Search results for: prognostic model
16927 Comparison of Prognostic Models in Different Scenarios of Shoreline Position on Ponta Negra Beach in Northeastern Brazil
Authors: Débora V. Busman, Venerando E. Amaro, Mattheus da C. Prudêncio
Abstract:
Prognostic studies of the shoreline are of utmost importance for Ponta Negra Beach, located in Natal, Northeastern Brazil, where the infrastructure recently built along the shoreline is severely affected by flooding and erosion. This study compares shoreline predictions using three linear regression methods (LMS, LRR and WLR) and tries to discern the best method for different shoreline position scenarios. The methods have shown erosion on the beach in each of the scenarios tested, even in less intense dynamic conditions. The WLA_A with confidence interval of 95% was the well-adjusted model and calculated a retreat of -1.25 m/yr to -2.0 m/yr in hot spot areas. The change of the shoreline on Ponta Negra Beach can be measured as a negative exponential curve. Analysis of these methods has shown a correlation with the morphodynamic stage of the beach.Keywords: coastal erosion, prognostic model, DSAS, environmental safety
Procedia PDF Downloads 33416926 The Prognostic Values of Current Staging Schemes in Temporal Bone Carcinoma: A Real-World Evidence-Based Study
Authors: Minzi Mao, Jianjun Ren, Yu Zhao
Abstract:
Objectives: The absence of a uniform staging scheme for temporal bone carcinoma (TBC) seriously impedes the improvement of its management strategies. Therefore, this research was aimed to investigate the prognostic values of two currently applying staging schemes, namely, the modified Pittsburgh staging system (MPB) and Stell’s T classification (Stell-T) in patients with TBC. Methods: Areal-world single-institution retrospectivereview of patientsdiagnosed with TBC between2008 and 2019 was performed. Baseline characteristics were extracted, and patients were retrospectively staged by both the MPB and Stell-T classifications. Cox regression analyseswereconductedtocomparetheoverall survival (OS). Results: A total of 69 consecutive TBC patients were included in thisstudy. Univariate analysis showed that both Stell-T and T- classifications of the modified Pittsburgh staging system (MPB-T) were significant prognostic factors for all TBC patients as well as temporal bone squamous cell carcinoma (TBSCC, n=50) patients (P < 0.05). However, only Stell-T was confirmed to be an independent prognostic factor in TBSCC patients (P = 0.004). Conclusions: Tumor extensions, quantified by both Stell-T and MPB-T classifications, are significant prognostic factors for TBC patients, especially for TBSCC patients. However, only the Stell-T classification is an independent prognostic factor for TBSCC patients.Keywords: modified pittsburgh staging system, overall survival, prognostic factor, stell’s T- classification, temporal bone carcinoma
Procedia PDF Downloads 12716925 Evaluation of Longitudinal Relaxation Time (T1) of Bone Marrow in Lumbar Vertebrae of Leukaemia Patients Undergoing Magnetic Resonance Imaging
Authors: M. G. R. S. Perera, B. S. Weerakoon, L. P. G. Sherminie, M. L. Jayatilake, R. D. Jayasinghe, W. Huang
Abstract:
The aim of this study was to measure and evaluate the Longitudinal Relaxation Times (T1) in bone marrow of an Acute Myeloid Leukaemia (AML) patient in order to explore the potential for a prognostic biomarker using Magnetic Resonance Imaging (MRI) which will be a non-invasive prognostic approach to AML. MR image data were collected in the DICOM format and MATLAB Simulink software was used in the image processing and data analysis. For quantitative MRI data analysis, Region of Interests (ROI) on multiple image slices were drawn encompassing vertebral bodies of L3, L4, and L5. T1 was evaluated using the T1 maps obtained. The estimated bone marrow mean value of T1 was 790.1 (ms) at 3T. However, the reported T1 value of healthy subjects is significantly (946.0 ms) higher than the present finding. This suggests that the T1 for bone marrow can be considered as a potential prognostic biomarker for AML patients.Keywords: acute myeloid leukaemia, longitudinal relaxation time, magnetic resonance imaging, prognostic biomarker.
