Search results for: numerical magnitude
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4201

Search results for: numerical magnitude

3931 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth

Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari

Abstract:

The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.

Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus

Procedia PDF Downloads 90
3930 Numerical Resolving of Net Faradaic Current in Fast-Scan Cyclic Voltammetry Considering Induced Charging Currents

Authors: Gabriel Wosiak, Dyovani Coelho, Evaldo B. Carneiro-Neto, Ernesto C. Pereira, Mauro C. Lopes

Abstract:

In this work, the theoretical and experimental effects of induced charging currents on fast-scan cyclic voltammetry (FSCV) are investigated. Induced charging currents arise from the effect of ohmic drop in electrochemical systems, which depends on the presence of an uncompensated resistance. They cause the capacitive contribution to the total current to be different from the capacitive current measured in the absence of electroactive species. The paper shows that the induced charging current is relevant when the capacitive current magnitude is close to the total current, even for systems with low time constant. In these situations, the conventional background subtraction method may be inaccurate. A method is developed that separates the faradaic and capacitive currents by using a combination of voltametric experimental data and finite element simulation, by the obtention of a potential-dependent capacitance. The method was tested in a standard electrochemical cell with Platinum ultramicroelectrodes, in different experimental conditions as well in previously reported data in literature. The proposed method allows the real capacitive current to be separated even in situations where the conventional background subtraction method is clearly inappropriate.

Keywords: capacitive current, fast-scan cyclic voltammetry, finite-element method, electroanalysis

Procedia PDF Downloads 44
3929 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube

Authors: Mirza Popovac

Abstract:

This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.

Keywords: heat pump, vortex tube, CFD, natural refrigerant

Procedia PDF Downloads 111
3928 An Entropy Stable Three Dimensional Ideal MHD Solver with Guaranteed Positive Pressure

Authors: Andrew R. Winters, Gregor J. Gassner

Abstract:

A high-order numerical magentohydrodynamics (MHD) solver built upon a non-linear entropy stable numerical flux function that supports eight traveling wave solutions will be described. The method is designed to treat the divergence-free constraint on the magnetic field in a similar fashion to a hyperbolic divergence cleaning technique. The solver is especially well-suited for flows involving strong discontinuities due to its strong stability without the need to enforce artificial low density or energy limits. Furthermore, a new formulation of the numerical algorithm to guarantee positivity of the pressure during the simulation is described and presented. By construction, the solver conserves mass, momentum, and energy and is entropy stable. High spatial order is obtained through the use of a third order limiting technique. High temporal order is achieved by utilizing the family of strong stability preserving (SSP) Runge-Kutta methods. Main attributes of the solver are presented as well as details on an implementation of the new solver into the multi-physics, multi-scale simulation code FLASH. The accuracy, robustness, and computational efficiency is demonstrated with a variety of numerical tests. Comparisons are also made between the new solver and existing methods already present in FLASH framework.

Keywords: entropy stability, finite volume scheme, magnetohydrodynamics, pressure positivity

Procedia PDF Downloads 318
3927 Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants

Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can, Damla Gunel

Abstract:

This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement.

Keywords: multimetallic, forging, experimental, numerical

Procedia PDF Downloads 256
3926 Development of Numerical Method for Mass Transfer across the Moving Membrane with Selective Permeability: Approximation of the Membrane Shape by Level Set Method for Numerical Integral

Authors: Suguru Miyauchi, Toshiyuki Hayase

Abstract:

Biological membranes have selective permeability, and the capsules or cells enclosed by the membrane show the deformation by the osmotic flow. This mass transport phenomenon is observed everywhere in a living body. For the understanding of the mass transfer in a body, it is necessary to consider the mass transfer phenomenon across the membrane as well as the deformation of the membrane by a flow. To our knowledge, in the numerical analysis, the method for mass transfer across the moving membrane has not been established due to the difficulty of the treating of the mass flux permeating through the moving membrane with selective permeability. In the existing methods for the mass transfer across the membrane, the approximate delta function is used to communicate the quantities on the interface. The methods can reproduce the permeation of the solute, but cannot reproduce the non-permeation. Moreover, the computational accuracy decreases with decreasing of the permeable coefficient of the membrane. This study aims to develop the numerical method capable of treating three-dimensional problems of mass transfer across the moving flexible membrane. One of the authors developed the numerical method with high accuracy based on the finite element method. This method can capture the discontinuity on the membrane sharply due to the consideration of the jumps in concentration and concentration gradient in the finite element discretization. The formulation of the method takes into account the membrane movement, and both permeable and non-permeable membranes can be treated. However, searching the cross points of the membrane and fluid element boundaries and splitting the fluid element into sub-elements are needed for the numerical integral. Therefore, cumbersome operation is required for a three-dimensional problem. In this paper, we proposed an improved method to avoid the search and split operations, and confirmed its effectiveness. The membrane shape was treated implicitly by introducing the level set function. As the construction of the level set function, the membrane shape in one fluid element was expressed by the shape function of the finite element method. By the numerical experiment, it was found that the shape function with third order appropriately reproduces the membrane shapes. The same level of accuracy compared with the previous method using search and split operations was achieved by using a number of sampling points of the numerical integral. The effectiveness of the method was confirmed by solving several model problems.

