and cells that did never show any infection were isolated and fixed for Raman micro-spectroscopic investigation. For comparison, also microrafts with acute infection were isolated. The acquired Raman spectra are correlated with the fluorescence microscopic images to give hints about a) the molecular alterations in endothelial cells during acute and chronic infection compared to non-infected cells, and b) metabolic and structural changes within the pathogen when entering a mode of persistence within host cells. We thank Dr. Ruth Kläver from QIAGEN GmbH for her support regarding QIAscout technology. Financial support by the BMBF via the CSCC (FKZ 01EO1502) and from the DFG via the Jena Biophotonic and Imaging Laboratory (JBIL, FKZ PO 633/29-1, BA 1601/10-1) is highly acknowledged.

Keywords: correlative image analysis, intracellular infection, pathogen-host adaption, Raman micro-spectroscopy

Procedia PDF Downloads 155
5201 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 479
5200 Vitamin D Deficiency is Associated with Increases IgE Receptors in Children with Asthma

Authors: A. Vijayendra Chary, R. Hemalatha

Abstract:

Background: Vitamin D is a potent modulator of the immune system and is involved in regulating cell proliferation and differentiation. Vitamin D deficiency has been linked to increased severity of asthma in children. Asthma has dramatically increased in past decades, particular in developing countries and affects up to 20% of the population. IgE and its receptors, CD23 (FcεRII) and CD 21, play an essential role in all allergic conditions. Methods: A case control study was conducted on asthma and age and sex matched control children. 25 hydroxyvitamin D3 was quantified by HPLC; CD23; and CD21 expression on B cells were performed by flow cytometry. Total Histamine, total IGE and IL-5 and IFN-γ cytokines were determined by ELISA in blood samples of bronchial asthma (n=45) and control children (n=45). Results: The mean ± SE of vitamin D was significantly (p<0.05) low in asthma children (13.6±0.54 ng/mL) than in controls (17.4 ± 0.37 ng/mL). The mean (%) ± SE of CD23 and CD21 expression on B cells were significantly (p<0.01) high in asthma (1.02±0.09; 1.67± 0.13), when compared to controls (0.24±0.01; 0.94±0.03) respectively. The mean± SE of Serum IgE and blood histamine levels in asthma children (354.52 ± 17.33 IU/mL; 53.27 ± 2.54 nM/mL) were increased (P<0.05) when compared to controls (183.12±17.62 IU/mL 39.34±4.16 nM/mL) respectively and IFN-γ (Th1 cytokine) was lower (P<0.01) (16.37±1.27 pg/mL) than in controls (43.34±6.21 pg/mL). Conclusion: Our study provides evidence that low vitamin D levels are associated with increased IgE receptors CD23 and CD21 on B cells. In addition, there was preferential activation of Th2 (IL-5) and suppression of Th1 (IFN-γ) cytokines in children with asthma.

Keywords: bronchial asthma, CD23, IgE, vitamin D

Procedia PDF Downloads 453
5199 Pattern of Blood Vessels Development at First Seven Days of Incubation of the Wild Helmeted Guinea Fowl (Numida meleagris galeata). Gross Approach

Authors: Nathaniel Wanmi, O. M. Samuel, N. Plang, P. O. Brenda

Abstract:

The wild helmeted guinea fowl has in recent time been used for research in the field of anatomy because of its peculiarity from other domesticated species of avian. Eggs of the wild helmeted guinea fowl are considered to be nutritious and has been used for medicinal purposes in some rural settlements in Nigeria. Eggs of the wild helmeted guinea fowl were purchased from hunters and taken to the National Veterinary Research Institution (NVRI) for incubation. Immediately fresh eggs were purchased, it was kindle using high powered light because of its thick egg shell and only eggs which have not started developing will be incubated and that marks the first day of incubation. On day 3 of incubation, large patches of appears redden on the surface of the egg yolk. These congested sites, develop around portion were future embryo will formed. Blood vessel were first, observed on day 4 of incubation and as days on, as embryo increases in size, blood vessels increase as well. The point of embryo implantation is evident first; by formation of congested areas and most importantly, a single zone of circular red rim. This mark the point of implantation. Blood vessels of the wild helmeted guinea fowl develops from the surface of the egg yolk, which appears initially as small strips of line. Blood vessels connects to the site of embryo implantation on day 3 of incubation. Blood vessel is the first structure to be form prior to the manifestation of the embryo.

