Search results for: processed sulfur
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1129

Search results for: processed sulfur

949 Analyzing Concrete Structures by Using Laser Induced Breakdown Spectroscopy

Authors: Nina Sankat, Gerd Wilsch, Cassian Gottlieb, Steven Millar, Tobias Guenther

Abstract:

Laser-Induced Breakdown Spectroscopy (LIBS) is a combination of laser ablation and optical emission spectroscopy, which in principle can simultaneously analyze all elements on the periodic table. Materials can be analyzed in terms of chemical composition in a two-dimensional, time efficient and minor destructive manner. These advantages predestine LIBS as a monitoring technique in the field of civil engineering. The decreasing service life of concrete infrastructures is a continuously growing problematic. A variety of intruding, harmful substances can damage the reinforcement or the concrete itself. To insure a sufficient service life a regular monitoring of the structure is necessary. LIBS offers many applications to accomplish a successful examination of the conditions of concrete structures. A selection of those applications are the 2D-evaluation of chlorine-, sodium- and sulfur-concentration, the identification of carbonation depths and the representation of the heterogeneity of concrete. LIBS obtains this information by using a pulsed laser with a short pulse length (some mJ), which is focused on the surfaces of the analyzed specimen, for this only an optical access is needed. Because of the high power density (some GW/cm²) a minimal amount of material is vaporized and transformed into a plasma. This plasma emits light depending on the chemical composition of the vaporized material. By analyzing the emitted light, information for every measurement point is gained. The chemical composition of the scanned area is visualized in a 2D-map with spatial resolutions up to 0.1 mm x 0.1 mm. Those 2D-maps can be converted into classic depth profiles, as typically seen for the results of chloride concentration provided by chemical analysis like potentiometric titration. However, the 2D-visualization offers many advantages like illustrating chlorine carrying cracks, direct imaging of the carbonation depth and in general allowing the separation of the aggregates from the cement paste. By calibrating the LIBS-System, not only qualitative but quantitative results can be obtained. Those quantitative results can also be based on the cement paste, while excluding the aggregates. An additional advantage of LIBS is its mobility. By using the mobile system, located at BAM, onsite measurements are feasible. The mobile LIBS-system was already used to obtain chloride, sodium and sulfur concentrations onsite of parking decks, bridges and sewage treatment plants even under hard conditions like ongoing construction work or rough weather. All those prospects make LIBS a promising method to secure the integrity of infrastructures in a sustainable manner.

Keywords: concrete, damage assessment, harmful substances, LIBS

Procedia PDF Downloads 150
948 Quality Analysis of Lake Malawi's Diplotaxodon Fish Species Processed in Solar Tent Dryer versus Open Sun Drying

Authors: James Banda, Jupiter Simbeye, Essau Chisale, Geoffrey Kanyerere, Kings Kamtambe

Abstract:

Improved solar tent dryers for processing small fish species were designed to reduce post-harvest fish losses and improve supply of quality fish products in the southern part of Lake Malawi under CultiAF project. A comparative analysis of the quality of Diplotaxodon (Ndunduma) from Lake Malawi processed in solar tent dryer and open sun drying was conducted using proximate analysis, microbial analysis and sensory evaluation. Proximates for solar tent dried fish and open sun dried fish in terms of proteins, fats, moisture and ash were 63.3±0.15% and 63.3±0.34%, 19.6±0.09% and 19.9±0.25%, 8.3±0.12% and 17.0±0.01%, and 15.6±0.61% and 21.9±0.91% respectively. Crude protein and crude fat showed non-significant differences (p = 0.05), while moisture and ash content were significantly different (p = 001). Open sun dried fish had significantly higher numbers of viable bacteria counts (5.2×10⁶ CFU) than solar tent dried fish (3.9×10² CFU). Most isolated bacteria from solar tent dried and open sun dried fish were 1.0×10¹ and 7.2×10³ for Total coliform, 0 and 4.5 × 10³ for Escherishia coli, 0 and 7.5 × 10³ for Salmonella, 0 and 5.7×10² for shigella, 4.0×10¹ and 6.1×10³ for Staphylococcus, 1.0×10¹ and 7.0×10² for vibrio. Qualitative evaluation of sensory properties showed higher acceptability of 3.8 for solar tent dried fish than 1.7 for open sun dried fish. It is concluded that promotion of solar tent drying in processing small fish species in Malawi would support small-scale fish processors to produce quality fish in terms of nutritive value, reduced microbial contamination, sensory acceptability and reduced moisture content.

Keywords: diplotaxodon, Malawi, open sun drying, solar tent drying

Procedia PDF Downloads 303
947 Treatment of Acid Mine Drainage with Metallurgical Slag

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) refers to the production of acidified water from abandoned mines and active mines as well. The reason behind the generation of this kind of acidified water is the oxidation of pyrites present in the rocks in and around mining areas. Thiobacillus ferrooxidans, which is a sulfur oxidizing bacteria, helps in the oxidation process. AMD is extremely acidic in nature, (pH 2-3) with high concentration of several trace and heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such as chloride and sulfate. AMD has several detrimental effect on aquatic organism and environment. It can directly or indirectly contaminate the ground water and surface water as well. The present study considered the treatment of AMD with metallurgical slag, which is a waste material. Slag helped to enhance the pH of AMD to 8.62 from 1.5 with 99% removal of trace metals such as Fe, Al, Mn, Cu and Co. Metallurgical slag was proven as efficient neutralizing material for the treatment of AMD.