Keywords: finite element method, level set method, mass transfer, membrane permeability

Procedia PDF Downloads 224
3925 Numerical Study of Natural Convection in a Triangular Enclosure as an Attic for Different Geometries and Boundary Conditions

Authors: H. Golchoobian, S. Saedodin, M. H. Taheri, A. Sarafraz

Abstract:

In this paper, natural convection in an attic is numerically investigated. The geometry of the problem is considered to be a triangular enclosure. ANSYS Fluent software is used for modeling and numerical solution. This study is for steady state. Four right-angled triangles with height to base ratios of 2, 1, 0.5 and 0.25 are considered. The behavior of various parameters related to its performance, including temperature distribution and velocity vectors are evaluated, and graphs for the Nusselt number have been drawn. Also, in this study, the effect of geometric shape of enclosure with different height-to-base ratios has been evaluated for three types of boundary conditions of winter, summer day and one another state. It can be concluded that as the bottom side temperature and ratio of base to height of the enclosure increases, the convective effects become more prominent and circulation happened.

Keywords: enclosure, natural convection, numerical solution, Nusselt number, triangular

Procedia PDF Downloads 170
3924 Examining the Extent and Magnitude of Food Security amongst Rural Farming Households in Nigeria

Authors: Ajibade T., Omotesho O. A., Ayinde O. E, Ajibade E. T., Muhammad-Lawal A.

Abstract:

This study was carried out to examine the extent and magnitude of food security amongst farming rural households in Nigeria. Data used for this study was collected from a total of two hundred and forty rural farming households using a two-stage random sampling technique. The main tools of analysis for this study include descriptive statistics and a constructed food security index using the identification and aggregation procedure. The headcount ratio in this study reveals that 71% of individuals in the study area were food secure with an average per capita calorie and protein availability of 4,213.92kcal and 99.98g respectively. The aggregated household daily calorie availability and daily protein availability per capita were 3,634.57kcal and 84.08g respectively which happens to be above the food security line of 2,470kcal and 65g used in this study. The food insecure households fell short of the minimum daily per capita calorie and protein requirement by 2.1% and 24.9%. The study revealed that the area is food insecure due to unequal distribution of the available food amongst the sampled population. The study recommends that the households should empower themselves financially in order to enhance their ability to afford the food during both on and off seasons. Also, processing and storage of farm produce should be enhanced in order to improve on availability throughout the year.

Keywords: farming household, food security, identification and aggregation, food security index

Procedia PDF Downloads 257
3923 A Numerical Solution Based on Operational Matrix of Differentiation of Shifted Second Kind Chebyshev Wavelets for a Stefan Problem

Authors: Rajeev, N. K. Raigar

Abstract:

In this study, one dimensional phase change problem (a Stefan problem) is considered and a numerical solution of this problem is discussed. First, we use similarity transformation to convert the governing equations into ordinary differential equations with its boundary conditions. The solutions of ordinary differential equation with the associated boundary conditions and interface condition (Stefan condition) are obtained by using a numerical approach based on operational matrix of differentiation of shifted second kind Chebyshev wavelets. The obtained results are compared with existing exact solution which is sufficiently accurate.

Keywords: operational matrix of differentiation, similarity transformation, shifted second kind chebyshev wavelets, stefan problem

Procedia PDF Downloads 381
3922 Biases in Numerically Invariant Joint Signatures

Authors: Reza Aghayan

Abstract:

This paper illustrates that numerically invariant joint signatures suffer biases in the resulting signatures. Next, we classify the arising biases as Bias Type 1 and Bias Type 2 and show how they can be removed.

Keywords: Euclidean and affine geometries, differential invariant signature curves, numerically invariant joint signatures, numerical analysis, numerical bias, curve analysis

Procedia PDF Downloads 562
3921 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure

Procedia PDF Downloads 220
3920 Antecedents and Impacts of Human Capital Flight in the Sub-Saharan Africa with Specific Reference to the Higher Education Sector: Conceptual Model

Authors: Zelalem B. Gurmessa, Ignatius W. Ferreira, Henry F. Wissink

Abstract:

The aim of this paper is to critically examine the factors contributing to academic brain drain in the Sub-Saharan Africa with specific reference to the higher education sector. Africa in general and Sub-Saharan African (SSA) countries, in particular, are experiencing an exodus of highly trained, qualified and competent human resources to other developing and developed countries thereby threatening the overall development of the relevant regions and impeding both public and private service delivery systems in the nation states. The region is currently in a dire situation in terms of health care services, education, science, and technology. The contribution of SSA countries to Science, Technology and Innovation is relatively minimal owing to the migration of skilled professionals due to both push and pull factors. The phenomenon calls for both international and trans-boundary, regional, national and institutional interventions to curb the exodus. Based on secondary data and the review of the literature, the article conceptualizes the antecedents and impacts of human capital flight or brain drain in the SSA countries from a higher education perspective. To this end, the article explores the magnitude, causes, and impacts of brain drain in the region. Despite the lack of consistent data on the magnitude of academic brain drain in the region, a critical analysis of the existing sources shows that pay disparity between developing and developed countries, the lack of enabling working conditions at source countries, fear of security due to political turmoil or unrest, the availability of green pastures and opportunity for development in the receiving countries were identified as major factors contributing to academic brain drain in the region. This hampers the socio-economic, technological and political development of the region. The paper also recommends that further research can be undertaken on the magnitude, causes, characteristics and impact of brain drain on the sustainability and competitiveness of SSA higher education institutions in the region.

Keywords: brain drain, higher education, sub-Saharan Africa, sustainable development

Procedia PDF Downloads 223
3919 A Comparative Study between FEM and Meshless Methods

Authors: Jay N. Vyas, Sachin Daxini

Abstract:

Numerical simulation techniques are widely used now in product development and testing instead of expensive, time-consuming and sometimes dangerous laboratory experiments. Numerous numerical methods are available for performing simulation of physical problems of different engineering fields. Grid based methods, like Finite Element Method, are extensively used in performing various kinds of static, dynamic, structural and non-structural analysis during product development phase. Drawbacks of grid based methods in terms of discontinuous secondary field variable, dealing fracture mechanics and large deformation problems led to development of a relatively a new class of numerical simulation techniques in last few years, which are popular as Meshless methods or Meshfree Methods. Meshless Methods are expected to be more adaptive and flexible than Finite Element Method because domain descretization in Meshless Method requires only nodes. Present paper introduces Meshless Methods and differentiates it with Finite Element Method in terms of following aspects: Shape functions used, role of weight function, techniques to impose essential boundary conditions, integration techniques for discrete system equations, convergence rate, accuracy of solution and computational effort. Capabilities, benefits and limitations of Meshless Methods are discussed and concluded at the end of paper.

Keywords: numerical simulation, Grid-based methods, Finite Element Method, Meshless Methods

Procedia PDF Downloads 363
3918 Control of a Plane Jet Spread by Tabs at the Nozzle Exit

Authors: Makito Sakai, Takahiro Kiwata, Takumi Awa, Hiroshi Teramoto, Takaaki Kono, Kuniaki Toyoda

Abstract:

Using experimental and numerical results, this paper describes the effects of tabs on the flow characteristics of a plane jet at comparatively low Reynolds numbers while focusing on the velocity field and the vortical structure. The flow visualization and velocity measurements were respectively carried out using laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). In addition, three-dimensional (3D) plane jet numerical simulations were performed using ANSYS Fluent, a commercially available computational fluid dynamics (CFD) software application. We found that the spreads of jets perturbed by large delta tabs and round tabs were larger than those produced by the other tabs tested. Additionally, it was determined that a plane jet with square tabs had the smallest jet spread downstream, and the jet’s centerline velocity was larger than those of jets perturbed by the other tabs tested. It was also observed that the spanwise vortical structure of a plane jet with tabs disappeared completely. Good agreement was found between the experimental and numerical simulation velocity profiles in the area near the nozzle exit when the laminar flow model was used. However, we also found that large eddy simulation (LES) is better at predicting the developing flow field of a plane jet than the laminar and the standard k-ε turbulent models.

Keywords: plane jet, flow control, tab, flow measurement, numerical simulation

Procedia PDF Downloads 311
3917 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 136
3916 The Development of a New Block Method for Solving Stiff ODEs

Authors: Khairil I. Othman, Mahfuzah Mahayaddin, Zarina Bibi Ibrahim

Abstract:

We develop and demonstrate a computationally efficient numerical technique to solve first order stiff differential equations. This technique is based on block method whereby three approximate points are calculated. The Cholistani of varied step sizes are presented in divided difference form. Stability regions of the formulae are briefly discussed in this paper. Numerical results show that this block method perform very well compared to existing methods.

Keywords: block method, divided difference, stiff, computational

Procedia PDF Downloads 397
3915 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers

Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim

Abstract:

Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.