Procedia PDF Downloads 52916924 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma
Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan
Abstract:
Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation
Procedia PDF Downloads 6716923 The Prognostic Value of Dynamic Changes of Hematological Indices in Oropharyngeal Cancer Patients Treated with Radiotherapy
Authors: Yao Song, Danni Cheng, Jianjun Ren
Abstract:
Objectives: We aimed to explore the prognostic effects of absolute values and dynamic changes of common hematological indices on oropharynx squamous cell carcinoma (OPSCC) patients treated with radiation. Methods and materials: The absolute values of white blood cell (WBC), absolute neutrophil count (ANC), absolute lymphocyte count (ALC), hemoglobin (Hb), platelet (Plt), albumin (Alb), neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) at baseline (within 45 days before radiation), 1-, 3-, 6- and 12-months after the start of radiotherapy were retrospectively collected. Locally-estimated smoothing scatterplots were used to describe the smooth trajectory of each index. A mixed-effect model with a random slope was fitted to describe the changing rate and trend of indices over time. Cox proportional hazard analysis was conducted to assess the correlation between hematological indices and treatment outcomes. Results: Of the enrolled 85 OPSCC patients, inflammatory indices, such as WBC and ALC, dropped rapidly during acute treatment and gradually recovered, while NLR and PLR increased at first three months and subsequently declined within 3-12 months. Higher absolute value or increasing trend of nutritional indices (Alb and Hb) was associated with better prognosis (all p<0.05). In contrast, patients with higher absolute value or upward trend of inflammatory indices (WBC, ANC, Plt, PLR and NLR) had worse survival (all p<0.05). Conclusions: The absolute values and dynamic changes of hematological indices were valuable prognostic factors for OPSCC patients who underwent radiotherapy.Keywords: hematological indices, oropharyngeal cancer, radiotherapy, NLR, PLR
Procedia PDF Downloads 18016922 Analyzing the Influence of Hydrometeorlogical Extremes, Geological Setting, and Social Demographic on Public Health
Authors: Irfan Ahmad Afip
Abstract:
This main research objective is to accurately identify the possibility for a Leptospirosis outbreak severity of a certain area based on its input features into a multivariate regression model. The research question is the possibility of an outbreak in a specific area being influenced by this feature, such as social demographics and hydrometeorological extremes. If the occurrence of an outbreak is being subjected to these features, then the epidemic severity for an area will be different depending on its environmental setting because the features will influence the possibility and severity of an outbreak. Specifically, this research objective was three-fold, namely: (a) to identify the relevant multivariate features and visualize the patterns data, (b) to develop a multivariate regression model based from the selected features and determine the possibility for Leptospirosis outbreak in an area, and (c) to compare the predictive ability of multivariate regression model and machine learning algorithms. Several secondary data features were collected locations in the state of Negeri Sembilan, Malaysia, based on the possibility it would be relevant to determine the outbreak severity in the area. The relevant features then will become an input in a multivariate regression model; a linear regression model is a simple and quick solution for creating prognostic capabilities. A multivariate regression model has proven more precise prognostic capabilities than univariate models. The expected outcome from this research is to establish a correlation between the features of social demographic and hydrometeorological with Leptospirosis bacteria; it will also become a contributor for understanding the underlying relationship between the pathogen and the ecosystem. The relationship established can be beneficial for the health department or urban planner to inspect and prepare for future outcomes in event detection and system health monitoring.Keywords: geographical information system, hydrometeorological, leptospirosis, multivariate regression
Procedia PDF Downloads 11416921 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism
Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman
Abstract:
Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model
Procedia PDF Downloads 7416920 Prognostic Value in Meningioma Patients’: A Clinical-Histopathological Study
Authors: Ilham Akbar Rahman, Aflah Dhea Bariz Yasta, Iin Fadhilah Utami Tamasse, Devina Juanita
Abstract:
Meningioma is adult brain tumors originating from the meninges covering the brain and spinal cord. The females have approximately twice higher 2:1 than male in the incidence of meningioma. This study aimed to analyze the histopathological grading and clinical aspect in predicting the prognosis of meningioma patients. An observational study with cross sectional design was used on 53 meningioma patients treated at Dr. Wahidin Sudirohusodo hospital in 2016. The data then were analyzed using SPSS 20.0. Of 53 patients, mostly 41 (77,4%) were female and 12 (22,6%) were male. The distribution of histopathology patients showed the meningothelial meningioma of 18 (43,9%) as the most type found. Fibroplastic meningioma were 8 (19,5%), while atypical meningioma and psammomatous meningioma were 6 (14,6%) each. The rest were malignant meningioma and angiomatous meningioma which found in respectively 2 (4,9%) and 1 (2,4%). Our result found significant finding that mostly male were fibroblastic meningioma (50%), however meningothelial meningioma were found in the majority of female (54,8%) and also seizure comprised only in higher grade meningioma. On the outcome of meningioma patient treated operatively, histopathological grade remained insignificant (p > 0,05). This study can be used as prognostic value of meningioma patients based on gender, histopathological grade, and clinical manifestation. Overall, the outcome of the meningioma’s patients is good and promising as long as it is well managed.Keywords: meningioma, prognostic value, histopathological grading, clinical manifestation
Procedia PDF Downloads 17016919 Development of Programmed Cell Death Protein 1 Pathway-Associated Prognostic Biomarkers for Bladder Cancer Using Transcriptomic Databases
Authors: Shu-Pin Huang, Pai-Chi Teng, Hao-Han Chang, Chia-Hsin Liu, Yung-Lun Lin, Shu-Chi Wang, Hsin-Chih Yeh, Chih-Pin Chuu, Jiun-Hung Geng, Li-Hsin Chang, Wei-Chung Cheng, Chia-Yang Li
Abstract:
The emergence of immune checkpoint inhibitors (ICIs) targeting proteins like PD-1 and PD-L1 has changed the treatment paradigm of bladder cancer. However, not all patients benefit from ICIs, with some experiencing early death. There's a significant need for biomarkers associated with the PD-1 pathway in bladder cancer. Current biomarkers focus on tumor PD-L1 expression, but a more comprehensive understanding of PD-1-related biology is needed. Our study has developed a seven-gene risk score panel, employing a comprehensive bioinformatics strategy, which could serve as a potential prognostic and predictive biomarker for bladder cancer. This panel incorporates the FYN, GRAP2, TRIB3, MAP3K8, AKT3, CD274, and CD80 genes. Additionally, we examined the relationship between this panel and immune cell function, utilizing validated tools such as ESTIMATE, TIDE, and CIBERSORT. Our seven-genes panel has been found to be significantly associated with bladder cancer survival in two independent cohorts. The panel was also significantly correlated with tumor infiltration lymphocytes, immune scores, and tumor purity. These factors have been previously reported to have clinical implications on ICIs. The findings suggest the potential of a PD-1 pathway-based transcriptomic panel as a prognostic and predictive biomarker in bladder cancer, which could help optimize treatment strategies and improve patient outcomes.Keywords: bladder cancer, programmed cell death protein 1, prognostic biomarker, immune checkpoint inhibitors, predictive biomarker
Procedia PDF Downloads 7716918 The Prognostic Prediction Value of Positive Lymph Nodes Numbers for the Hypopharyngeal Squamous Cell Carcinoma
Authors: Wendu Pang, Yaxin Luo, Junhong Li, Yu Zhao, Danni Cheng, Yufang Rao, Minzi Mao, Ke Qiu, Yijun Dong, Fei Chen, Jun Liu, Jian Zou, Haiyang Wang, Wei Xu, Jianjun Ren
Abstract:
We aimed to compare the prognostic prediction value of positive lymph node number (PLNN) to the American Joint Committee on Cancer (AJCC) tumor, lymph node, and metastasis (TNM) staging system for patients with hypopharyngeal squamous cell carcinoma (HPSCC). A total of 826 patients with HPSCC from the Surveillance, Epidemiology, and End Results database (2004–2015) were identified and split into two independent cohorts: training (n=461) and validation (n=365). Univariate and multivariate Cox regression analyses were used to evaluate the prognostic effects of PLNN in patients with HPSCC. We further applied six Cox regression models to compare the survival predictive values of the PLNN and AJCC TNM staging system. PLNN showed a significant association with overall survival (OS) and cancer-specific survival (CSS) (P < 0.001) in both univariate and multivariable analyses, and was divided into three groups (PLNN 0, PLNN 1-5, and PLNN>5). In the training cohort, multivariate analysis revealed that the increased PLNN of HPSCC gave rise to significantly poor OS and CSS after adjusting for age, sex, tumor size, and cancer stage; this trend was also verified by the validation cohort. Additionally, the survival model incorporating a composite of PLNN and TNM classification (C-index, 0.705, 0.734) performed better than the PLNN and AJCC TNM models. PLNN can serve as a powerful survival predictor for patients with HPSCC and is a surrogate supplement for cancer staging systems.Keywords: hypopharyngeal squamous cell carcinoma, positive lymph nodes number, prognosis, prediction models, survival predictive values
Procedia PDF Downloads 15316917 Effects of Zinc and Vitamin A Supplementation on Prognostic Markers and Treatment Outcomes of Adults with Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis
Authors: Fasil Wagnew, Kefyalew Addis Alene, Setegn Eshetie, Tom Wingfield, Matthew Kelly, Darren Gray
Abstract:
Introduction: Undernutrition is a major and under-appreciated risk factor for TB, which is estimated to be responsible for 1.9 million TB cases per year globally. The effectiveness of micronutrient supplementation on TB treatment outcomes and its prognostic markers such as sputum conversion and serum zinc, retinol, and hemoglobin levels has been poorly understood. This systematic review and meta-analysis aimed to determine the association between zinc and vitamin A supplementation and TB treatment outcomes and its prognostic markers. Methods: A systematic literature search for randomized controlled trials (RCTs) was performed in PubMed, Embase, and Scopus databases. Meta-analysis with a random effect model was performed to estimate risk ratio (RR) and mean difference (MD), with a 95% confidence interval (CI), for dichotomous and continuous outcomes, respectively. Results: Our search identified 2,195 records. Of these, nine RCTs consisting of 1,375 participants were included in the final analyses. Among adults with pulmonary TB, zinc (RR: 0.94, 95%CI: 0.86, 1.03), vitamin A (RR: 0.90, 95%CI: 0.80, 1.01), and combined zinc and vitamin A (RR: 0.98, 95%CI: 0.89, 1.08) supplementation were not significantly associated with TB treatment success. Combined zinc and vitamin A supplementation was significantly associated with increased sputum smear conversion at 2 months (RR: 1.16, 95%CI: 1.03, 1.32), serum zinc levels at 2 months (MD of 0.86umol/l, 95% CI: 0.14, 1.57), serum retinol levels at 2 months (MD: 0.06umol/l, 95 % CI: 0.04, 0.08) and 6 months (MD: 0.12umol/l, 95 % CI: 0.10, 0.14), and serum hemoglobin level at 6 months (MD: 0.29 ug/dl, 95% CI: 0.08 to 0.51), among adults with TB. Conclusions: Providing zinc and vitamin A supplementation to adults with pulmonary TB during treatment may increase early sputum smear conversion, serum zinc, retinol, and hemoglobin levels. However, the use of zinc, vitamin A, or both were not associated with TB treatment success.Keywords: zinc and vitamin A supplementation, tuberculosis, treatment outcomes, meta-analysis, RCT
Procedia PDF Downloads 16816916 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors
Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal
Abstract:
Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.Keywords: CASK, colorectal cancer, overexpression, prognosis
Procedia PDF Downloads 27816915 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study
Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming
Abstract:
Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.Keywords: binary outcomes, statistical methods, clinical trials, simulation study
Procedia PDF Downloads 11216914 Role of Surfactant Protein D (SP-D) as a Biomarker of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection
Authors: Lucia Salvioni, Pietro Giorgio Lovaglio, Valerio Leoni, Miriam Colombo, Luisa Fiandra
Abstract:
The involvement of plasmatic surfactant protein-D (SP-D) in pulmonary diseases has been long investigated, and over the last two years, more interest has been directed to determine its role as a marker of COVID-19. In this direction, several studies aimed to correlate pulmonary surfactant proteins with the clinical manifestations of the virus indicated SP-D as a prognostic biomarker of COVID-19 pneumonia severity. The present work has performed a retrospective study on a relatively large cohort of patients of Hospital Pio XI of Desio (Lombardia, Italy) with the aim to assess differences in the hematic SP-D concentrations among COVID-19 patients and healthy donors and the role of SP-D as a prognostic marker of severity and/or of mortality risk. The obtained results showed a significant difference in the mean of log SP-D levels between COVID-19 patients and healthy donors, so as between dead and survived patients. SP-D values were significantly higher for both hospitalized COVID-19 and dead patients, with threshold values of 150 and 250 ng/mL, respectively. SP-D levels at admission and increasing differences among follow-up and admission values resulted in the strongest significant risk factors of mortality. Therefore, this study demonstrated the role of SP-D as a predictive marker of SARS-CoV-2 infection and its outcome. A significant correlation of SP-D with patient mortality indicated that it is also a prognostic factor in terms of mortality, and its early detection should be considered to design adequate preventive treatments for COVID-19 patients.Keywords: SARS-CoV-2 infection, COVID-19, surfactant protein-D (SP-D), mortality, biomarker
Procedia PDF Downloads 7416913 MAGE-A3 and PRAME Gene Expression and EGFR Mutation Status in Non-Small-Cell Lung Cancer
Authors: Renata Checiches, Thierry Coche, Nicolas F. Delahaye, Albert Linder, Fernando Ulloa Montoya, Olivier Gruselle, Karen Langfeld, An de Creus, Bart Spiessens, Vincent G. Brichard, Jamila Louahed, Frédéric F. Lehmann
Abstract:
Background: The RNA-expression levels of cancer-testis antigens MAGE A3 and PRAME were determined in resected tissue from patients with primary non-small-cell lung cancer (NSCLC) and related to clinical outcome. EGFR, KRAS and BRAF mutation status was determined in a subset to investigate associations with MAGE A3 and PRAME expression. Methods: We conducted a single-centre, uncontrolled, retrospective study of 1260 tissue-bank samples from stage IA-III resected NSCLC. The prognostic value of antigen expression (qRT-PCR) was determined by hazard-ratio and Kaplan-Meier curves. Results: Thirty-seven percent (314/844) of tumours expressed MAGE-A3, 66% (723/1092) expressed PRAME and 31% (239/839) expressed both. Respective frequencies in squamous-cell tumours and adenocarcinomas were 43%/30% for MAGE A3 and 80%/44% for PRAME. No correlation with stage, tumour size or patient age was found. Overall, no prognostic value was identified for either antigen. A trend to poorer overall survival was associated with MAGE-A3 in stage IIIB and with PRAME in stage IB. EGFR and KRAS mutations were found in 10.1% (28/311) and 33.8% (97/311) of tumours, respectively. EGFR (but not KRAS) mutation status was negatively associated with PRAME expression. Conclusion: No clear prognostic value for either PRAME or MAGE A3 was observed in the overall population, although some observed trends may warrant further investigation.Keywords: MAGE A3, PRAME, cancer-testis gene, NSCLC, survival, EGFR
