Search results for: protein production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9025

Search results for: protein production

8995 The Role of a Novel DEAD-Box Containing Protein in NLRP3 Inflammasome Activation

Authors: Yi-Hui Lai, Chih-Hsiang Yang, Li-Chung Hsu

Abstract:

The inflammasome is a protein complex that modulates caspase-1 activity, resulting in proteolytic cleavage of proinflammatory cytokines such as IL-1β and IL-18, into their bioactive forms. It has been shown that the inflammasomes play a crucial role in the clearance of pathogenic infection and tissue repair. However, dysregulated inflammasome activation contributes to a wide range of human diseases such as cancers and auto-inflammatory diseases. Yet, regulation of NLRP3 inflammasome activation remains largely unknown. We discovered a novel DEAD box protein, whose biological function has not been reported, not only negatively regulates NLRP3 inflammasome activation by interfering NLRP3 inflammasome assembly and cellular localization but also mitigate pyroptosis upon pathogen evasion. The DEAD-box protein is the first DEAD-box protein gets involved in modulation of the inflammasome activation. In our study, we found that caspase-1 activation and mature IL-1β production were largely enhanced upon LPS challenge in the DEAD box-containing protein- deleted THP-1 macrophages and bone marrow-derived macrophages (BMDMs). In addition, this DEAD box-containing protein migrates from the nucleus to the cytoplasm upon LPS stimulation, which is required for its inhibitory role in NLRP3 inflammasome activation. The DEAD box-containing protein specifically interacted with the LRR motif of NLRP3 via its DEAD domain. Furthermore, due to the crucial role of the NLRP3 LRR domain in the recruitment of NLRP3 to mitochondria and binding to its adaptor ASC, we found that the interaction of NLRP3 and ASC was downregulated in the presence of the DEAD box-containing protein. In addition to the mechanical study, we also found that this DEAD box protein protects host cells from inflammasome-triggered cell death in response to broad-ranging pathogens such as Candida albicans, Streptococcus pneumoniae, etc., involved in nosocomial infections and severe fever shock. Collectively, our results suggest that this novel DEAD box molecule might be a key therapeutic strategy for various infectious diseases.

Keywords: inflammasome, inflammation, innate immunity, pyroptosis

Procedia PDF Downloads 256
8994 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis

Authors: Alexander A. Tokmakov

Abstract:

Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins

Procedia PDF Downloads 384
8993 Fortification of Concentrated Milk Protein Beverages with Soy Proteins: Impact of Divalent Cations and Heating Treatment on the Physical Stability

Authors: Yichao Liang, Biye Chen, Xiang Li, Steven R. Dimler

Abstract:

This study investigated the effects of adding calcium and magnesium chloride on heat and storage stability of milk protein concentrate-soy protein isolate (8:2 respectively) mixtures containing 10% w/w total protein subjected to the in-container sterilization (115 °C x 15 min). The particle size does not change when emulsions are heated at pH between 6.7 and 7.3 irrespective of the mixed protein ratio. Increasing concentration of divalent cation salts resulted in an increase in protein particle size, dry sediment formation and sediment height and a decrease in pH, heat stability and hydration in milk protein concentrate-soy protein isolate mixtures solutions on sterilization at 115°C. Fortification of divalent cation salts in milk protein concentrate-soy protein isolate mixture solutions resulted in an accelerated protein sedimentation and two unique sediment regions during accelerated storage stability testing. Moreover, the heat stability decreased upon sterilization at 115°C, with addition of MgCl₂ causing a greater increase in sedimentation velocity and compressibility than CaCl₂. Increasing pH value of protein milk concentrate-soy protein isolate mixtures solutions from 6.7 to 7.2 resulted in an increase in viscosity following the heat treatment. The study demonstrated that the type and concentration of divalent cation salts used strongly impact heat and storage stability of milk protein concentrate-soy protein isolate mixture nutritional beverages.

Keywords: divalent cation salts, heat stability, milk protein concentrate, soy protein isolate, storage stability

Procedia PDF Downloads 294
8992 The Relation Between Protein-Protein and Polysaccharide-Protein Interaction on Aroma Release from Brined Cheese Model

Authors: Mehrnaz Aminifar

Abstract:

The relation between textural parameters and casein network on release of aromatic compounds was investigated over 90-days of ripening. Low DE maltodextrin and WPI were used to modify the textural properties of low fat brined cheese. Hardness, brittleness and compaction of casein network were affected by addition of maltodextrin and WPI. Textural properties and aroma release from cheese texture were affected by interaction of WPI protein-cheese protein and maltodexterin-cheese protein.

