Search results for: packaging%20films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 328

Search results for: packaging%20films

178 Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara

Authors: Hasan Atakan Sengul, Nergis Canturk, Bahar Erbas

Abstract:

Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body.

Keywords: analyze of bisphenol-A, BPA, BPA in drinking water, BPA in urine

Procedia PDF Downloads 107
177 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 85
176 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 39
175 Development of Transmission and Packaging for Parallel Hybrid Light Commercial Vehicle

Authors: Vivek Thorat, Suhasini Desai

Abstract:

The hybrid electric vehicle is widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and low emissions at competitive costs. Retro fitment of hybrid components into a conventional vehicle for achieving better performance is the best solution so far. But retro fitment includes major modifications into a conventional vehicle with a high cost. This paper focuses on the development of a P3x hybrid prototype with rear wheel drive parallel hybrid electric Light Commercial Vehicle (LCV) with minimum and low-cost modifications. This diesel Hybrid LCV is different from another hybrid with regard to the powertrain. The additional powertrain consists of continuous contact helical gear pair followed by chain and sprocket as a coupler for traction motor. Vehicle powertrain which is designed for the intended high-speed application. This work focuses on targeting of design, development, and packaging of this unique parallel diesel-electric vehicle which is based on multimode hybrid advantages. To demonstrate the practical applicability of this transmission with P3x hybrid configuration, one concept prototype vehicle has been build integrating the transmission. The hybrid system makes it easy to retrofit existing vehicle because the changes required into the vehicle chassis are a minimum. The additional system is designed for mainly five modes of operations which are engine only mode, electric-only mode, hybrid power mode, engine charging battery mode and regenerative braking mode. Its driving performance, fuel economy and emissions are measured and results are analyzed over a given drive cycle. Finally, the output results which are achieved by the first vehicle prototype during experimental testing is carried out on a chassis dynamometer using MIDC driving cycle. The results showed that the prototype hybrid vehicle is about 27% faster than the equivalent conventional vehicle. The fuel economy is increased by 20-25% approximately compared to the conventional powertrain.

Keywords: P3x configuration, LCV, hybrid electric vehicle, ROMAX, transmission

Procedia PDF Downloads 219
174 Model of Learning Center on OTOP Production Process Based on Sufficiency Economic Philosophy

Authors: Chutikarn Sriviboon, Witthaya Mekhum

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, learning center

Procedia PDF Downloads 344
173 The Model of Learning Centre on OTOP Production Process Based on Sufficiency Economic Philosophy for Sustainable Life Quality

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyse and evaluate successful factors in OTOP production process for the developing of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production 2) product development 3) the community strength 4) marketing possibility and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors 2) evaluate the strategy based on Sufficiency Economic Philosophy and 3) the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning centre on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, marketing management

Procedia PDF Downloads 209
172 Language Choice and Language Maintenance of Northeastern Thai Staff in Suan Sunandha Rajabhat University

Authors: Napasri Suwanajote

Abstract:

The purposes of this research were to analyze and evaluate successful factors in OTOP production process for the developing of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The research has been designed as a qualitative study to gather information from 30 OTOP producers in Bangkontee District, Samudsongkram Province. They were all interviewed on 3 main parts. Part 1 was about the production process including 1) production, 2) product development, 3) the community strength, 4) marketing possibility, and 5) product quality. Part 2 evaluated appropriate successful factors including 1) the analysis of the successful factors, 2) evaluate the strategy based on Sufficiency Economic Philosophy, and 3) the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality. The results showed that the production did not affect the environment with potential in continuing standard quality production. They used the raw materials in the country. On the aspect of product and community strength in the past 1 year, it was found that there was no appropriate packaging showing product identity according to global market standard. They needed the training on packaging especially for food and drink products. On the aspect of product quality and product specification, it was found that the products were certified by the local OTOP standard. There should be a responsible organization to help the uncertified producers pass the standard. However, there was a problem on food contamination which was hazardous to the consumers. The producers should cooperate with the government sector or educational institutes involving with food processing to reach FDA standard. The results from small group discussion showed that the community expected high education and better standard living. Some problems reported by the community included informal debt and drugs in the community. There were 8 steps in developing the model of learning center on OTOP production process based on Sufficiency Economic Philosophy for sustainable life quality.