Keywords: acid mine drainage, Heavy metals, metallurgical slag, Neutralization

Procedia PDF Downloads 159
946 Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation

Authors: Hela Gargouri, Nizar Moalla, Hassen Hadj Kacem

Abstract:

Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests.

Keywords: adulteration, animal species, authentication, meat, mtDNA, PCR-RFLP

Procedia PDF Downloads 82
945 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 345
944 Comparative Analysis of Technologies for Production of Granular NPKS-Fertilizers

Authors: Andrey Norov

Abstract:

Based on a comparison of technologies for the production of granular nitrate-containing and nitrate-free NPKS-fertilizers, this paper considers the effect of process parameters on the economic feasibility of production, on physical & chemical, and structural & mechanical properties and quality of final products (caking, static strength of granules, hygroscopicity, etc.), as well as on thermal stability of fertilizers, eco-friendly production, and other aspects. This comparative analysis allows to select the optimal technology for specific conditions and requirements. Additionally, the report considers flexible, a unique technology for the production of granular NPKS-fertilizers containing sulfur and calcium, suggested by Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF” - the oldest industry-oriented institute in Russia. This technology is implemented at one of the Russian plants where combined drum is used for granulation and drying.

Keywords: caking, granule static strength, granulating-drying drum, NPKS-fertilizers

Procedia PDF Downloads 74
943 Retail of Organic Food in Poland

Authors: Joanna Smoluk-Sikorska, Władysława Łuczka

Abstract:

Organic farming is an important element of sustainable agriculture. It has been developing very dynamically in Poland, especially since Poland’s accession to the EU. Nevertheless, properly functioning organic market is a necessary condition justifying development of organic agriculture. Despite significant improvement, this market in Poland is still in the initial stage of growth. An important element of the market is distribution, especially retail, which offers specified product range to consumers. Therefore, there is a need to investigate retail outlets offering organic food in order to improve functioning of this part of the market. The inquiry research conducted in three types of outlets offering organic food, between 2011 and 2012 in the 8 largest Polish cities, shows that the majority of outlets offer cereals, processed fruit and vegetables as well as spices and the least shops – meat and sausages. The distributors mostly indicate unsatisfactory product range of suppliers as the reason for this situation. The main providers of the outlets are wholesalers, particularly in case of processed products, and in fresh products – organic farms. A very important distribution obstacle is dispersion of producers, which generates high transportation costs and what follows that, high price of organics. In the investigated shops, the most often used price calculation method is a cost method. The majority of the groceries and specialist shops apply margins between 21 and 40%. The margin in specialist outlets is the highest, in regard to the qualified service and advice. In turn, most retail networks declare the margin between 0 and 20%, which is consistent with low-price strategy applied in these shops. Some lacks in the product range of organics and in particular high prices cause that the demand volume is rather low. Therefore there is a need to support certain market actions, e.g. on-farm processing or promotion.

Keywords: organic food, retail, product range, supply sources

Procedia PDF Downloads 271
942 Treatment of Acid Mine Drainage with Modified Fly Ash

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) is the generation of acidic water from active as well as abandoned mines. AMD generates due to the oxidation of pyrites present in the rock in mining areas. Sulfur oxidizing bacteria such as Thiobacillus ferrooxidans acts as a catalyst in this oxidation process. The characteristics of AMD is extreme low pH (2-3) with elevated concentration of different heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such sulfate and chloride. AMD contaminate the ground water as well as surface water which leads to the degradation of water quality. Moreover, it carries detrimental effect for aquatic organism and degrade the environment. In the present study, AMD is treated with fly ash, modified with alkaline agent (NaOH). This modified fly ash (MFA) was experimentally proven as a very effective neutralizing agent for the treatment of AMD. It was observed that pH of treated AMD raised to 9.22 from 1.51 with 100g/L of MFA dose. Approximately, 99% removal of Fe, Al, Mn, Cu and Co took place with the same MFA dose. The treated water comply with the effluent discharge standard of (IS: 2490-1981).