Keywords: aroma release, brined cheese, maltodexterin, WPI

Procedia PDF Downloads 323
8991 Production of Recombinant Human Serum Albumin in Escherichia coli: A Crucial Biomolecule for Biotechnological and Healthcare Applications

Authors: Ashima Sharma, Tapan K. Chaudhuri

Abstract:

Human Serum Albumin (HSA) is one of the most demanded therapeutic protein with immense biotechnological applications. The current source of HSA is human blood plasma. Blood is a limited and an unsafe source as it possesses the risk of contamination by various blood derived pathogens. This issue led to exploitation of various hosts with the aim to obtain an alternative source for the production of the rHSA. But, till now no host has been proven to be effective commercially for rHSA production because of their respective limitations. Thus, there exists an indispensable need to promote non-animal derived rHSA production. Of all the host systems, Escherichia coli is one of the most convenient hosts which has contributed in the production of more than 30% of the FDA approved recombinant pharmaceuticals. E. coli grows rapidly and its culture reaches high cell density using inexpensive and simple substrates. The fermentation batch turnaround number for E. coli culture is 300 per year, which is far greater than any of the host systems available. Therefore, E. coli derived recombinant products have more economical potential as fermentation processes are cheaper compared to the other expression hosts available. Despite of all the mentioned advantages, E. coli had not been successfully adopted as a host for rHSA production. The major bottleneck in exploiting E. coli as a host for rHSA production was aggregation i.e. majority of the expressed recombinant protein was forming inclusion bodies (more than 90% of the total expressed rHSA) in the E. coli cytosol. Recovery of functional rHSA form inclusion body is not preferred because it is tedious, time consuming, laborious and expensive. Because of this limitation, E. coli host system was neglected for rHSA production for last few decades. Considering the advantages of E. coli as a host, the present work has targeted E. coli as an alternate host for rHSA production through resolving the major issue of inclusion body formation associated with it. In the present study, we have developed a novel and innovative method for enhanced soluble and functional production of rHSA in E.coli (~60% of the total expressed rHSA in the soluble fraction) through modulation of the cellular growth, folding and environmental parameters, thereby leading to significantly improved and enhanced -expression levels as well as the functional and soluble proportion of the total expressed rHSA in the cytosolic fraction of the host. Therefore, in the present case we have filled in the gap in the literature, by exploiting the most well studied host system Escherichia coli which is of low cost, fast growing, scalable and ‘yet neglected’, for the enhancement of functional production of HSA- one of the most crucial biomolecule for clinical and biotechnological applications.

Keywords: enhanced functional production of rHSA in E. coli, recombinant human serum albumin, recombinant protein expression, recombinant protein processing

Procedia PDF Downloads 308
8990 Production of Mycelial Biomass, Exopolysaccharide, and Enzyme during Solid-State Fermentation of Plant Raw Materials by Medicinal Mushrooms

Authors: Tamar Khardziani, Violeta Berikashvili, Amrosi Chkuaseli, Vladimir Elisashvili

Abstract:

The main objectives of this proposal are to develop low-cost, innovative, and competitive technologies for the production of mycelial biomass of medicinal mushrooms as a natural food supplement for poultry. To fulfill this task, industrial strains of Lentinus edodes, Ganoderma lucidum, and Pleurotus ostreatus were used in this study. The solid-state fermentation (SSF) of wheat grains, wheat bran, and soy flour was performed in flasks and bags. Among nine mushroom strains, P. ostreatus 2191 appeared to be the most productive in protein biomass accumulation in the SSF of wheat bran. All mushrooms produced exopolysaccharide with the highest yield of 5-8 mg/mL depending on fungal strain and growth substrate. Supplementation of medium with 1% glycerol and 2-4% peptone favored mushroom growth and protein accumulation. Among inorganic nitrogen sources, KNO₃ also provided high biomass and protein production. The SSF of all growth substrates was accompanied by the secretion of cellulase and xylanase activities. The highest CMCase activity (12-13 U/g) was revealed in the cultivation of P. ostreatus 2191 using wheat bran as a growth substrate and ammonium sulfate or yeast extract as a nitrogen source, whereas the highest xylanase activity was detected in the fermentation of soy flour supplemented with peptone. Acknowledgments: This work was supported by the Shota Rustaveli National Science Foundation of Georgia (Grant number STEM-22-2077).

Keywords: mushrooms, plant raw materials, fermentation, biomass protein, cellulase

Procedia PDF Downloads 35
8989 Amino Acid Profile, Protein Digestibility, Antioxidant and Functional Properties of Protein Concentrate of Local Varieties (Kwandala, Yardass, Jeep, and Jamila) of Rice Brands from Nigeria

Authors: C. E. Chinma, S. O. Azeez, J. C. Anuonye, O. B. Ocheme, C. M. Yakubu, S. James, E. U. Ohuoba, I. A. Baba

Abstract:

There is growing interest in the use of rice bran protein in food formulation due to its hypoallergenic protein, high nutritional value and health promoting potentials. For the first time, the amino acid profile, protein digestibility, antioxidant, and functional properties of protein concentrate from some local varieties of rice bran from Nigeria were studied for possible food applications. Protein concentrates were prepared from rice bran and analysed using standard methods. Results showed that protein content of Kwandala, Yardass, Jeep, and Jamila were 69.24%, 69.97%, 68.73%, and 71.62%, respectively while total essential amino acid were 52.71, 53.03, 51.86, and 55.75g/100g protein, respectively. In vitro protein digestibility of protein concentrate from Kwandala, Yardass, Jeep and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. DPPH radical inhibition of protein from Kwandala, Yardass, Jeep, and Jamila were 48.15%, 48.90%, 47.56%, and 53.29%, respectively while ferric reducing ability power were 0.52, 0.55, 0.47 and 0.67mmol TE per gram, respectively. Protein concentrate from Jamila had higher onset (92.57oC) and denaturation temperature (102.13oC), and enthalpy (0.72J/g) than Jeep (91.46oC, 101.76oC, and 0.68J/g, respectively), Kwandala (90.32oC, 100.54oC and 0.57J/g, respectively), and Yardass (88.94oC, 99.45oC, and 0.51J/g, respectively). In vitro digestibility of protein from Kwandala, Yardas, Jeep, and Jamila were 90.70%, 91.39%, 90.57% and 91.63% respectively. Oil absorption capacity of Kwandala, Yardass, Jeep, and Jamila were 3.61, 3.73, 3.40, and 4.23g oil/g sample respectively, while water absorption capacity were 4.19, 4.32, 3.55 and 4.48g water/g sample, respectively. Protein concentrates had low bulk density (0.37-0.43g/ml). Protein concentrate from Jamila rice bran had the highest foam capacity (37.25%), followed by Yardass (34.20%), Kwandala (30.14%) and Jeep (28.90%). Protein concentrates showed low emulsifying and gelling capacities. In conclusion, protein concentrate prepared from these local rice bran varieties could serve as functional ingredients in food formulations and for enriching low protein foods.

Keywords: rice bran protein, amino acid profile, protein digestibility, antioxidant and functional properties

Procedia PDF Downloads 339
8988 Analysis of Formyl Peptide Receptor 1 Protein Value as an Indicator of Neutrophil Chemotaxis Dysfunction in Aggressive Periodontitis

Authors: Prajna Metta, Yanti Rusyanti, Nunung Rusminah, Bremmy Laksono

Abstract:

The decrease of neutrophil chemotaxis function may cause increased susceptibility to aggressive periodontitis (AP). Neutrophil chemotaxis is affected by formyl peptide receptor 1 (FPR1), which when activated will respond to bacterial chemotactic peptide formyl methionyl leusyl phenylalanine (FMLP). FPR1 protein value is decreased in response to a wide number of inflammatory stimuli in AP patients. This study was aimed to assess the alteration of FPR1 protein value in AP patients and if FPR1 protein value could be used as an indicator of neutrophil chemotaxis dysfunction in AP. This is a case control study with 20 AP patients and 20 control subjects. Three milliliters of peripheral blood were drawn and analyzed for FPR1 protein value with ELISA. The data were statistically analyzed with Mann-Whitney test (p>0,05). Results showed that the mean value of FPR1 protein value in AP group is 0,353 pg/mL (0,11 to 1,18 pg/mL) and the mean value of FPR1 protein value in control group is 0,296 pg/mL (0,05 to 0,88 pg/mL). P value 0,787 > 0,05 suggested that there is no significant difference of FPR1 protein value in both groups. The present study suggests that FPR1 protein value has no significance alteration in AP patients and could not be used as an indicator of neutrophil chemotaxis dysfunction.

Keywords: aggressive periodontitis, chemotaxis dysfunction, FPR1 protein value, neutrophil

Procedia PDF Downloads 187
8987 Production and Evaluation of Jam Made from Pineapple (Ananas comosus) and Grape (Vitis vinifera)

Authors: Z. O. Apotiola, J. F. Fashakin

Abstract:

This project studied the production and evaluation of jam produced from pineapple and grape at different level of ratio (90:10, 80:20, 70:30, 60:40, 50:50, and 100%). The proximate and sensory properties were determined using standard methods. The (GDZ) was the highest for protein, moisture, fat and ash, (KFJ) was the highest for carbohydrate. There were significant differences (p<0.05) in samples (PAB, GDZ, BEN) for moisture. Also, there were significant differences (p<0.05) in samples (PAB, BBL, GDZ, KFJ) for protein. There were significant differences (p<0.05) in samples (PAB, BBL, BEN) for carbohydrate. Also, there were significant differences (p<0.05) in samples (PAB, BBL, QCM, GDZ, BEN) for fat and there were significant differences (p<0.05) in samples (PAB, BBL, GDZ) for ash. (KFJ) was the highest for pH, (BBL and QCM) was the highest for Vitamin C; (GDZ) was the highest for titratable acidity. For sensory properties, for aroma, colour, flavour, and overall acceptability were tested using panellists; the result showed that (KFJ) had the highest for all samples. From the results of chemical and sensory characteristics sample BBL was the best combination.