Keywords: production process, OTOP, sufficiency economic philosophy, language choice

Procedia PDF Downloads 204
171 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content

Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre

Abstract:

Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.

Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging

Procedia PDF Downloads 40
170 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari

Authors: Shashank Tiwari

Abstract:

The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.

Keywords: capsule, drug delivery, dosages, solid, tablet

Procedia PDF Downloads 404
169 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea

Authors: Kyomin Lee, Joohee Kim, Sangho Kang

Abstract:

The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.

Keywords: characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste

Procedia PDF Downloads 184
168 Design of In-House Test Method for Assuring Packing Quality of Bottled Spirits

Authors: S. Ananthakrishnan, U. H. Acharya

Abstract:

Whether shopping in a retail location or via the internet, consumers expect to receive their products intact. When products arrive damaged or over-packaged, the result can be customer dissatisfaction and increased cost for retailers and manufacturers. The packaging performance depends on both the transport situation and the packaging design. During transportation, the packaged products are subjected to the variation in vibration levels from transport vehicles that vary in frequency and acceleration while moving to their destinations. Spirits manufactured by this Company were being transported to various parts of the country by road. There were instances of package breaking and customer complaints. The vibration experienced on a straight road at some speed may not be same as the vibration experienced by the same vehicle on a curve at the same speed. This vibration may negatively affect the product or packing. Hence, it was necessary to conduct a physical road test to understand the effect of vibration in the packaged products. The field transit trial has to be done before the transportations, which results in high investment. The company management was interested in developing an in-house test environment which would adequately represent the transit conditions. With the objective to develop an in-house test condition that can accurately simulate the mechanical loading scenario prevailing during the storage, handling and transportation of the products a brainstorming was done with the concerned people to identify the critical factors affecting vibration rate. Position of corrugated box, the position of bottle and speed of vehicle were identified as factors affecting the vibration rate. Several packing scenarios were identified by Design of Experiment methodology and simulated in the in-house test facility. Each condition was observed for 30 minutes, which was equivalent to 1000 km. The achieved vibration level was considered as the response. The average achieved in the simulated experiments was near to the third quartile (Q3) of the actual data. Thus, we were able to address around three-fourth of the actual phenomenon. Most of the cases in transit could be reproduced. The recommended test condition could generate a vibration level ranging from 9g to 15g as against a maximum of only 7g that was being generated earlier. Thus, the Company was able to test the packaged cartons satisfactorily in the house itself before transporting to the destinations, assuring itself that the breakages of the bottles will not happen.

Keywords: ANOVA, Corrugated box, DOE, Quartile

Procedia PDF Downloads 93
167 Polypropylene Matrix Enriched With Silver Nanoparticles From Banana Peel Extract For Antimicrobial Control Of E. coli and S. epidermidis To Maintain Fresh Food

Authors: Michail Milas, Aikaterini Dafni Tegiou, Nickolas Rigopoulos, Eustathios Giaouris, Zaharias Loannou

Abstract:

Nanotechnology, a relatively new scientific field, addresses the manipulation of nanoscale materials and devices, which are governed by unique properties, and is applied in a wide range of industries, including food packaging. The incorporation of nanoparticles into polymer matrices used for food packaging is a field that is highly researched today. One such combination is silver nanoparticles with polypropylene. In the present study, the synthesis of the silver nanoparticles was carried out by a natural method. In particular, a ripe banana peel extract was used. This method is superior to others as it stands out for its environmental friendliness, high efficiency and low-cost requirement. In particular, a 1.75 mM AgNO₃ silver nitrate solution was used, as well as a BPE concentration of 1.7% v/v, an incubation period of 48 hours at 70°C and a pH of 4.3 and after its preparation, the polypropylene films were soaked in it. For the PP films, random PP spheres were melted at 170-190°C into molds with 0.8cm diameter. This polymer was chosen as it is suitable for plastic parts and reusable plastic containers of various types that are intended to come into contact with food without compromising its quality and safety. The antimicrobial test against Escherichia coli DFSNB1 and Staphylococcus epidermidis DFSNB4 was performed on the films. It appeared that the films with silver nanoparticles had a reduction, at least 100 times, compared to those without silver nanoparticles, in both strains. The limit of detection is the lower limit of the vertical error lines in the presence of nanoparticles, which is 3.11. The main reasons that led to the adsorption of nanoparticles are the porous nature of polypropylene and the adsorption capacity of nanoparticles on the surface of the films due to hydrophobic-hydrophilic forces. The most significant parameters that contributed to the results of the experiment include the following: the stage of ripening of the banana during the preparation of the plant extract, the temperature and residence time of the nanoparticle solution in the oven, the residence time of the polypropylene films in the nanoparticle solution, the number of nanoparticles inoculated on the films and, finally, the time these stayed in the refrigerator so that they could dry and be ready for antimicrobial treatment.

Keywords: antimicrobial control, banana peel extract, E. coli, natural synthesis, microbe, plant extract, polypropylene films, S.epidermidis, silver nano, random pp

Procedia PDF Downloads 140
166 Octagon Shaped Wearable Antenna for Band at 4GHz

Authors: M. Khazini, M.Damou, Z. Souar

Abstract:

In this paper, octagon antenna ultra wideband (UWB) low band wearable antenna designs have been proposed for in-body to on-body communication channel of wireless. Single element antenna, dual elements, are designed and compared in free space and in body proximity. Conformal design has been focused. Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies.

Keywords: ultra wideband, wearable antenna, slot antenna, liquid crystal polymer (LCP), CST studio

Procedia PDF Downloads 327
165 Investigative Study of Consumer Perceptions to the Quality and Safety Attributes of 'Fresh' versus 'Frozen' Cassava (Manihot esculenta Crantz): A Case for Agro-Processing in Trinidad and Tobago, West Indies

Authors: Nadia Miranda Lorick, Neela Badrie, Marsha Singh

Abstract:

Cassava (Manihot esculenta, Crantz) which is also known as ‘yucca’ or ‘manioc’ has been acknowledged as a millennium crop which has been utilized for food security purposes. The crop provides considerable amount of energy. The aim of the study was to assess consumer groups of both ‘fresh’ and ‘frozen’ in terms of their perceptions toward the quality and safety attributes of frozen cassava. The questionnaire included four sections: consumer demographics, consumer perceptions on quality attributes of ‘frozen’ cassava, consumer knowledge, awareness and attitudes toward food safety of ‘frozen’ cassava and consumer suggestions toward the improvement of frozen cassava. A face-to-face questionnaire was administered to 200 consumers of cassava between April and May 2016. The criteria for inclusion in the survey were that they must be 15 years and over and consumer of cassava. The sections of the questionnaire included demographics of respondents, consumer perception on quality and safety attributes of cassava and suggestions for the improvement of the value-added product. The data was analysed by descriptive and chi-square using SPSS as well as qualitative information was captured. Only 17% of respondents purchased frozen cassava and this was significantly (P<0.05) associated to income. Some (15%) of fresh cassava purchasers had never heard of frozen cassava products and 7.5% o perceived that these products were unhealthy for consumption. More than half (51.3%) of the consumers (all from the ‘fresh’ cassava group) believed that there were ‘no toxins’ within cassava. The ‘frozen’ cassava products were valued for convenience but purchasers were least satisfied with ‘value for money’ (50%), ‘product safety’ (50%) and ‘colour’ (52.9%). Cassava purchasers demonstrated highest dissatisfaction levels with the quality attribute: value for money (6.6%, 11.8%) respectively. The most predominant area outlined by respondents for frozen cassava improvement was promotion /advertising/education (23%). The ‘frozen’ cassava purchasers were ‘least satisfied’ thus most concern that clean knives and clean surface would not be used agro- processing. Fresh cassava purchasers were comparatively more knowledgeable on the potential existence of naturally occurring toxins in cassava, however with 1% respondents being able to specifically identify the toxin as ‘cyanide’. Dangerous preservatives (31%), poor hygiene (30%) and chemicals from the packaging (11%) were identified as some sources of contamination of ‘frozen’ cassava. Purchasers of frozen cassava indicated that the information on packaging label was unclear (P<0.01) when compared to ‘fresh’ cassava consumers.