Keywords: acid mine drainage, heavy metals, modified fly ash, neutralization

Procedia PDF Downloads 121
941 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 102
940 Characterization of Activated Tire Char (ATC) and Adsorptive Desulfurization of Tire Pyrolytic Oil (TPO) Using ATC

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The adsorptive ability of different carbon materials, tire char (TC), demineralized tire char (DTC), activated tire char (ATC) and Aldrich supplied commercial activated carbon (CAC) was studied for desulfurization of tire pyrolytic oil (TPO). TPO with an initial sulfur content of 7767.7 ppmw was used in this present study. Preparation of ATC was achieved by chemical treatment of raw TC using a potassium hydroxide (KOH) solution and subsequent activation at 800°C in the presence of nitrogen. The thermal behavior of TC, surface microstructure, and the surface functional groups of the carbon materials was investigated using TGA, SEM, and FTIR, respectively. Adsorptive desulfurization of TPO using the carbon materials was performed and they performed in the order of CAC>ATC>DTC>TC. Adsorption kinetics were studied, and pseudo-first order kinetic model displayed a better fit compared to pseudo-second order model. For isotherm studies, the Freundlich isotherm model fitted to the equilibrium data better than the Langmuir isotherm model.

Keywords: ATC, desulfurization, pyrolysis, tire, TPO

Procedia PDF Downloads 86
939 Hydrogen Production from Auto-Thermal Reforming of Ethanol Catalyzed by Tri-Metallic Catalyst

Authors: Patrizia Frontera, Anastasia Macario, Sebastiano Candamano, Fortunato Crea, Pierluigi Antonucci

Abstract:

The increasing of the world energy demand makes today biomass an attractive energy source, based on the minimizing of CO2 emission and on the global warming reduction purposes. Recently, COP-21, the international meeting on global climate change, defined the roadmap for sustainable worldwide development, based on low-carbon containing fuel. Hydrogen is an energy vector able to substitute the conventional fuels from petroleum. Ethanol for hydrogen production represents a valid alternative to the fossil sources due to its low toxicity, low production costs, high biodegradability, high H2 content and renewability. Ethanol conversion to generate hydrogen by a combination of partial oxidation and steam reforming reactions is generally called auto-thermal reforming (ATR). The ATR process is advantageous due to the low energy requirements and to the reduced carbonaceous deposits formation. Catalyst plays a pivotal role in the ATR process, especially towards the process selectivity and the carbonaceous deposits formation. Bimetallic or trimetallic catalysts, as well as catalysts with doped-promoters supports, may exhibit high activity, selectivity and deactivation resistance with respect to the corresponding monometallic ones. In this work, NiMoCo/GDC, NiMoCu/GDC and NiMoRe/GDC (where GDC is Gadolinia Doped Ceria support and the metal composition is 60:30:10 for all catalyst) have been prepared by impregnation method. The support, Gadolinia 0.2 Doped Ceria 0.8, was impregnated by metal precursors solubilized in aqueous ethanol solution (50%) at room temperature for 6 hours. After this, the catalysts were dried at 100°C for 8 hours and, subsequently, calcined at 600°C in order to have the metal oxides. Finally, active catalysts were obtained by reduction procedure (H2 atmosphere at 500°C for 6 hours). All sample were characterized by different analytical techniques (XRD, SEM-EDX, XPS, CHNS, H2-TPR and Raman Spectorscopy). Catalytic experiments (auto-thermal reforming of ethanol) were carried out in the temperature range 500-800°C under atmospheric pressure, using a continuous fixed-bed microreactor. Effluent gases from the reactor were analyzed by two Varian CP4900 chromarographs with a TCD detector. The analytical investigation focused on the preventing of the coke deposition, the metals sintering effect and the sulfur poisoning. Hydrogen productivity, ethanol conversion and products distribution were measured and analyzed. At 600°C, all tri-metallic catalysts show the best performance: H2 + CO reaching almost the 77 vol.% in the final gases. While NiMoCo/GDC catalyst shows the best selectivity to hydrogen whit respect to the other tri-metallic catalysts (41 vol.% at 600°C). On the other hand, NiMoCu/GDC and NiMoRe/GDC demonstrated high sulfur poisoning resistance (up to 200 cc/min) with respect to the NiMoCo/GDC catalyst. The correlation among catalytic results and surface properties of the catalysts will be discussed.

Keywords: catalysts, ceria, ethanol, gadolinia, hydrogen, Nickel

Procedia PDF Downloads 124
938 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk

Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv

Abstract:

Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.

Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic

Procedia PDF Downloads 25
937 Correlation between Indoor and Outdoor Air

Authors: Jamal A. Radaideh, Ziad N. Shatnawi

Abstract:

Both indoor and outdoor air quality is investigated throughout residential areas of Al Hofuf city/ Eastern province of Saudi Arabia through a multi‐week multiple sites measurement and sampling survey. Concentration levels of five criteria air pollutants, including carbon dioxide (CO2), carbon monoxide (CO), nitrous dioxide (NO2), sulfur dioxide (SO2) and total volatile organic compounds (TVOC) were measured and analyzed during the study period from January to May 2014. For this survey paper, three different sites, roadside RS, urban UR, and rural RU were selected. Within each site type, six locations were assigned to carryout air quality measurements and to study varying indoor/outdoor air quality for each pollutant. Results indicate that a strong correlation between indoor and outdoor air exists. The I/O ratios for the considered criteria pollutants show that the strongest relationship between indoor and outdoor air is found by analyzing of carbon dioxide, CO2 (0.88), while the lowest is found by both NO2 and SO2 (0.7).