Keywords: brain, development, helmeted, incubation

Procedia PDF Downloads 65
5198 Cytotoxicity and Genotoxicity of Glyphosate and Its Two Impurities in Human Peripheral Blood Mononuclear Cells

Authors: Marta Kwiatkowska, Paweł Jarosiewicz, Bożena Bukowska

Abstract:

Glyphosate (N-phosphonomethylglycine) is a non-selected broad spectrum ingredient in the herbicide (Roundup) used for over 35 years for the protection of agricultural and horticultural crops. Glyphosate was believed to be environmentally friendly but recently, a large body of evidence has revealed that glyphosate can negatively affect on environment and humans. It has been found that glyphosate is present in the soil and groundwater. It can also enter human body which results in its occurrence in blood in low concentrations of 73.6 ± 28.2 ng/ml. Research conducted for potential genotoxicity and cytotoxicity can be an important element in determining the toxic effect of glyphosate. Due to regulation of European Parliament 1107/2009 it is important to assess genotoxicity and cytotoxicity not only for the parent substance but also its impurities, which are formed at different stages of production of major substance – glyphosate. Moreover verifying, which of these compounds are more toxic is required. Understanding of the molecular pathways of action is extremely important in the context of the environmental risk assessment. In 2002, the European Union has decided that glyphosate is not genotoxic. Unfortunately, recently performed studies around the world achieved results which contest decision taken by the committee of the European Union. World Health Organization (WHO) in March 2015 has decided to change the classification of glyphosate to category 2A, which means that the compound is considered to "probably carcinogenic to humans". This category relates to compounds for which there is limited evidence of carcinogenicity to humans and sufficient evidence of carcinogenicity on experimental animals. That is why we have investigated genotoxicity and cytotoxicity effects of the most commonly used pesticide: glyphosate and its impurities: N-(phosphonomethyl)iminodiacetic acid (PMIDA) and bis-(phosphonomethyl)amine on human peripheral blood mononuclear cells (PBMCs), mostly lymphocytes. DNA damage (analysis of DNA strand-breaks) using the single cell gel electrophoresis (comet assay) and ATP level were assessed. Cells were incubated with glyphosate and its impurities: PMIDA and bis-(phosphonomethyl)amine at concentrations from 0.01 to 10 mM for 24 hours. Evaluating genotoxicity using the comet assay showed a concentration-dependent increase in DNA damage for all compounds studied. ATP level was decreased to zero as a result of using the highest concentration of two investigated impurities, like bis-(phosphonomethyl)amine and PMIDA. Changes were observed using the highest concentration at which a person can be exposed as a result of acute intoxication. Our survey leads to a conclusion that the investigated compounds exhibited genotoxic and cytotoxic potential but only in high concentrations, to which people are not exposed environmentally. Acknowledgments: This work was supported by the Polish National Science Centre (Contract-2013/11/N/NZ7/00371), MSc Marta Kwiatkowska, project manager.

Keywords: cell viability, DNA damage, glyphosate, impurities, peripheral blood mononuclear cells

Procedia PDF Downloads 460
5197 Cadmium Levels in Patients with Type 2 Diabetes Mellitus in Thasala Southern Thailand

Authors: Supabhorn Yimthiang, Wiyada Khanwian

Abstract:

Cadmium is a heavy metal that is important in the environment because it is highly toxic. The incidence and severity of type 2 diabetes mellitus are known to be associated with cadmium. The purpose of this study was to investigate the cadmium levels in patients with type 2 diabetes mellitus at diabetes mellitus clinic, Thasala hospital, Nakhon Si Thummarat, Thailand. The study population was composed of forty five subjects. Among them, twenty two were diabetic patients and twenty three were apparently healthy non-diabetic individual subjects. After an overnight fasting, blood and morning urine samples were collected from each subject to determine fasting blood sugar and cadmium levels in urine, respectively. Systolic and diastolic blood pressure values were measured by aneroid sphygmomanometer. Study approval was taken from the human subject ethics committee of Walailak University. Verbal and written informed consent was taken from all participants. In the study samples, there were 31.8% males and 68.2% females with mean age of 47+10.53 years. The geometric mean of urine cadmium was significantly higher in diabetic patients (1.015 + 0.79 µg/g creatinine) when compared with the healthy subjects (0.395 + 0.53 µg/g creatinine) (P<0.05). This result also showed that urine cadmium excretion in diabetic patients was higher than in healthy subjects by 2.6 times. Moreover, fasting blood sugar (153+47.86 μg/dl) and systolic blood pressure (183.26+17.15 mmHg) of diabetic patients was significantly different when compared with healthy subjects (79+5.38 μg/dl and 112.78+11.32 mmHg, respectively) (P<0.05). Meanwhile, the concentration of cadmium in urine showed positive correlation with fasting plasma glucose (r=0.616) and systolic blood pressure (r=0.487). This preliminary study showed that cadmium might play an important role in the development and pathogenesis of diabetes mellitus in general population. However, these findings require confirmation through additional epidemiological and biological research.