Keywords: consumer satisfaction, convenience, cyanide toxin, product safety, price, label

Procedia PDF Downloads 370
164 Design and Synthesis of Gradient Nanocomposite Materials

Authors: Pu Ying-Chih, Yang Yin-Ju, Hang Jian-Yi, Jang Guang-Way

Abstract:

Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented.

Keywords: Gradient, Hybrid, Nanocomposite, Organic-Inorganic

Procedia PDF Downloads 477
163 The Use of Cement Dust in the Glass Industry

Authors: Magda Kosmal, Anna A. Kuśnierz, Joanna Rybicka-Łada

Abstract:

In the case of waste glass cullet, a fully functioning recycling system for individual glass industries was developed, while recycling of cement dust encounters a number of difficulties and is conducted to a limited extent in the packaging and flat glass industry. The aim of the project was to examine the possibility of using dust arising in cement plants in the process of melting various types of glasses. Dust management has a positive effect on the aspect of environmental protection and ecology. Sets have been designed, and the parameters of the melting process have been optimized. Glasses were obtained with the addition of selected cement dust on a laboratory scale, using DTA, XRD, SEM tests, and a gradient furnace was conducted to check the tendency to crystallization.

Keywords: cement dust, crystallization, glass, XRD, SEM

Procedia PDF Downloads 36
162 Modeling of Physico-Chemical Characteristics of Concrete for Filling Trenches in Radioactive Waste Management

Authors: Ilija Plecas, Dalibor Arbutina

Abstract:

The leaching rate of 60Co from spent mix bead (anion and cation) exchange resins in a cement-bentonite matrix has been studied. Transport phenomena involved in the leaching of a radioactive material from a cement-bentonite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source, an equation for diffusion coupled to a first order equation and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-year mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

Keywords: cement, concrete, immobilization, leaching, permeability, radioactivity, waste

Procedia PDF Downloads 281
161 Nude Cosmetic Water-Rich Compositions for Skin Care and Consumer Emotions

Authors: Emmanuelle Merat, Arnaud Aubert, Sophie Cambos, Francis Vial, Patrick Beau

Abstract:

Basically, consumers are sensitive to many stimuli when applying a cream: brand, packaging and indeed formulation compositions. Many studies demonstrated the influence of some stimuli such as brand, packaging, formula color and odor (e.g. in make-up applications). Those parameters influence perceived quality of the product. The objective of this work is to further investigate the relationship between nude skincare basic compositions with different textures and consumer experience. A tentative final step will be to connect the consumer feelings with key ingredients in the compositions. A new approach was developed to better understand touch-related subjective experience in consumers based on a combination of methods: sensory analysis with ten experts, preference mapping on one hundred female consumers and emotional assessments on thirty consumers (verbal and non-verbal through prosody and gesture monitoring). Finally, a methodology based on ‘sensorial trip’ (after olfactory, haptic and musical stimuli) has been experimented on the most interesting textures with 10 consumers. The results showed more or less impact depending on compositions and also on key ingredients. Three types of formulation particularly attracted the consumer: an aqueous gel, an oil-in-water emulsion, and a patented gel-in-oil formulation type. Regarding these three formulas, the preferences were both revealed through sensory and emotion tests. One was recognized as the most innovative in consumer sensory test whereas the two other formulas were discriminated in emotions evaluation. The positive emotions were highlighted especially in prosody criteria. The non-verbal analysis, which corresponds to the physical parameters of the voice, showed high pitch and amplitude values; linked to positive emotions. Verbatim, verbal content of responses (i.e., ideas, concepts, mental images), confirmed the first conclusion. On the formulas selected for their positive emotions generation, the ‘sensorial trip’ provided complementary information to characterize each emotional profile. In the second step, dedicated to better understand ingredients power, two types of ingredients demonstrated an obvious input on consumer preference: rheology modifiers and emollients. As a conclusion, nude cosmetic compositions with well-chosen textures and ingredients can positively stimulate consumer emotions contributing to capture their preference. For a complete achievement of the study, a global approach (Asia, America territories...) should be developed.