Keywords: criteria air pollutants, indoor/outdoor air pollution, indoor/outdoor ratio, Saudi Arabia

Procedia PDF Downloads 392
936 Development of a Non-Dispersive Infrared Multi Gas Analyzer for a TMS

Authors: T. V. Dinh, I. Y. Choi, J. W. Ahn, Y. H. Oh, G. Bo, J. Y. Lee, J. C. Kim

Abstract:

A Non-Dispersive Infrared (NDIR) multi-gas analyzer has been developed to monitor the emission of carbon monoxide (CO) and sulfur dioxide (SO2) from various industries. The NDIR technique for gas measurement is based on the wavelength absorption in the infrared spectrum as a way to detect particular gasses. NDIR analyzers have popularly applied in the Tele-Monitoring System (TMS). The advantage of the NDIR analyzer is low energy consumption and cost compared with other spectroscopy methods. However, zero/span drift and interference are its urgent issues to be solved. Multi-pathway technique based on optical White cell was employed to improve the sensitivity of the analyzer in this work. A pyroelectric detector was used to detect the Infrared radiation. The analytical range of the analyzer was 0 ~ 200 ppm. The instrument response time was < 2 min. The detection limits of CO and SO2 were < 4 ppm and < 6 ppm, respectively. The zero and span drift of 24 h was less than 3%. The linearity of the analyzer was less than 2.5% of reference values. The precision and accuracy of both CO and SO2 channels were < 2.5% of relative standard deviation. In general, the analyzer performed well. However, the detection limit and 24h drift should be improved to be a more competitive instrument.

Keywords: analyzer, CEMS, monitoring, NDIR, TMS

Procedia PDF Downloads 226
935 Conducting Quality Planning, Assurance and Control According to GMP (Good Manufacturing Practices) Standards and Benchmarking Data for Kuwait Food Industries

Authors: Alaa Alateeqi, Sara Aldhulaiee, Sara Alibraheem, Noura Alsaleh

Abstract:

For the past few decades or so, Kuwait's local food industry has grown remarkably due to increase in demand for processed or semi processed food products in the market. It is important that the ever increasing food manufacturing/processing units maintain the required quality standards as per regional and to some extent international quality requirements. It has been realized that all Kuwait food manufacturing units should understand and follow the international standard practices, and moreover a set of guidelines must be set for quality assurance such that any new business in this area is aware of the minimum requirements. The current study has been undertaken to identify the gaps in Kuwait food industries in following the Good Manufacturing Practices (GMP) in terms of quality planning, control and quality assurance. GMP refers to Good Manufacturing Practices, which are a set of rules, laws or regulations that certify producing products within quality standards and ensuring that it is safe, pure and effective. The present study therefore reports about a ‘case study’ in a reputed food manufacturing unit in Kuwait; starting from assessment of the current practices followed by diagnosis, report of the diagnosis and road map and corrective measures for GMP implementation in the unit. The case study has also been able to identify the best practices and establish a benchmarking data for other companies to follow, through measuring the selected company's quality, policies, products and strategies and compare it with the established benchmarking data. A set of questionnaires and assessment mechanism has been established for companies to identify their ‘benchmarking score’ in relation to the number of non-conformities and conformities with the GMP standard requirements.

Keywords: good manufacturing practices, GMP, benchmarking, Kuwait Food Industries, food quality

Procedia PDF Downloads 440
934 Low Temperature Solution Processed Solar Cell Based on ITO/PbS/PbS:Bi3+ Heterojunction

Authors: M. Chavez, H. Juarez, M. Pacio, O. Portillo

Abstract:

PbS chemical bath heterojunction sollar cells have shown significant improvements in performance. Here we demonstrate a solar cell based on the heterojunction formed between PbS layer and PbS:Bi3+ thin films that are deposited via solution process at 40°C. The device achieve an current density of 4 mA/cm2. The simple and low-cost deposition method of PbS:Bi3+ films is promising for the fabrication.

Keywords: PbS doped, Bismuth, solar cell, thin films

Procedia PDF Downloads 520
933 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region

Authors: Miroslav Dumbrovsky, Lucie Larisova

Abstract:

The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.

Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity

Procedia PDF Downloads 211
932 Characteristic of Ta Alloy Coating Films on Near-Net Shape with Different Current Densities Using MARC Process

Authors: Young Jun Lee, Tae Hyuk Lee, Kyoung Tae Park, Jong Hyeon Lee

Abstract:

The harsh atmosphere of the sulfur-iodine process used for producing hydrogen requires better corrosion resistance and mechanical properties that is possible to obtain with pure tantalum. Ta-W alloy is superior to pure tantalum but is difficult to alloy due to its high melting temperature. In this study, substrates of near-net shape (Swagelok® tube ISSG8UT4) were coated with Ta-W using the multi-anode reactive alloy coating (MARC) process in molten salt (LiF-NaF-K2TaF7) at different current densities (1, 2 and 4mA/cm2). Ta-4W coating films of uniform coating thicknesses, without any entrapped salt, were successfully deposited on Swagelok tube by electrodeposition at 1 mA/cm2. The resulting coated film with a corrosion rate of less than 0.011 mm/year was attained in hydriodic acid at 160°C, and hardness up to 12.9 % stronger than pure tantalum coated film. The alloy coating films also contributed to significant enhancement of corrosion resistance.