Keywords: chemical, characteristic, combination, titratable, sensory, significant

Procedia PDF Downloads 246
8986 Ethanol Extract of Potentilla pradoxa Nutt Inhibits LPS-induced Inflammatory Responses via NF-κB and AP-1 Inactivation

Authors: Hae-Jun Lee, Ji-Sun Shin, Kyung-Tae Lee

Abstract:

Potentilla species (Rosasease) have been used in traditional medicine to treat different ailment, disease or malady. In this study, we investigated the anti-inflammatory effects of ethanol extracts of NUTT (EPP) in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages and septic mice. EPP suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-induced Raw 264.7 macrophages. Consistent with these observations, EPP reduced the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by downregulation of their promoter activities. EPP inhibited tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) at production and mRNA levels. Molecularly, EPP attenuated the LPS-induced transcriptional activity, and DNA-binding activity of nuclear factor-κB (NF-κB), and this was associated with a decrease of translocation and phosphorylation of p65 NF-κB by inhibiting the inhibitory κB-α (IκB-α) degradation and IκB kinase-α/β (IKK-α/β) phosphorylation. Furthermore, EPP suppressed the LPS-induced activation of activator protein-1 (AP-1) by reducing the expression of c-Fos and c-Jun in nuclear. EPP also reduced the phosphorylation of mitogen-activated protein kinase (MAPK), such as p38 MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). In a sepsis model, pretreatment with EPP reduced the LPS-induced lethality. Collectively, these results suggest that the anti-inflammatory effects of EPP were associated with the suppression of NF-κB and AP-1 activation, and support its possible therapeutic role for the treatment of sepsis.

Keywords: anti-inflammation, activator protein-1, nuclear factor κB, Potentilla paradoxa Nutt

Procedia PDF Downloads 293
8985 Bio-Functional Polymeric Protein Based Materials Utilized for Soft Tissue Engineering Application

Authors: Er-Yuan Chuang

Abstract:

Bio-mimetic matters have biological functionalities. This might be valuable in the development of versatile biomaterials. At biological fields, protein-based materials might be components to form a 3D network of extracellular biomolecules, containing growth factors. Also, the protein-based biomaterial provides biochemical and structural assistance of adjacent cells. In this study, we try to prepare protein based biomaterial, which was harvested from living animal. We analyzed it’s chemical, physical and biological property in vitro. Besides, in vivo bio-interaction of the prepared biomimetic matrix was tested in an animal model. The protein-based biomaterial has degradability and biocompatibility. This development could be used for tissue regenerations and be served as platform technologies.

Keywords: protein based, in vitro study, in vivo study, biomaterials

Procedia PDF Downloads 156
8984 Cultivation And Production of Insects, Especially Mealworms (Mealworms) and Investigating Its Potential as Food for Animals and Even Humans

Authors: Marzieh Eshaghi Koupaei

Abstract:

By cultivating mealworm, we reduce greenhouse gases and avoid the use of transgenic products such as soybeans, and we provide food resources rich in protein, amino acids, minerals, etc. for humans and animals, and it has created employment and entrepreneurship. We serve the environment by producing oil from mealworm in the cosmetic industry, using its waste as organic fertilizer and its powder in bodybuilding, and by breaking down plastic by mealworm. The production and breeding of mealworm requires very little infrastructure and does not require much trouble, and requires very little food, and reproduces easily and quickly, and a mealworm production workshop is noiseless, odorless, and pollution-free And the costs are very low. It is possible to use third grade fruits and unsalable fruits of farmers to feed the mealworms, which is completely economical and cost-effective. Mealworms can break down plastic in their intestines and turn it into carbon dioxide. . This process was done in only 16 days, which is a very short time compared to several centuries for plastic to decompose. By producing mealworm, we have helped to preserve the environment and provided the source of protein needed by humans and animals. This industrial insect has the ability and value of commercialization and creates employment and helps the economy of the society.

Keywords: breeding, production of insects, mealworms, research, animal feed, human feed

Procedia PDF Downloads 26
8983 A Viable Approach for Biological Detoxification of Non Edible Oil Seed Cakes and Their Utilization in Food Production Using Aspergillus Niger

Authors: Kshitij Bhardwaj, R.K. Trivedi, Shipra Dixit

Abstract:

We used biological detoxification method that converts toxic residue waste of Jatropha curcas oil seeds (non edible oil seed) into industrial bio-products and animal feed material. Present study describes the complete degradation of phorbol esters by Aspergillus Niger strain during solid state fermentation (SSF) of deoiled Jatropha curcas seed cake. Phorbol esters were completely degraded in 15 days under the optimized SSF conditions viz deoiled cake 5.0 gm moistened with 5.0 ml distilled water; inoculum 2 ml of overnight grown Aspergillus niger; incubated at 30◦ C, pH 7.0. This method simultaneously induces the production of Protease enzyme by Aspergillus Niger which has high potential to be used in feedstuffs .The maximum Protease activities obtained were 709.16 mg/ml in Jatropha curcas oil seed cake. The protein isolate had small amounts of phorbol esters, phytic acid, and saponin without any lectin. Its minimum and maximum solubility were at pH 4.0&12.0. Water and oil binding capacities were 3.22 g water/g protein and 1.86 ml oil/g protein respectively.Emulsion activity showed high values in a range of basic pH. We concluded that Jatropha Curcas seed cake has a potential to be used as a novel source of functional protein for food or feed applications.