Keywords: sensory, emotion, cosmetic formulations, ingredients' influence

Procedia PDF Downloads 149
160 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories

Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika

Abstract:

Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.

Keywords: active films, cassava starch, plasticizer, characterization

Procedia PDF Downloads 43
159 Chemical Modification of PVC and Its Surface Analysis by Means of XPS and Contact Angle Measurements

Authors: Ali Akrmi, Mohamed Beji, Ahmed Baklouti, Fatma Djouani, Philippe Lang, Mohamed M. Chehimi

Abstract:

Poly(vinyl chloride) (PVC) is a highly versatile polymer with excellent balance of properties and numerous applications such as water pipes, packaging and polymer materials of importance in the biomedical sector. However, depending on the applications, it is necessary to modify PVC by mixing with a plasticizer; surface modification using plasma, surface grafting or flame treatment; or bulk chemical modification which affects the entire PVC chains at an extent that can be tuned by the polymer chemist. The targeted applications are improvement of chemical resistance, avoiding or limitation of migration of toxic plasticizers, improvement of antibacterial properties, or control of blood compatibility.

Keywords: poly(vinyl chloride), nucleophilic substitution, sulfonylcarbamates, XPS

Procedia PDF Downloads 659
158 Biodegradability and Thermal Properties of Polycaprolactone/Starch Nanocomposite as a Biopolymer

Authors: Emad A. Jaffar Al-Mulla

Abstract:

In this study, a biopolymer-based nanocomposite was successfully prepared through melt blending technique. Two biodegradable polymers, polycaprolactone and starch, environmental friendly and obtained from renewable, easily available raw materials, have been chosen. Fatty hydrazide, synthesized from palm oil, has been used as a surfactant to modify montmorillonite (natural clay) for preparation of polycaprolactone/starch nanocomposite. X-ray diffraction and transmission electron microscopy were used to characterize nanocomposite formation. Compatibility of the blend was improved by adding 3% weight modified clay. Higher biodegradability and thermal stability of nanocomopeite were also observed compared to those of the polycaprolactone/starch blend. This product will solve the problem of plastic waste, especially disposable packaging, and reduce the dependence on petroleum-based polymers and surfactants.

Keywords: polycaprolactone, starch, biodegradable, nanocomposite

Procedia PDF Downloads 321
157 Circular Economy Initiatives in Denmark for the Recycling of Household Plastic Wastes

Authors: Rikke Lybæk

Abstract:

This paper delves into the intricacies of recycling household plastic waste within Denmark, employing an exploratory case study methodology to shed light on the technical, strategic, and market dynamics of the plastic recycling value chain. Focusing on circular economy principles, the research identifies critical gaps and opportunities in recycling processes, particularly regarding plastic packaging waste derived from households, with a notable absence in food packaging reuse initiatives. The study uncovers the predominant practice of downcycling in the current value chain, underscoring a disconnect between the potential for high-quality plastic recycling and the market's readiness to embrace such materials. Through detailed examination of three leading companies in Denmark's plastic industry, the paper highlights the existing support for recycling initiatives, yet points to the necessity of assured quality in sorted plastics to foster broader adoption. The analysis further explores the importance of reuse strategies to complement recycling efforts, aiming to alleviate the pressure on virgin feedstock. The paper ventures into future perspectives, discussing different approaches such as biological degradation methods, watermark technology for plastic traceability, and the potential for bio-based and PtX plastics. These avenues promise not only to enhance recycling efficiency but also to contribute to a more sustainable circular economy by reducing reliance on virgin materials. Despite the challenges outlined, the research demonstrates a burgeoning market for recycled plastics within Denmark, propelled by both environmental considerations and customer demand. However, the study also calls for a more harmonized and effective waste collection and sorting system to elevate the quality and quantity of recyclable plastics. By casting a spotlight on successful case studies and potential technological advancements, the paper advocates for a multifaceted approach to plastic waste management, encompassing not only recycling but also innovative reuse and reduction strategies to foster a more sustainable future. In conclusion, this study underscores the urgent need for innovative, coordinated efforts in the recycling and management of plastic waste to move towards a more sustainable and circular economy in Denmark. It calls for the adoption of comprehensive strategies that include improving recycling technologies, enhancing waste collection systems, and fostering a market environment that values recycled materials, thereby contributing significantly to environmental sustainability goals.