Keywords: tantalum, tantalum alloy, tungsten alloy, electroplating

Procedia PDF Downloads 389
931 Effect of Variety and Fibre Type on Functional and organoleptic Properties of Plantain Flour Intended for Food "Fufu"

Authors: C. C. Okafor

Abstract:

The effect of different varieties of plantain (Horn, false horn and French) and fibre types (soy bean residue, cassava sievette and rice bran) on functional and organoleptic properties of plantain-based flour was assessed. Horn, false horn french were processed by washing, peeling with knife, slicing into 3mm thickness and steam blanched at 80℃ for 5minutes, oven dried at 65℃ for 48 hours and milled into flours with attrition mill, sieved with 60 mesh sieve, separately. Fibre sources were processed, milled and fractionated into 60, 40 & 20 mesh sizes. Both flours were blended as 80:20, 70:30 and 60:40. Results obtained indicated that water absorption capacity is highest (2.68) in French plantain variety irrespective of the fibre type used. And in all variety tested the swelling capacity is highest (2.93) when the plantain flour is blended with soy residue (SR) and lowest (1.25) when blended with rice brain (RB). The results show that there is significant variety and fibre type interaction effect at (P < : 0.05). Again the results showed that texture mold ability and overall acceptability were best (7.00) when soy residue was used where as addition of rice bran into plantain flour resulted in fufu with poor texture. This trend was observed in all the verities of plantain tested and in all of the particle size of flour. Using cassava serviette also yield fufu similar to that produced with soy residue in all the parameter tested (mold ability, texture and overall acceptability. Generally, plantain flours from french and false horn yielded better quality fufu in terms of texture mold ability, overall acceptability, irrespective of the fibre type used.

Keywords: functional, organoleptic, particle size, sieve mesh, variety

Procedia PDF Downloads 375
930 Physicochemical Stability of Pulse Spreads during Storage after Sous Vide Treatment and High Pressure Processing

Authors: Asnate Kirse, Daina Karklina, Sandra Muizniece-Brasava, Ruta Galoburda

Abstract:

Pulses are high in plant protein and dietary fiber, and contain slowly digestible starches. Innovative products from pulses could increase their consumption and benefit consumer health. This study was conducted to evaluate physicochemical stability of processed cowpea (Vigna unguiculata (L.) Walp. cv. Fradel) and maple pea (Pisum sativum var. arvense L. cv. Bruno) spreads at 5 °C temperature during 62-day storage. Physicochemical stability of pulse spreads was compared after sous vide treatment (80 °C/15 min) and high pressure processing (700 MPa/10 min/20 °C). Pulse spreads were made by homogenizing cooked pulses in a food processor together with salt, citric acid, oil, and bruschetta seasoning. A total of four different pulse spreads were studied: Cowpea spread without and with seasoning, maple pea spread without and with seasoning. Transparent PA/PE and light proof PET/ALU/PA/PP film pouches were used for packaging of pulse spreads under vacuum. The parameters investigated were pH, water activity and mass losses. Pulse spreads were tested on days 0, 15, 29, 42, 50, 57 and 62. The results showed that sous-vide treatment and high pressure processing had an insignificant influence on pH, water activity and mass losses after processing, irrespective of packaging material did not change (p>0.1). pH and water activity of sous-vide treated and high pressure processed pulse spreads in different packaging materials proved to be stable throughout the storage. Mass losses during storage accounted to 0.1% losses. Chosen sous-vide treatment and high pressure processing regimes and packaging materials are suitable to maintain consistent physicochemical quality of the new products during 62-day storage.

Keywords: cowpea, flexible packaging, maple pea, water activity

Procedia PDF Downloads 253
929 Estimating Directional Shadow Prices of Air Pollutant Emissions by Transportation Modes

Authors: Huey-Kuo Chen

Abstract:

This paper applies directional marginal productivity model to study the shadow price of emissions by transportation modes in the years of 2011 and 2013 with the aim to provide a reference for policy makers to improve the emission of pollutants. One input variable (i.e., energy consumption), one desirable output variable (i.e., vehicle kilometers traveled) and three undesirable output variables (i.e., carbon dioxide, sulfur oxides and nitrogen oxides) generated by road transportation modes were used to evaluate directional marginal productivity and directional shadow price for 18 transportation modes. The results show that the directional shadow price (DSP) of SOx is much higher than CO2 and NOx. Nevertheless, the emission of CO2 is the largest among the three kinds of pollutants. To improve the air quality, the government should pay more attention to the emission of CO2 and apply the alternative solution such as promoting public transportation and subsidizing electric vehicles to reduce the use of private vehicles.