Keywords: solid state fermentation, Jatropha curcas, oil seed cake, phorbol ester

Procedia PDF Downloads 451
8982 Protein Isolates from Chickpea (Cicer arietinum L.) and Its Application in Cake

Authors: Mohamed Abdullah Ahmed

Abstract:

In a study of chickpea protein isolate (CPI) preparation, the wet alkaline extraction was carried out. The objectives were to determine the optimal extracting conditions of CPI and apply CPI into a sponge cake recipe to replace egg and make acceptable product. The design used in extraction was a central composite design. The response surface methodology was preferred to graphically express the relationship between extraction time and pH with the output variables of percent yield and protein content of CPI. It was noted that optimal extracting conditions were 60 min and pH 10.5 resulting in 90.07% protein content and 89.15% yield of CPI. The protein isolate (CPI) could be incorporated in cake to 20% without adversely affecting the cake physical properties such as cake hardness and sensory attributes. The higher protein content in cake was corresponding to the amount of CPI added. Therefore, adding CPI can significantly (p<0.05) increase protein content in cake. However, sensory evaluation showed that adding more than 20% of CPI decreased the overall acceptability. The results of this investigation could be used as a basic knowledge of CPI utilization in other food products.

Keywords: chick bean protein isolate, sponge cake, utilization, sponge

Procedia PDF Downloads 337
8981 Efficacy of Microbial Metabolites Obtained from Saccharomyces cerevisiae as Supplement for Quality Milk Production in Dairy Cows

Authors: Sajjad ur Rahman, Mariam Azam, Mukarram Bashir, Seemal Javaid, Aoun Muhammad, Muhammad Tahir, Jawad, Hannan Khan, Muhammad Zohaib

Abstract:

Partially fermented soya hulls and wheat bran through Saccharomyces cerevisiae (DL-22 S/N) substantiated as a natural source for quality milk production. Saccharomyces cerevisiae (DL-22 S/N) were grown under in-vivo conditions and processed through two-step fermentation with substrates. The extra pure metabolites (XPM) were dried and processed for maintaining 1mm mesh size particles for supplementation of pelleted feed. Two groups of a cow (Holstein Friesian) having 8 animals of similar age and lactation were given the experimental concentrates. Group A was fed daily with 12gm of XPM and 22% protein-pelleted feed, while Group B was provided with no metabolites in their feed. In thirty-nine days of trial, improvement in the overall health, body score, milk protein, milk fat, ash, and solid not fat (SNF), yield, and incidence rate of mastitis was observed. The collected data revealed an improvement in milk production of 2.02 liter/h/d. However, a reduction (3.75%) in the milk fats and an increase in the milk SNF was around 0.58%. The ash content ranged between 6.4-7.5%. The incidence of mastitis was reduced to less than 2%.

Keywords: microbial metabolites, Saccharomyces cerevisiae, milk production, fermentation, post-biotic metabolites, immunity

Procedia PDF Downloads 63
8980 Evidence of Paternal Protein Provisioning During Male Pregnancy in the Seahorse, Hippocampus Abdominalis

Authors: Zoe M. G. Skalkos, Sam N. Dowland, James U. Van Dyke, Camilla. M. Whittington

Abstract:

Syngnathid fishes (seahorses, pipefishes, and seadragons) are unique because embryos develop on or in the male in a specialised brooding structure. Many seahorse species are endangered or vulnerable, while others are popular in the ornamental fish trade. Seahorses are capable of nutrient provisioning (patrotrophy) of lipids during pregnancy via their fully enclosed brood pouch. Protein is vital for gene regulation and tissue growth during embryogenesis. We tested the hypothesis that protein is paternally transported to developing embryos during pregnancy in the Australian Pot-bellied seahorse, Hippocampus abdominalis. We compared the dry masses and nitrogen content in recently fertilised H. abdominalis embryos and newborns. We calculated an updated patrotrophy index, 1.34, but without a significant difference in dry mass between the two developmental stages. There was, however, a significant increase in total protein content from recently fertilised embryos to neonates. This suggests paternal protein transport is essential for H. abdominalis embryogenesis because protein yolk reserves are depleted by embryonic metabolism, and supplementation is required. This study is the first to provide evidence for paternal protein transport during pregnancy in seahorses. It furthers our understanding of the paternal influence on embryonic development in male pregnancy and how a protein-deficient diet during pregnancy may limit the allocation of resources to embryos, reducing offspring fitness. This research contributes to a deeper understanding of the fundamental reproductive biology of seahorses, which can help improve conservation and farming production outcomes.