Keywords: case study, circular economy, Denmark, plastic waste, sustainability, waste management

Procedia PDF Downloads 24
156 Effect of Starch and Plasticizer Types and Fiber Content on Properties of Polylactic Acid/Thermoplastic Starch Blend

Authors: Rangrong Yoksan, Amporn Sane, Nattaporn Khanoonkon, Chanakorn Yokesahachart, Narumol Noivoil, Khanh Minh Dang

Abstract:

Polylactic acid (PLA) is the most commercially available bio-based and biodegradable plastic at present. PLA has been used in plastic related industries including single-used containers, disposable and environmentally friendly packaging owing to its renewability, compostability, biodegradability, and safety. Although PLA demonstrates reasonably good optical, physical, mechanical, and barrier properties comparable to the existing petroleum-based plastics, its brittleness and mold shrinkage as well as its price are the points to be concerned for the production of rigid and semi-rigid packaging. Blending PLA with other bio-based polymers including thermoplastic starch (TPS) is an alternative not only to achieve a complete bio-based plastic, but also to reduce the brittleness, shrinkage during molding and production cost of the PLA-based products. TPS is a material produced mainly from starch which is cheap, renewable, biodegradable, compostable, and non-toxic. It is commonly prepared by a plasticization of starch under applying heat and shear force. Although glycerol has been reported as one of the most plasticizers used for preparing TPS, its migration caused the surface stickiness of the TPS products. In some cases, mixed plasticizers or natural fibers have been applied to impede the retrogradation of starch or reduce the migration of glycerol. The introduction of fibers into TPS-based materials could reinforce the polymer matrix as well. Therefore, the objective of the present research is to study the effect of starch type (i.e. native starch and phosphate starch), plasticizer type (i.e. glycerol and xylitol with a weight ratio of glycerol to xylitol of 100:0, 75:25, 50:50, 25:75, and 0:100), and fiber content (i.e. in the range of 1-25 % wt) on properties of PLA/TPS blend and composite. PLA/TPS blends and composites were prepared using a twin-screw extruder and then converted into dumbbell-shaped specimens using an injection molding machine. The PLA/TPS blends prepared by using phosphate starch showed higher tensile strength and stiffness than the blends prepared by using the native one. In contrast, the blends from native starch exhibited higher extensibility and heat distortion temperature (HDT) than those from the modified starch. Increasing xylitol content resulted in enhanced tensile strength, stiffness, and water resistance, but decreased extensibility and HDT of the PLA/TPS blend. Tensile properties and hydrophobicity of the blend could be improved by incorporating silane treated-jute fibers.

Keywords: polylactic acid, thermoplastic starch, Jute fiber, composite, blend

Procedia PDF Downloads 394
155 Two and Three Layer Lamination of Nanofiber

Authors: Roman Knizek, Denisa Karhankova, Ludmila Fridrichova

Abstract:

For their exceptional properties nanofibers, respectively, nanofiber layers are achieving an increasingly wider range of uses. Nowadays nanofibers are used mainly in the field of air filtration where they are removing submicron particles, bacteria, and viruses. Their efficiency is not changed in time, and the power consumption is much lower than that of electrically charged filters. Nanofibers are primarily used for converting and storage of energy in both air and liquid filtration, in food and packaging, protecting the environment, but also in health care which is made possible by their newly discovered properties. However, a major problem of the nanofiber layer is practically zero abrasion resistance; it is, therefore, necessary to laminate the nanofiber layer with another suitable material. Unfortunately, lamination of nanofiber layers is a major problem since the nanofiber layer contains small pores through which it is very difficult for adhesion to pass through. Therefore, there is still only a small percentage of products with these unique fibers 5.