Keywords: marginal productivity, road transportation modes, shadow price, undesirable outputs

Procedia PDF Downloads 116
928 A Novel CeO2-WOx-TiO2 Catalyst for Oxidative Desulfurization of Model Fuel Oil

Authors: Corazon Virtudazo-Ligaray, Mark Daniel G. de Luna, Meng-Wei Wan, Ming-Chun Lu

Abstract:

A series of ternary compound catalyst with nanocomposites of ceria, tungsten trioxide and titania (CeO2-WOx-TiO2) with different WOx mole fraction (10, 20, 30, 40) have been synthesized by sol-gel method. These nanocomposite catalysts were used for oxidative extractive desulfurization of model fuel oil, which were composed of dibenzothiophene (DBT) dissolved in toluene. The 30% hydrogen peroxide, H2O2 was used as oxidant and acetonitrile as extractant. These catalysts were characterized by SEM-EDS to determine the morphology. Catalytic oxidation results show that the catalysts have high selectivity in refractory fuel oil with organo sulfur contents. The oxidative removal of DBT increases as the HPW content increases. The nanocomposites CeO2-WOx-TiO2 also shows high selectivity for DBT oxidation in the DBT–toluene acetonitrile system. The catalytic oxidative desulfurization ratio of model fuel reached to 100% with nanocomposites CeO2-WOx-TiO2 (35-30-35) mol percent catalyst nanocomposition under 333 K in 30 minutes.

Keywords: ceria, oxidative desulfurization, titania, phosphotungstic acid

Procedia PDF Downloads 384
927 Iranian Processed Cheese under Effect of Emulsifier Salts and Cooking Time in Process

Authors: M. Dezyani, R. Ezzati bbelvirdi, M. Shakerian, H. Mirzaei

Abstract:

Sodium Hexametaphosphate (SHMP) is commonly used as an Emulsifying Salt (ES) in process cheese, although rarely as the sole ES. It appears that no published studies exist on the effect of SHMP concentration on the properties of process cheese when pH is kept constant; pH is well known to affect process cheese functionality. The detailed interactions between the added phosphate, Casein (CN), and indigenous Ca phosphate are poorly understood. We studied the effect of the concentration of SHMP (0.25-2.75%) and holding time (0-20 min) on the textural and Rheological properties of pasteurized process Cheddar cheese using a central composite rotatable design. All cheeses were adjusted to pH 5.6. The meltability of process cheese (as indicated by the decrease in loss tangent parameter from small amplitude oscillatory rheology, degree of flow, and melt area from the Schreiber test) decreased with an increase in the concentration of SHMP. Holding time also led to a slight reduction in meltability. Hardness of process cheese increased as the concentration of SHMP increased. Acid-base titration curves indicated that the buffering peak at pH 4.8, which is attributable to residual colloidal Ca phosphate, was shifted to lower pH values with increasing concentration of SHMP. The insoluble Ca and total and insoluble P contents increased as concentration of SHMP increased. The proportion of insoluble P as a percentage of total (indigenous and added) P decreased with an increase in ES concentration because of some of the (added) SHMP formed soluble salts. The results of this study suggest that SHMP chelated the residual colloidal Ca phosphate content and dispersed CN; the newly formed Ca-phosphate complex remained trapped within the process cheese matrix, probably by cross-linking CN. Increasing the concentration of SHMP helped to improve fat emulsification and CN dispersion during cooking, both of which probably helped to reinforce the structure of process cheese.

Keywords: Iranian processed cheese, emulsifying salt, rheology, texture

Procedia PDF Downloads 409
926 Active Part of the Burnishing Tool Effect on the Physico-Geometric Aspect of the Superficial Layer of 100C6 and 16NC6 Steels

Authors: Tarek Litim, Ouahiba Taamallah

Abstract:

Burnishing is a mechanical surface treatment that combines several beneficial effects on the two steel grades studied. The application of burnishing to the ball or to the tip favors a better roughness compared to turning. In addition, it allows the consolidation of the surface layers through work hardening phenomena. The optimal effects are closely related to the treatment parameters and the active part of the device. With an improvement of 78% on the roughness, burnishing can be defined as a finishing operation in the machining range. With a 44% gain in consolidation rate, this treatment is an effective process for material consolidation. These effects are affected by several factors. The factors V, f, P, r, and i have the most significant effects on both roughness and hardness. Ball or tip burnishing leads to the consolidation of the surface layers of both grades 100C6 and 16NC6 steels by work hardening. For each steel grade and its mechanical treatment, the rational tensile curve has been drawn. Lüdwick's law is used to better plot the work hardening curve. For both grades, a material hardening law is established. For 100C6 steel, these results show a work hardening coefficient and a consolidation rate of 0.513 and 44, respectively, compared to the surface layers processed by turning. When 16NC6 steel is processed, the work hardening coefficient is about 0.29. Hardness tests characterize well the burnished depth. The layer affected by work hardening can reach up to 0.4 mm. Simulation of the tests is of great importance to provide the details at the local scale of the material. Conventional tensile curves provide a satisfactory indication of the toughness of 100C6 and 16NC6 materials. A simulation of the tensile curves revealed good agreement between the experimental and simulation results for both steels.