Keywords: blood pressure, cadmium, fasting blood sugar, type 2 diabetes mellitus

Procedia PDF Downloads 221
5196 Reduced Glycaemic Impact by Kiwifruit-Based Carbohydrate Exchanges Depends on Both Available Carbohydrate and Non-Digestible Fruit Residue

Authors: S. Mishra, J. Monro, H. Edwards, J. Podd

Abstract:

When a fruit such as kiwifruit is consumed its tissues are released from the physical /anatomical constraints existing in the fruit. During digestion they may expand several-fold to achieve a hydrated solids volume far greater than the original fruit, and occupy the available space in the gut, where they surround and interact with other food components. Within the cell wall dispersion, in vitro digestion of co-consumed carbohydrate, diffusion of digestion products, and mixing responsible for mass transfer of nutrients to the gut wall for absorption, were all retarded. All of the foregoing processes may be involved in the glycaemic response to carbohydrate foods consumed with kiwifruit, such as breakfast cereal. To examine their combined role in reducing the glycaemic response to wheat cereal consumed with kiwifruit we formulated diets containing equal amounts of breakfast cereal, with the addition of either kiwifruit, or sugars of the same composition and quantity as in kiwifruit. Therefore, the only difference between the diets was the presence of non-digestible fruit residues. The diet containing the entire disperse kiwifruit significantly reduced the glycaemic response amplitude and the area under the 0-120 min incremental blood glucose response curve (IAUC), compared with the equicarbohydrate diet containing the added kiwifruit sugars. It also slightly but significantly increased the 120-180 min IAUC by preventing a postprandial overcompensation, indicating improved homeostatic blood glucose control. In a subsequent study in which we used kiwifruit in a carbohydrate exchange format, in which the kiwifruit carbohydrate partially replaced breakfast cereal in equal carbohydrate meals, the blood glucose was further reduced without a loss of satiety, and with a reduction in insulin demand. The results show that kiwifruit may be a valuable component in low glycaemic impact diets.

Keywords: carbohydrate, digestion, glycaemic response, kiwifruit

Procedia PDF Downloads 468
5195 Twist2 Is a Key Regulator of Cell Proliferation in Acute Lymphoblastic Leukaemia

Authors: Magdalena Rusady Goey, Gordon Strathdee, Neil Perkins

Abstract:

Background: Acute lymphoblastic leukaemia (ALL) is the most frequent type of childhood malignancy, accounting for 25% of all cases. TWIST2, a basic helix-loop-helix transcription factor, has been implicated in ALL development. Prior studies found that TWIST2 undergoes epigenetic silencing in more than 50% cases of ALL through promoter hypermethylation and suggested that re-expression of TWIST2 may inhibit cell growth/survival of leukaemia cell lines. TWIST2 has also been implicated as a regulator of NF-kappaB activity, which is constitutively active in leukaemia. Here, we use a lentiviral transductions system to confirm the importance of TWIST2 in controlling leukaemia cell growth and to investigate whether this is achieved through altered regulation of NF-kappaB activity. Method: Re-expression of TWIST2 in leukaemia cell lines was achieved using lentiviral-based transduction. The lentiviral vector also expresses enhanced green fluorescent protein (eGFP), allowing transduced cells to be tracked using flow cytometry. Analysis of apoptosis and cell proliferation were done using annexinV and VPD450 staining, respectively. Result and Discussion: TWIST2-expressing cells were rapidly depleted from a mixed population in ALL cell lines (NALM6 and Reh), indicating that TWIST2 inhibited cell growth/survival of ALL cells. In contrast, myeloid cell lines (HL60 and K562) were comparatively insensitive to TWIST2 re-expression. Analysis of apoptosis and cell proliferation found no significant induction of apoptosis, but did find a rapid induction of proliferation arrest in TWIST2-expressing Reh and NALM6 cells. Initial experiment with NF-kappaB inhibitor demonstrated that inhibition of NF-kappaB has similar impact on cell proliferation in the ALL cell lines, suggesting that TWITST2 may induce cell proliferation arrest through inhibition of NF-kappaB. Conclusion: The results of this study suggest that epigenetic inactivation of TWIST2 in primary ALL leads to increased proliferation, potentially by altering the regulation of NF-kappaB.