Procedia PDF Downloads 38116912 The Predictive Significance of Metastasis Associated in Colon Cancer-1 (MACC1) in Primary Breast Cancer
Authors: Jasminka Mujic, Karin Milde-Langosch, Volkmar Mueller, Mirza Suljagic, Tea Becirevic, Jozo Coric, Daria Ler
Abstract:
MACC1 (metastasis associated in colon cancer-1) is a prognostic biomarker for tumor progression, metastasis, and survival of a variety of solid cancers. MACC1 also causes tumor growth in xenograft models and acts as a master regulator of the HGF/MET signaling pathway. In breast cancer, the expression of MACC1 determined by immunohistochemistry was significantly associated with positive lymph node status and advanced clinical stage. The aim of the present study was to further investigate the prognostic or predictive value of MACC1 expression in breast cancer using western blot analysis and immunohistochemistry. The results of our study have shown that high MACC1 expression in breast cancer is associated with shorter disease-free survival, especially in node-negative tumors. The MACC1 might be a suitable biomarker to select patients with a higher probability of recurrence which might benefit from adjuvant chemotherapy. Our results support a biologic role and potentially open the perspective for the use of MACC1 as predictive biomarker for treatment decision in breast cancer patients.Keywords: breast cancer, biomarker, HGF/MET, MACC1
Procedia PDF Downloads 23116911 Wear Measurement of Thermomechanical Parameters of the Metal Carbide
Authors: Riad Harouz, Brahim Mahfoud
Abstract:
The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes.Keywords: lifetime, metal carbides, modeling, thermo-mechanical, wear
Procedia PDF Downloads 30816910 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 616909 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients
Authors: Mekni Sabrine, Nouira Mariem
Abstract:
Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.Keywords: allogeneic, transplants, ferritin, survival
Procedia PDF Downloads 6516908 Predictive Modelling of Aircraft Component Replacement Using Imbalanced Learning and Ensemble Method
Authors: Dangut Maren David, Skaf Zakwan
Abstract:
Adequate monitoring of vehicle component in other to obtain high uptime is the goal of predictive maintenance, the major challenge faced by businesses in industries is the significant cost associated with a delay in service delivery due to system downtime. Most of those businesses are interested in predicting those problems and proactively prevent them in advance before it occurs, which is the core advantage of Prognostic Health Management (PHM) application. The recent emergence of industry 4.0 or industrial internet of things (IIoT) has led to the need for monitoring systems activities and enhancing system-to-system or component-to- component interactions, this has resulted to a large generation of data known as big data. Analysis of big data represents an increasingly important, however, due to complexity inherently in the dataset such as imbalance classification problems, it becomes extremely difficult to build a model with accurate high precision. Data-driven predictive modeling for condition-based maintenance (CBM) has recently drowned research interest with growing attention to both academics and industries. The large data generated from industrial process inherently comes with a different degree of complexity which posed a challenge for analytics. Thus, imbalance classification problem exists perversely in industrial datasets which can affect the performance of learning algorithms yielding to poor classifier accuracy in model development. Misclassification of faults can result in unplanned breakdown leading economic loss. In this paper, an advanced approach for handling imbalance classification problem is proposed and then a prognostic model for predicting aircraft component replacement is developed to predict component replacement in advanced by exploring aircraft historical data, the approached is based on hybrid ensemble-based method which improves the prediction of the minority class during learning, we also investigate the impact of our approach on multiclass imbalance problem. We validate the feasibility and effectiveness in terms of the performance of our approach using real-world aircraft operation and maintenance datasets, which spans over 7 years. Our approach shows better performance compared to other similar approaches. We also validate our approach strength for handling multiclass imbalanced dataset, our results also show good performance compared to other based classifiers.Keywords: prognostics, data-driven, imbalance classification, deep learning
Procedia PDF Downloads 17216907 Modeling the International Economic Relations Development: The Prospects for Regional and Global Economic Integration
Authors: M. G. Shilina
Abstract:
The interstate economic interaction phenomenon is complex. ‘Economic integration’, as one of its types, can be explored through the prism of international law, the theories of the world economy, politics and international relations. The most objective study of the phenomenon requires a comprehensive multifactoral approach. In new geopolitical realities, the problems of coexistence and possible interconnection of various mechanisms of interstate economic interaction are actively discussed. Currently, the Eurasian continent states support the direction to economic integration. At the same time, the existing international economic law fragmentation in Eurasia is seen as the important problem. The Eurasian space is characterized by a various types of interstate relations: international agreements (multilateral and bilateral), and a large number of cooperation formats (from discussion platforms to organizations aimed at deep integration). For their harmonization, it is necessary to have a clear vision to the phased international economic relations regulation options. In the conditions of rapid development of international economic relations, the modeling (including prognostic) can be optimally used as the main scientific method for presenting the phenomenon. On the basis of this method, it is possible to form the current situation vision and the best options for further action. In order to determine the most objective version of the integration development, the combination of several approaches were used. The normative legal approach- the descriptive method of legal modeling- was taken as the basis for the analysis. A set of legal methods was supplemented by the international relations science prognostic methods. The key elements of the model are the international economic organizations and states' associations existing in the Eurasian space (the Eurasian Economic Union (EAEU), the European Union (EU), the Shanghai Cooperation Organization (SCO), Chinese project ‘One belt-one road’ (OBOR), the Commonwealth of Independent States (CIS), BRICS, etc.). A general term for the elements of the model is proposed - the interstate interaction mechanisms (IIM). The aim of building a model of current and future Eurasian economic integration is to show optimal options for joint economic development of the states and IIMs. The long-term goal of this development is the new economic and political space, so-called the ‘Great Eurasian Community’. The process of achievement this long-term goal consists of successive steps. Modeling the integration architecture and dividing the interaction into stages led us to the following conclusion: the SCO is able to transform Eurasia into a single economic space. Gradual implementation of the complex phased model, in which the SCO+ plays a key role, will allow building an effective economic integration for all its participants, to create an economically strong community. The model can have practical value for politicians, lawyers, economists and other participants involved in the economic integration process. A clear, systematic structure can serve as a basis for further governmental action.Keywords: economic integration, The Eurasian Economic Union, The European Union, The Shanghai Cooperation Organization, The Silk Road Economic Belt
Procedia PDF Downloads 14716906 Downregulation of Epidermal Growth Factor Receptor in Advanced Stage Laryngeal Squamous Cell Carcinoma
Authors: Sarocha Vivatvakin, Thanaporn Ratchataswan, Thiratest Leesutipornchai, Komkrit Ruangritchankul, Somboon Keelawat, Virachai Kerekhanjanarong, Patnarin Mahattanasakul, Saknan Bongsebandhu-Phubhakdi
Abstract:
In this globalization era, much attention has been drawn to various molecular biomarkers, which may have the potential to predict the progression of cancer. Epidermal growth factor receptor (EGFR) is the classic member of the ErbB family of membrane-associated intrinsic tyrosine kinase receptors. EGFR expression was found in several organs throughout the body as its roles involve in the regulation of cell proliferation, survival, and differentiation in normal physiologic conditions. However, anomalous expression, whether over- or under-expression is believed to be the underlying mechanism of pathologic conditions, including carcinogenesis. Even though numerous discussions regarding the EGFR as a prognostic tool in head and neck cancer have been established, the consensus has not yet been met. The aims of the present study are to assess the correlation between the level of EGFR expression and demographic data as well as clinicopathological features and to evaluate the ability of EGFR as a reliable prognostic marker. Furthermore, another aim of this study is to investigate the probable pathophysiology that explains the finding results. This retrospective study included 30 squamous cell laryngeal carcinoma patients treated at King Chulalongkorn Memorial Hospital from January 1, 2000, to December 31, 2004. EGFR expression level was observed to be significantly downregulated with the progression of the laryngeal cancer stage. (one way ANOVA, p = 0.001) A statistically significant lower EGFR expression in the late stage of the disease compared to the early stage was recorded. (unpaired t-test, p = 0.041) EGFR overexpression also showed the tendency to increase recurrence of cancer (unpaired t-test, p = 0.128). A significant downregulation of EGFR expression was documented in advanced stage laryngeal cancer. The results indicated that EGFR level correlates to prognosis in term of stage progression. Thus, EGFR expression might be used as a prevailing biomarker for laryngeal squamous cell carcinoma prognostic prediction.Keywords: downregulation, epidermal growth factor receptor, immunohistochemistry, laryngeal squamous cell carcinoma
Procedia PDF Downloads 10916905 Fault Prognostic and Prediction Based on the Importance Degree of Test Point
Authors: Junfeng Yan, Wenkui Hou
Abstract:
Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate
Procedia PDF Downloads 37716904 Parathyroid Hormone Receptor 1 as a Prognostic Indicator in Canine Osteosarcoma
Authors: Awf A. Al-Khan, Michael J. Day, Judith Nimmo, Mourad Tayebi, Stewart D. Ryan, Samantha J. Richardson, Janine A. Danks
Abstract:
Osteosarcoma (OS) is the most common type of malignant primary bone tumour in dogs. In addition to their critical roles in bone formation and remodeling, parathyroid hormone-related protein (PTHrP) and its receptor (PTHR1) are involved in progression and metastasis of many types of tumours in humans. The aims of this study were to determine the localisation and expression levels of PTHrP and PTHR1 in canine OS tissues using immunohistochemistry and to investigate if this expression is correlated with survival time. Formalin-fixed, paraffin-embedded tissue samples from 44 dogs with known survival time that had been diagnosed with primary osteosarcoma were analysed for localisation of PTHrP and PTHR1. Findings showed that both PTHrP and PTHR1 were present in all OS samples. The dogs with high level of PTHR1 protein (16%) had decreased survival time (P<0.05) compared to dogs with less PTHR1 protein. PTHrP levels did not correlate with survival time (P>0.05). The results of this study indicate that the PTHR1 is expressed differently in canine OS tissues and this may be correlated with poor prognosis. This may mean that PTHR1 may be useful as a prognostic indicator in canine OS and could represent a good therapeutic target in OS.Keywords: dog, expression, osteosarcoma, parathyroid hormone receptor 1 (PTHR1), parathyroid hormone-related protein (PTHrP), survival
Procedia PDF Downloads 27316903 Altered TP53 Mutations in de Novo Acute Myeloid Leukemia Patients in Iran
Authors: Naser Shagerdi Esmaeli, Mohsen Hamidpour, Parisa Hasankhani Tehrani
Abstract:
Background: The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. Material and Methods: In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK in Tabriz, Iran. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics, and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Result: Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics, and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. Conclusion: In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression.Keywords: acute myloblastic leukemia, TP53, FLT3/ITD, Iran
Procedia PDF Downloads 10416902 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System
Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu
Abstract:
Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model
Procedia PDF Downloads 10916901 The Analysis of Emergency Shutdown Valves Torque Data in Terms of Its Use as a Health Indicator for System Prognostics
Authors: Ewa M. Laskowska, Jorn Vatn
Abstract:
Industry 4.0 focuses on digital optimization of industrial processes. The idea is to use extracted data in order to build a decision support model enabling use of those data for real time decision making. In terms of predictive maintenance, the desired decision support tool would be a model enabling prognostics of system's health based on the current condition of considered equipment. Within area of system prognostics and health management, a commonly used health indicator is Remaining Useful Lifetime (RUL) of a system. Because the RUL is a random variable, it has to be estimated based on available health indicators. Health indicators can be of different types and come from different sources. They can be process variables, equipment performance variables, data related to number of experienced failures, etc. The aim of this study is the analysis of performance variables of emergency shutdown valves (ESV) used in oil and gas industry. ESV is inspected periodically, and at each inspection torque and time of valve operation are registered. The data will be analyzed by means of machine learning or statistical analysis. The purpose is to investigate whether the available data could be used as a health indicator for a prognostic purpose. The second objective is to examine what is the most efficient way to incorporate the data into predictive model. The idea is to check whether the data can be applied in form of explanatory variables in Markov process or whether other stochastic processes would be a more convenient to build an RUL model based on the information coming from registered data.Keywords: emergency shutdown valves, health indicator, prognostics, remaining useful lifetime, RUL
Procedia PDF Downloads 9116900 Prediction Factor of Recurrence Supraventricular Tachycardia After Adenosine Treatment in the Emergency Department
Authors: Chaiyaporn Yuksen
Abstract:
Backgroud: Supraventricular tachycardia (SVT) is an abnormally fast atrial tachycardia characterized by narrow (≤ 120 ms) and constant QRS. Adenosine was the drug of choice; the first dose was 6 mg. It can be repeated with the second and third doses of 12 mg, with greater than 90% success. The study found that patients observed at 4 hours after normal sinus rhythm was no recurrence within 24 hours. The objective of this study was to investigate the factors that influence the recurrence of SVT after adenosine in the emergency department (ED). Method: The study was conducted retrospectively exploratory model, prognostic study at the Emergency Department (ED) in Faculty of Medicine, Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand. The study was conducted for ten years period between 2010 and 2020. The inclusion criteria were age > 15 years, visiting the ED with SVT, and treating with adenosine. Those patients were recorded with the recurrence SVT in ED. The multivariable logistic regression model developed the predictive model and prediction score for recurrence PSVT. Result: 264 patients met the study criteria. Of those, 24 patients (10%) had recurrence PSVT. Five independent factors were predictive of recurrence PSVT. There was age>65 years, heart rate (after adenosine) > 100 per min, structural heart disease, and dose of adenosine. The clinical risk score to predict recurrence PSVT is developed accuracy 74.41%. The score of >6 had the likelihood ratio of recurrence PSVT by 5.71 times Conclusion: The clinical predictive score of > 6 was associated with recurrence PSVT in ED.Keywords: clinical prediction score, SVT, recurrence, emergency department