Keywords: 100C6 steel, 16NC6 steel, burnishing, work hardening, roughness, hardness

Procedia PDF Downloads 138
925 Colombia Fossil Fuel Policies and Their Impact on Urban Air Quality

Authors: Ruth Catacolí, Hector Garcia

Abstract:

Colombia Urban Areas shows a decreasing of their air quality, no matter the actions developed by the Government facing the mitigation of pressure factors related with air pollution. Examples of these actions were the fossil fuel quality improvement policies (FFQI). This study evaluated the impact of three FFQI in the air quality of Bogotá during the period 1990 - 2006: The phase-out of lead in the gasoline; the sulfur reduction in diesel oil consumed in Bogotá and the oxygenation of gasoline through the addition of ethanol. The results indicate that only the policy of phase-out of lead in gasoline has been effective, showing dropping of lead oxides concentration in the air. Some stakeholders believe that the FFQI evaluated in the study are environmental policies, but no one of these policies has been supported by an environmental impact assessment that shows specific benefits in air quality. The research includes some fuel policy elements to achieve positive impact on the air quality in the urban centers of Colombia.

Keywords: policy assessment, fuel quality, urban air quality, air quality management

Procedia PDF Downloads 297
924 Processing Big Data: An Approach Using Feature Selection

Authors: Nikat Parveen, M. Ananthi

Abstract:

Big data is one of the emerging technology, which collects the data from various sensors and those data will be used in many fields. Data retrieval is one of the major issue where there is a need to extract the exact data as per the need. In this paper, large amount of data set is processed by using the feature selection. Feature selection helps to choose the data which are actually needed to process and execute the task. The key value is the one which helps to point out exact data available in the storage space. Here the available data is streamed and R-Center is proposed to achieve this task.

Keywords: big data, key value, feature selection, retrieval, performance

Procedia PDF Downloads 308
923 A Strategy to Reduce Salt Intake: The Use of a Seasoning Obtained from Wine Pomace

Authors: María Luisa Gonzalez-SanJose, Javier Garcia-Lomillo, Raquel Del Pino, Miriam Ortega-Heras, Maria Dolores Rivero-Perez, Pilar Muñiz-Rodriguez

Abstract:

One of the most preoccupant problems related to the diet of the occidental societies is the high salt intake. In Spain, salt intake is almost twice as recommended by the World Health Organization (WHO). A lot of negative health effects of high sodium intake have been described being the hypertension, cardiovascular and coronary diseases ones of the most important. Due to this fact, government and other institutions are working on the gradual reduction of this consumption. Intake of meat products have been described as the main processed products that bring salt to the diet, followed by snacks and savory crackers. However, fortunately, the food industry has also raised awareness of this problem and is working intensely, and in recent years attempts to reduce the salt content in processed products, and is developing special lines with low sodium content. It is important to consider that processed food are the main source of sodium in occidental countries. One of the possible strategies to reduce the salt content in food is to find substitutes that can emulate their taste properties without adding much sodium or products that mask or substitute salty sensations with other flavors and aromas. In this sense, multiple products have been proposed and used until now. Potassium salts produce similar salty sensations without bring sodium, however their intake should be also limited, by healthy reasons. Furthermore, some potassium salts shows some better notes. Other alternatives are the use of flavor enhancers, spices, aromatic herbs, sea-plant derivate products, etc. The wine pomace is rich in potassium salts, content organic acid and other flavored substances, therefore it could be an interesting raw material to obtain derived products that could be useful as alternative ‘seasonings’. Considering previous comments, the main aim of this study was to evaluate the possible use of a natural seasoning, made from red wine pomace, in two different foods, crackers and burgers. The seasoning was made in the pilot plant of food technology of the University of Burgos, where the studied crackers and patties were also made. Different members of the University, students, docent and administrative personal, taste the products, and a trained panel evaluated salty intensity. The seasoning in addition to potassium contain significant levels of dietary fiber and phenolic compounds, which also makes it interesting as a functional ingredient. Both burgers and crackers made with the seasoning showed better taste that those without salt. Obviously, they showed lower sodium content than normal formulation, and were richer in potassium, antioxidant and fiber. Then, they showed lower values of the relation Na/K. All these facts are correlated with more ‘healthy’ products especially to that people with hypertension and other coronary dysfunctions.