Keywords: nanofiber layer, nanomembrane, lamination, electrospinning

Procedia PDF Downloads 701
154 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 185
153 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite

Authors: Dolly Selikane, Thandi Gumede

Abstract:

Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.

Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite

Procedia PDF Downloads 75
152 Poly(Lactic Acid) Based Flexible Films

Authors: Fathilahbinti Ali, Jamarosliza Jamaluddin, Arun Kumar Upadhyay

Abstract:

Poly(lactic acid) (PLA) is a biodegradable polymer which has good mechanical properties, however, its brittleness limits its usage especially in packaging materials. Therefore, in this work, PLA based polyurethane films were prepared by synthesizing with different types of isocyanates; methylene diisocyanate (MDI) and hexamethylene diisocyanates (HDI). For this purpose, PLA based polyurethane must have good strength and flexibility. Therefore, polycaprolactone which has better flexibility were prepared with PLA. An effective way to endow polylactic acid with toughness is through chain-extension reaction of the polylactic acid pre-polymer with polycaprolactone used as chain extender. Polyurethane prepared from MDI showed brittle behaviour, while, polyurethane prepared from HDI showed flexibility at same concentrations.

Keywords: biodegradable polymer, flexible, poly(lactic acid), polyurethane

Procedia PDF Downloads 316
151 Antibacterial Activity of Nickel Oxide Composite Films with Chitosan/Polyvinyl Chloride/Polyethylene Glycol

Authors: Ali Garba Danjani, Abdulrasheed Halliru Usman

Abstract:

Due to the rapidly increasing biological applications and antibacterial properties of versatile chitosan composites, the effects of chitosan/polyvinyl chloride composites film were investigated. Chitosan/polyvinyl chloride films were prepared by a casting method. Polyethylene glycol (PEG) was used as a plasticizer in the blending stage of film preparation. Characterizations of films were done by Scanning Electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and thermogravimetric analyzer (TGA). Chitosan composites incorporation enhanced the antibacterial activity of chitosan films against Escherichia coli and Staphylococcus aureus. The composite film produced is proposed as packaging or coating material because of its flexibility, antibacterial efficacy, and good mechanical strength.

Keywords: chitosan, polymeric nanocomposites, antibacterial activity, polymer blend

Procedia PDF Downloads 61
150 Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps

Authors: Aydin Azizi, Ahmed Al. Azizi

Abstract:

Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient.

Keywords: mechanical seals, centrifugal pumps, multi phase failure, excessive heating

Procedia PDF Downloads 329
149 Improved Mechanical and Electrical Properties and Thermal Stability of Post-Consumer Polyethylene Terephthalate Glycol Containing Hybrid System of Nanofillers

Authors: Iman Taraghi, Sandra Paszkiewicz, Daria Pawlikowska, Anna Szymczyk, Izabela Irska, Rafal Stanik, Amelia Linares, Tiberio A. Ezquerra, Elżbieta Piesowicz

Abstract:

Currently, the massive use of thermoplastic materials in industrial applications causes huge amounts of polymer waste. The poly (ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PET-G) has been widely used in food packaging and polymer foils. In this research, the PET-G foils have been recycled and reused as a matrix to combine with different types of nanofillers such as carbon nanotubes, graphene nanoplatelets, and nanosized carbon black. The mechanical and electrical properties, as well as thermal stability and thermal conductivity of the PET-G, improved along with the addition of the aforementioned nanofillers and hybrid system of them.

Keywords: polymer hybrid nanocomposites, carbon nanofillers, recycling, physical performance

Procedia PDF Downloads 86