Keywords: brood pouch, embryonic provisioning, nitrogen, parentotrophy, paternal investment, reproduction

Procedia PDF Downloads 63
8979 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces

Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi

Abstract:

Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.

Keywords: tPA, recombinant, transgenic, tobacco

Procedia PDF Downloads 117
8978 Genetic Polymorphism of Milk Protein Gene and Association with Milk Production Traits in Local Latvian Brown Breed Cows

Authors: Daina Jonkus, Solvita Petrovska, Dace Smiltina, Lasma Cielava

Abstract:

The beta-lactoglobulin and kappa-casein are milk proteins which are important for milk composition. Cows with beta-lactoglobulin and kappa-casein gene BB genotypes have highest milk crude protein and fat content. The aim of the study was to determinate the frequencies of milk protein gene polymorphisms in local Latvian Brown (LB) cows breed and analyze the influence of beta-lactoglobulin and kappa-casein genotypes to milk productivity traits. 102 cows’ genotypes of milk protein genes were detected using Polymerase Chain Reaction and Restriction Fragment Length Polymorphism (PCR-RFLP) and electrophoresis on 3% agarose gel. For beta-lactoglobulin were observed 2 types of alleles A and B and for kappa-casein 3 types: A, B and E. Highest frequency in beta-lactoglobulin gene was observed for B allele – 0.926. Molecular analysis of beta-lactoglobulin gene shows 86.3% of individuals are homozygous by B allele and animals are with genotypes BB and 12.7% of individuals are heterozygous with genotypes AB. The highest milk yield 4711.7 kg was for 1st lactation cows with AB genotypes, whereas the highest milk protein content (3.35%) and fat content (4.46 %) was for BB genotypes. Analysis of the kappa-casein locus showed a prevalence of the A allele – 0.750. The genetic variant of B was characterized by a low frequency – 0.240. Moreover, the frequency of E occurred in the LB cows’ population with very low frequency – 0.010. 54.9 % of cows are homozygous with genotypes AA, and only 4.9 % are homozygous with genotypes BB. 32.8 % of individuals are heterozygous with genotypes AB, and 2.0 % are with AE. The highest milk productivity was for 1st lactation cows with AB genotypes: milk yield 4620.3 kg, milk protein content 3.39% and fat content 4.53 %. According to the results, in local Latvian brown there are only 2.9% of cows are with BB-BB genotypes, which is related to milk coagulation ability and affected cheese production yield. Acknowledgment: the investigation is supported by VPP 2014-2017 AgroBioRes Project No. 3 LIVESTOCK.

Keywords: beta-lactoglobulin, cows, genotype frequencies, kappa-casein

Procedia PDF Downloads 243
8977 The Effect of Cigarette Smoking on the Production of 20-Hydroxyeicosatetraenoic Acid in Human Platelet

Authors: Yazun Jarrar

Abstract:

Smoking has effect on platelet aggregation and the activity of anti-platelet drugs. The chemical 20-hydroxyeicosatetraenoic acid (20-HETE) is a cardiotoxic arachidonic acid metabolite which increases platelet aggregation. In this study, we investigated the influence of cigarette smoking on 20-HETE levels and protein expression of 20-HETE producing enzyme CYP4A11 in isolated platelets from smoker and non-smoker volunteers. The protein expression and 20-HETE levels were analyzed using immunoblot and High-Performance Liquid Chromatography with Mass Spectrometry (HPL-MS) assays. The results showed that 20-HETE level was higher significantly among smokers than non-smokers (t-test, p-value<0.05). The protein expression of CYP4A11 was significantly higher (t-test, p-value<0.05) among the platelets of smokers. We concluded that cigarette smoking increased the level of platelet activator 20-HETE through increasing the protein expression of CYP4A11. These findings may increase the understanding of smoking-drug interaction during antiplatelets therapy.

Keywords: smoking, 20-HETE, CYP4A11, platelet

Procedia PDF Downloads 157
8976 Decolonising Postgraduate Research Curricula and Its Impact on a Sustainable Protein Supply in Rural-Based Communities

Authors: Fabian Nde Fon

Abstract:

Decolonisation is one of the hottest topics in most African Universities; this is because many researchers focus on research that does not speak to their immediate community. This research looked at postgraduate research projects that can take students to the community to apply the knowledge that they have learned as an attempt to transform their community. In regards to this, an honours project was designed to try and provide a cheaper and continuous source of protein (egg) using amber-link layers and to investigate the potential of the project to promote postgraduate student development and entrepreneurship. Two ban layer production systems were created: (1) Production system one on a Hill (PS-I) and (2) Production system two in a valley, closer to a dam (PS-II) at Nqutshini, Gingindlovu, KwaZulu-Natal Province. Forty point-of-lay (18 weeks old) amber links were bought at Inverness Rearers and divided into PS-I (20), and PS-II (20), and each of the production systems was further divided into two groups of ten (PS-I-1 and PS-II-1 (partially supplemented) and PS-I-2 and PS-II-2 (supplemented with layer mash)) by a random selection. Birds' weights were balanced in each group to avoid bias. The two groups in each production system were caged separately (1.5x1.5m² for ten birds) and in close proximity. Partially supplemented birds received 0.6 kg of layer mash (60g/per bird/day) and kitchen leftovers daily, and supplemented birds were fed 1.2 kg of layer mash (120g/per bird/day). Egg collection was daily after feeding in the morning while was given ad libitium. The eggs were assessed for internal and external quality after weighing before recording. Egg production from fully supplemented birds (PS-I-2 and PS-II-2) was generally higher (P<0.05) than those of PS-I-1 and PS-II-1. The difference in production was only 6% in the valley while on the Hill, it was only 3%. However, some of the birds in the valley showed signs of respiratory infections, which was not observed with those on the Hill. There are no differences in the internal and external qualities of eggs (york colour and egg shell) determined. This implies that both systems were sustainable. It was suggested members in the community living at the valley or Hill can use these hardy layers as a cheaper source of protein and preferable to the partially supplemented systems because it is relatively cheaper. The smallholder farmers are still pursuing the project long after the students graduate; hence the benefit of the project is reciprocal for both the university and the community (entrepreneurship).

Keywords: animal nutrition, ban layer, production, postgraduate curricula, entrepreneurship

Procedia PDF Downloads 81
8975 An Efficient Algorithm for Global Alignment of Protein-Protein Interaction Networks

Authors: Duc Dong Do, Ngoc Ha Tran, Thanh Hai Dang, Cao Cuong Dang, Xuan Huan Hoang

Abstract:

Global aligning two protein-protein interaction networks is an essentially important task in bioinformatics/computational biology field of study. It is a challenging and widely studied research topic in recent years. Accurately aligned networks allow us to identify functional modules of proteins and/ororthologous proteins from which unknown functions of a protein can be inferred. We here introduce a novel efficient heuristic global network alignment algorithm called FASTAn, including two phases: the first to construct an initial alignment and the second to improve such alignment by exerting a local optimization repeated procedure. The experimental results demonstrated that FASTAn outperformed the state-of-the-art global network alignment algorithm namely SPINAL in terms of both commonly used objective scores and the run-time.

Keywords: FASTAn, Heuristic algorithm, biological network alignment, protein-protein interaction networks

Procedia PDF Downloads 568
8974 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations

Authors: Xiao Zhou, Jianlin Cheng

Abstract:

A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.

Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining

Procedia PDF Downloads 424
8973 Magnetic Nanoparticles for Protein C Purification

Authors: Duygu Çimen, Nilay Bereli, Adil Denizli

Abstract:

In this study is to synthesis magnetic nanoparticles for purify protein C. For this aim, N-Methacryloyl-(L)-histidine methyl ester (MAH) containing 2-hydroxyethyl methacrylate (HEMA) based magnetic nanoparticles were synthesized by using micro-emulsion polymerization technique for templating protein C via metal chelation. The obtained nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta-size analysis and electron spin resonance (ESR) spectroscopy. After that, they were used for protein C purification from aqueous solution to evaluate/optimize the adsorption condition. Hereby, the effecting factors such as concentration, pH, ionic strength, temperature, and reusability were evaluated. As the last step, protein C was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Keywords: immobilized metal affinity chromatography (IMAC), magnetic nanoparticle, protein C, hydroxyethyl methacrylate (HEMA)

Procedia PDF Downloads 389
8972 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 51
8971 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 145
8970 Production of Recombinant VP2 Protein of Canine Parvovirus 2a Using Baculovirus Expression System

Authors: Soo Dong Cho, In-Ohk Ouh, Byeong Sul Kang, Seyeon Park, In-Soo Cho, Jae Young Song

Abstract:

An VP2 gene from the current prevalent CPV (Canine Parvovirus) strain (new CPV-2a) in the Republic of Korea was expressed in a baculovirus expression system. Genomic DNA was extracted from the isolate strain CPV-2a. The recombinant baculovirus, containing the coding sequences of VP2 with the histidine tag at the N-terminus, were generated by using the Bac-to-Bac system. For production of the recombinant VP2 proteins, SF9 cells were transfection into 6 wells. Propagation of recombinant baculoviruses and expression of the VP2 protein were performed in the Sf9 cell line maintained. The proteins were detected to Western blot anlaysis. CPV-2a VP2 was detected by Western blotting the monoclonal antibodies recognized 6x His and the band had a molecular weight of 65 KDa. We demonstrated that recombinant CPV-2a VP2 expression in baculovirus. The recombinant CPV-2a VP2 may able to development of specific diagnostic test and vaccination of against CPV2. This study provides a foundation for application of CPV2 on the development of new CPV2 subunit vaccine.