Keywords: healthy foods, low salt, seasoning, wine pomace

Procedia PDF Downloads 246
922 Assessing Mycotoxin Exposure from Processed Cereal-Based Foods for Children

Authors: Soraia V. M. de Sá, Miguel A. Faria, José O. Fernandes, Sara C. Cunha

Abstract:

Cereals play a vital role in fulfilling the nutritional needs of children, supplying essential nutrients crucial for their growth and development. However, concerns arise due to children's heightened vulnerability due to their unique physiology, specific dietary requirements, and relatively higher intake in relation to their body weight. This vulnerability exposes them to harmful food contaminants, particularly mycotoxins, prevalent in cereals. Because of the thermal stability of mycotoxins, conventional industrial food processing often falls short of eliminating them. Children, especially those aged 4 months to 12 years, frequently encounter mycotoxins through the consumption of specialized food products, such as instant foods, breakfast cereals, bars, cookie snacks, fruit puree, and various dairy items. A close monitoring of this demographic group's exposure to mycotoxins is essential, as toxins ingestion may weaken children’s immune systems, reduce their resistance to infectious diseases, and potentially lead to cognitive impairments. The severe toxicity of mycotoxins, some of which are classified as carcinogenic, has spurred the establishment and ongoing revision of legislative limits on mycotoxin levels in food and feed globally. While EU Commission Regulation 1881/2006 addresses well-known mycotoxins in processed cereal-based foods and infant foods, the absence of regulations specifically addressing emerging mycotoxins underscores a glaring gap in the regulatory framework, necessitating immediate attention. Emerging mycotoxins have gained mounting scrutiny in recent years due to their pervasive presence in various foodstuffs, notably cereals and cereal-based products. Alarmingly, exposure to multiple mycotoxins is hypothesized to exhibit higher toxicity than isolated effects, raising particular concerns for products primarily aimed at children. This study scrutinizes the presence of 22 mycotoxins of the diverse range of chemical classes in 148 processed cereal-based foods, including 39 breakfast cereals, 25 infant formulas, 27 snacks, 25 cereal bars, and 32 cookies commercially available in Portugal. The analytical approach employed a modified QuEChERS procedure followed by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. Given the paucity of information on the risk assessment of children to multiple mycotoxins in cereal and cereal-based products consumed by children of Portugal pioneers the evaluation of this critical aspect. Overall, aflatoxin B1 (AFB1) and aflatoxin G2 (AFG2) emerged as the most prevalent regulated mycotoxins, while enniatin B (ENNB) and sterigmatocystin (STG) were the most frequently detected emerging mycotoxins.

Keywords: cereal-based products, children´s nutrition, food safety, UPLC-MS/MS analysis

Procedia PDF Downloads 33
921 Reaction Rate of Olive Stone during Combustion in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, M. Rubio-Rubio, J. Arrieta, N. García-Hernando

Abstract:

Combustion of biomass is a promising alternative to reduce the high pollutant emission levels associated to the combustion of fossil flues due to the net null emission of CO2 attributed to biomass. However, the biomass selected should also have low contents of nitrogen and sulfur to limit the NOx and SOx emissions derived from its combustion. In this sense, olive stone is an excellent fuel to power combustion reactors with reduced levels of pollutant emissions. In this work, the combustion of olive stone particles is analyzed experimentally in a thermogravimetric analyzer (TGA) and in a bubbling fluidized bed reactor (BFB). The bubbling fluidized bed reactor was installed over a scale, conforming a macro-TGA. In both equipment, the evolution of the mass of the samples was registered as the combustion process progressed. The results show a much faster combustion process in the bubbling fluidized bed reactor compared to the thermogravimetric analyzer measurements, due to the higher heat transfer coefficient and the abrasion of the fuel particles by the bed material in the BFB reactor.

Keywords: olive stone, combustion, reaction rate, fluidized bed

Procedia PDF Downloads 169
920 The Impact of the Atypical Crisis on Educational Migration: Economic and Policy Challenges

Authors: Manana Lobzhanidze, Marine Kobalava, Lali Chikviladze

Abstract:

The global pandemic crisis has had a significant impact on educational migration, substantially limiting young people’s access to education abroad. Therefore, it became necessary to study the economic, demographic, social, cultural and other factors associated with educational migration, to identify the economic and political challenges of educational migration and to develop recommendations. The aim of the research is to study the effects of the atypical crisis on educational migration and to make recommendations on effective migration opportunities based on the identification of economic and policy challenges in this area. Bibliographic research is used to assess the effects of the impact of the atypical crisis on educational migration presented in the papers of various scholars. Against the background of the restrictions imposed during the COVID19 pandemic, migration rates have been analyzed, endogenous and exogenous factors affecting educational migration have been identified. Quantitative and qualitative research of students and graduates of TSU Economics and Business Faculty is conducted, the results have been processed by SPSS program, the factors hindering educational migration and the challenges have been identified. The Internet and digital technologies have been shown to play a vital role in alleviating the challenges posed by the COVID-19 pandemic, however, lack of Internet access and limited financial resources have played a disruptive role in the educational migration process. The analysis of quantitative research materials revealed the problems of educational migration caused by the atypical crisis, while some issues were clarified during the focus group meetings. The following theoretical-methodological approaches were used during the research: a bibliographic research, analysis, synthesis, comparison, selection-grouping are used; Quantitative and qualitative research has been carried out, the results have been processed by SPSS program. The article presents the consequences of the atypical crisis for educational migration, identifies the main economic and policy challenges in the field of educational migration, and develops appropriate recommendations to overcome them.

Keywords: educational migration, atypical crisis, economic-political challenges, educational migration factors

Procedia PDF Downloads 110