Keywords: leukaemia, acute lymphoblastic leukaemia, NF-kappaB, TWIST2, lentivirus

Procedia PDF Downloads 320
5194 Trends in the Incidence of Bloodstream Infections in Patients with Hematological Malignancies in the Period 1991–2012

Authors: V. N. Chebotkevich, E. E. Schetinkina, V. V. Burylev, E. I. Kaytandzhan, N. P. Stizhak

Abstract:

Objective: Blood stream infections (BSI) are severe, life-threatening illness for immuno compromised patients with hematological malignancies. We report the trend in blood-stream infections in this group of patients in the period 1991-2013. Methods: A total of 4742 blood samples investigated. All blood cultures were incubated in a continuous monitoring system for 7 days before discarding negative. On signaled positive, organism was identified by conventional methods. The Real-time polymerase chain reaction (PCR) was used for the indication of human herpes virus 6 (HHV-6), Cytomegalovirus (CMV) and Epstein-Barr virus (EBV). Results: Between 1991 and 2001 the incidence of Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus) being the most common germs isolated (70,9%) were as Gram-negative rods (Escherichia coli, Klebsiella spp., Pseudomonas spp.) – 29,1%. In next decade 2002-2012 the number of Gram-negative bacteria was increased up to 40.2%. It is shown that the incidence of bacteremia was significantly more frequent at the background of detectable Cytomegalovirus and Epstein-Barr virus-specific DNA in blood. Over recent years, an increased frequency of micro mycetes was registered in blood of the patients with hematological malignancies (Candida spp. was predominant). Conclusion: Accurate and timely detection of BSI is important in determining appropriate treatment of infectious complications in patients with hematological malignancies. The isolation of Staphylococcus epidermidis from blood cultures remains a clinical dilemma for physicians and microbiologists. But in many cases this agent is of the clinical significance in immunocompromised patients with hematological malignancies. The role of CMV and EBV in development of bacteremia was demonstrated.

Keywords: infectious complications, blood stream infections, bacteremia, hemoblastosis

Procedia PDF Downloads 323
5193 Serum Granulocyte Colony Stimulating Factor is a Potent Stimulator of Hematopoeitic Progenitor Cells Mobilization in Trauma Hemorrhagic Shock

Authors: Manoj Kumar, Sujata Mohanty, D. N. Rao, Arul Selvi, Sanjeev K. Bhoi

Abstract:

Background: Hematopoietic progenitor cells (HPC) mobilized from bone marrow to peripheral blood has been observed in severe trauma and hemorrhagic shock patients. Granulocyte-colony stimulating factor (G-CSF) is a potent stimulator that mobilized HPC from bone marrow to peripheral blood. Objective: Our aim of the study was to investigate the serum G-CSF levels and correlate with HPC and outcome. Methods: Peripheral blood sample from 50 hemorrhagic shock patients was collected on arrival for determination of G-CSF and peripheral blood HPC (PBHPC) and compared with healthy control (n=15). Determination of serum levels of G-CSF by sandwich ELISA and PBHPC by Sysmex XE-2100. Data were categorized by age, sex, Injury Severity Score (ISS), and laboratory data was prospectively collected. Data are expressed as mean±SD and median (min, max). Results: Significantly increased the serum level of G-CSF (264.8 vs. 79.1 pg/ml) and peripheral blood HPC (0.1 vs. 0.01 %) in the T/HS patients when compared with control group. Conclusions: Our studies suggest serum G-CSF elevated in T/HS patients. The elevated in G-CSF was also associated with mobilization of HPC from BM to peripheral blood HPC. Increased the levels of G-CSF in T/HS may play a significant role in the alteration of the hematopoietic compartment.

Keywords: granulocyte colony stimulating factor, G-CSF, hematopoietic progenitor cells, HPC, trauma hemorrhagic shock, T/HS, outcome

Procedia PDF Downloads 308