Keywords: baculovirus, canine parvovirus 2a, Dog, Korea

Procedia PDF Downloads 210
8969 Haematology and Serum Biochemical Profile of Laying Chickens Reared on Deep Litter System with or without Access to Grass or Legume Pasture under Humid Tropical Climate

Authors: E. Oke, A. O. Ladokun, J. O. Daramola, O. M. Onagbesan

Abstract:

There has been a growing interest on the effects of access to pasture on poultry health status. However, there is a paucity of data on the relative benefits of grass and legume pastures. An experiment was conducted to determine the effects of rearing systems {deep litter system (DL), deep litter with access to legumes (LP) or grass (GP) pastures} haematology and serum chemistry of ISA Brown layers. The study involved the use of two hundred and forty 12 weeks old pullets. The birds were reared until 60 weeks of age. Eighty birds were assigned to each treatment; each treatment had four replicates of 20 birds each. Blood samples (2.5 ml) were collected from the wing vein of two birds per replicate and serum chemistry and haematological parameters were determined. The results showed that there were no significant differences between treatments in all the parameters considered at 18 weeks of age. At 24 weeks old, the percentage of heterophyl (HET) in DL and LP were similar but higher than that of GP. The ratio of H:L was higher (P<0.05) in DL than those of LP and GP while LP and GP were comparable. At week 38 of age, the percentage of PCV in the birds in LP and GP were similar but the birds in DL had significantly lower level than that of GP. In the early production phase, serum total protein of the birds in LP was similar to that of GP but higher (P<0.05) than that of DL. At the peak production phase (week 38), the total protein in GP and DL were similar but significantly lower than that of LP. The albumin level in LP was greater (P<0.05) than GP but similar to that of DL. In the late production phase, the total protein in LP was significantly higher than that of DL but similar to that of GP. It was concluded that rearing chickens in either grass or legume pasture did not have deleterious effects on the health of laying chickens but improved some parameters including blood protein and HET/lymphocyte.

Keywords: rearing systems, stylosanthes, cynodon serum chemistry, haematology, hen

Procedia PDF Downloads 295
8968 Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.

Authors: Mariam Azam, Sajjad Ur Rahman, Mukarram Bashir, Muhammad Tahir, Seemal Javaid, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan

Abstract:

Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported.

Keywords: microbial metabolites, post-biotics, animal supplements, animal nutrition, proteins, animal production, fermentation

Procedia PDF Downloads 65
8967 EverPro as the Missing Piece in the Plant Protein Portfolio to Aid the Transformation to Sustainable Food Systems

Authors: Aylin W Sahin, Alice Jaeger, Laura Nyhan, Gregory Belt, Steffen Münch, Elke K. Arendt

Abstract:

Our current food systems cause an increase in malnutrition resulting in more people being overweight or obese in the Western World. Additionally, our natural resources are under enormous pressure and the greenhouse gas emission increases yearly with a significant contribution to climate change. Hence, transforming our food systems is of highest priority. Plant-based food products have a lower environmental impact compared to their animal-based counterpart, representing a more sustainable protein source. However, most plant-based protein ingredients, such as soy and pea, are lacking indispensable amino acids and extremely limited in their functionality and, thus, in their food application potential. They are known to have a low solubility in water and change their properties during processing. The low solubility displays the biggest challenge in the development of milk alternatives leading to inferior protein content and protein quality in dairy alternatives on the market. Moreover, plant-based protein ingredients often possess an off-flavour, which makes them less attractive to consumers. EverPro, a plant-protein isolate originated from Brewer’s Spent Grain, the most abundant by-product in the brewing industry, represents the missing piece in the plant protein portfolio. With a protein content of >85%, it is of high nutritional value, including all indispensable amino acids which allows closing the protein quality gap of plant proteins. Moreover, it possesses high techno-functional properties. It is fully soluble in water (101.7 ± 2.9%), has a high fat absorption capacity (182.4 ± 1.9%), and a foaming capacity which is superior to soy protein or pea protein. This makes EverPro suitable for a vast range of food applications. Furthermore, it does not cause changes in viscosity during heating and cooling of dispersions, such as beverages. Besides its outstanding nutritional and functional characteristics, the production of EverPro has a much lower environmental impact compared to dairy or other plant protein ingredients. Life cycle assessment analysis showed that EverPro has the lowest impact on global warming compared to soy protein isolate, pea protein isolate, whey protein isolate, and egg white powder. It also contributes significantly less to freshwater eutrophication, marine eutrophication and land use compared the protein sources mentioned above. EverPro is the prime example of sustainable ingredients, and the type of plant protein the food industry was waiting for: nutritious, multi-functional, and environmentally friendly.

Keywords: plant-based protein, upcycled, brewers' spent grain, low environmental impact, highly functional ingredient

Procedia PDF Downloads 47
8966 Computational Identification of Signalling Pathways in Protein Interaction Networks

Authors: Angela U. Makolo, Temitayo A. Olagunju

Abstract:

The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.

Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways

Procedia PDF Downloads 508