Procedia PDF Downloads 15516899 Expression of Ki-67 in Multiple Myeloma: A Clinicopathological Study
Authors: Kangana Sengar, Sanjay Deb, Ramesh Dawar
Abstract:
Introduction: Ki-67 can be a useful marker in determining proliferative activity in patients with multiple myeloma (MM). However, using Ki-67 alone results in the erroneous inclusion of non-myeloma cells leading to false high counts. We have used Dual IHC (immunohistochemistry) staining with Ki-67 and CD138 to enhance specificity in assessing proliferative activity of bone marrow plasma cells. Aims and objectives: To estimate the proportion of proliferating (Ki-67 expressing) plasma cells in patients with MM and correlation of Ki-67 with other known prognostic parameters. Materials and Methods: Fifty FFPE (formalin fixed paraffin embedded) blocks of trephine biopsies of cases diagnosed as MM from 2010 to 2015 are subjected to H & E staining and Dual IHC staining for CD 138 and Ki-67. H & E staining is done to evaluate various histological parameters like percentage of plasma cells, pattern of infiltration (nodular, interstitial, mixed and diffuse), routine parameters of marrow cellularity and hematopoiesis. Clinical data is collected from patient records from Medical Record Department. Each of CD138 expressing cells (cytoplasmic, red) are scored as proliferating plasma cells (containing a brown Ki¬67 nucleus) or non¬proliferating plasma cells (containing a blue, counter-stained, Ki-¬67 negative nucleus). Ki-67 is measured as percentage positivity with a maximum score of hundred percent and lowest of zero percent. The intensity of staining is not relevant. Results: Statistically significant correlation of Ki-67 in D-S Stage (Durie & Salmon Stage) I vs. III (p=0.026) and ISS (International Staging System) Stage I vs. III (p=0.019), β2m (p=0.029) and percentage of plasma cells (p < 0.001) is seen. No statistically significant correlation is seen between Ki-67 and hemoglobin, platelet count, total leukocyte count, total protein, albumin, S. calcium, S. creatinine, S. LDH, blood urea and pattern of infiltration. Conclusion: Ki-67 index correlated with other known prognostic parameters. However, it is not determined routinely in patients with MM due to little information available regarding its relevance and paucity of studies done to correlate with other known prognostic factors in MM patients. To the best of our knowledge, this is the first study in India using Dual IHC staining for Ki-67 and CD138 in MM patients. Routine determination of Ki-67 will help to identify patients who may benefit with more aggressive therapy. Recommendation: In this study follow up of patients is not included, and the sample size is small. Studying with larger sample size and long follow up is advocated to prognosticate Ki-67 as a marker of survival in patients with multiple myeloma.Keywords: bone marrow, dual IHC, Ki-67, multiple myeloma
Procedia PDF Downloads 15316898 Artificial Intelligence in Melanoma Prognosis: A Narrative Review
Authors: Shohreh Ghasemi
Abstract:
Introduction: Melanoma is a complex disease with various clinical and histopathological features that impact prognosis and treatment decisions. Traditional methods of melanoma prognosis involve manual examination and interpretation of clinical and histopathological data by dermatologists and pathologists. However, the subjective nature of these assessments can lead to inter-observer variability and suboptimal prognostic accuracy. AI, with its ability to analyze vast amounts of data and identify patterns, has emerged as a promising tool for improving melanoma prognosis. Methods: A comprehensive literature search was conducted to identify studies that employed AI techniques for melanoma prognosis. The search included databases such as PubMed and Google Scholar, using keywords such as "artificial intelligence," "melanoma," and "prognosis." Studies published between 2010 and 2022 were considered. The selected articles were critically reviewed, and relevant information was extracted. Results: The review identified various AI methodologies utilized in melanoma prognosis, including machine learning algorithms, deep learning techniques, and computer vision. These techniques have been applied to diverse data sources, such as clinical images, dermoscopy images, histopathological slides, and genetic data. Studies have demonstrated the potential of AI in accurately predicting melanoma prognosis, including survival outcomes, recurrence risk, and response to therapy. AI-based prognostic models have shown comparable or even superior performance compared to traditional methods.Keywords: artificial intelligence, melanoma, accuracy, prognosis prediction, image analysis, personalized medicine
Procedia PDF Downloads 80