Keywords: columns, confinement, ductility, FRP, numerical

Procedia PDF Downloads 423
3914 Numerical Investigation of Pressure and Velocity Field Contours of Dynamics of Drop Formation

Authors: Pardeep Bishnoi, Mayank Srivastava, Mrityunjay Kumar Sinha

Abstract:

This article represents the numerical investigation of the pressure and velocity field variation of the dynamics of pendant drop formation through a capillary tube. Numerical simulations are executed using volume of fluid (VOF) method in the computational fluid dynamics (CFD). In this problem, Non Newtonian fluid is considered as dispersed fluid whereas air is considered as a continuous fluid. Pressure contours at various time steps expose that pressure varies nearly hydrostatically at each step of the dynamics of drop formation. A result also shows the pressure variation of the liquid droplet during free fall in the computational domain. The evacuation of the fluid from the necking region is also shown by the contour of the velocity field. The role of surface tension in the Pressure contour of the dynamics of drop formation is also studied.

Keywords: pressure contour, surface tension, volume of fluid, velocity field

Procedia PDF Downloads 372
3913 Numerical Study on Jatropha Oil Pool Fire Behavior in a Compartment

Authors: Avinash Chaudhary, Akhilesh Gupta, Surendra Kumar, Ravi Kumar

Abstract:

This paper presents the numerical study on Jatropha oil pool fire in a compartment. A fire experiment with jatropha oil was conducted in a compartment of size 4 m x 4 m x m to study the fire development and temperature distribution. Fuel is burned in the center of the compartment in a pool diameter of 0.5 m with an initial fuel depth of 0.045 m. Corner temperature in the compartment, doorway temperature and hot gas layer temperature at various locations are measured. Numerical simulations were carried out using Fire Dynamics Simulator (FDS) software at grid size of 0.05 m, 0.12 m and for performing simulation heat release rate of jatropha oil measured using mass loss method were inputted into FDS. Experimental results shows that like other fuel fires, the whole combustion process can be divided into four stages: initial stage, growth stage, steady profile or developed phase and decay stage. The fire behavior shows two zone profile where upper zone consists of mainly hot gases while lower zone is relatively at colder side. In this study, predicted temperatures from simulation are in good agreement in upper zone of compartment. Near the interface of hot and cold zone, deviations were reported between the simulated and experimental results which is probably due to the difference between the predictions of smoke layer height by FDS. Also, changing the grid size from 0.12 m to 0.05 m does not show any effect in temperatures at upper zone while in lower zone, grid size of 0.05 m showed satisfactory agreement with experimental results. Numerical results showed that calculated temperatures at various locations matched well with the experimental results. On the whole, an effective method is provided with reasonable results to study the burning characteristics of jatropha oil with numerical simulations.

Keywords: jatropha oil, compartment fire, heat release rate, FDS (fire dynamics simulator), numerical simulation

Procedia PDF Downloads 232
3912 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media

Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb

Abstract:

Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.

Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions

Procedia PDF Downloads 513
3911 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator

Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan

Abstract:

Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.

Keywords: Cockcroft-Walton circuit, harmonics, ripple factor, HVDC generator

Procedia PDF Downloads 338
3910 Simulations in Structural Masonry Walls with Chases Horizontal Through Models in State Deformation Plan (2D)

Authors: Raquel Zydeck, Karina Azzolin, Luis Kosteski, Alisson Milani

Abstract:

This work presents numerical models in plane deformations (2D), using the Discrete Element Method formedbybars (LDEM) andtheFiniteElementMethod (FEM), in structuralmasonrywallswith horizontal chasesof 20%, 30%, and 50% deep, located in the central part and 1/3 oftheupperpartofthewall, withcenteredandeccentricloading. Differentcombinationsofboundaryconditionsandinteractionsbetweenthemethodswerestudied.

Keywords: chases in structural masonry walls, discrete element method formed by bars, finite element method, numerical models, boundary condition

Procedia PDF Downloads 135
3909 Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency

Authors: B. Razmi, F. Rafiee, M. Baziar, A. Saeedi Azizkandi

Abstract:

In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design.

Keywords: centrifuge test, excitation frequency, natural frequency of super-structure, piled raft foundation, 3-D finite element model

Procedia PDF Downloads 94
3908 2D Numerical Modeling for Induced Current Distribution in Soil under Lightning Impulse Discharge

Authors: Fawwaz Eniola Fajingbesi, Nur Shahida Midia, Elsheikh M. A. Elsheikh, Siti Hajar Yusoff

Abstract:

Empirical analysis of lightning related phenomena in real time is extremely dangerous due to the relatively high electric discharge involved. Hence, design and optimization of efficient grounding systems depending on real time empirical methods are impeded. Using numerical methods, the dynamics of complex systems could be modeled hence solved as sets of linear and non-linear systems . In this work, the induced current distribution as lightning strike traverses the soil have been numerically modeled in a 2D axial-symmetry and solved using finite element method (FEM) in COMSOL Multiphysics 5.2 AC/DC module. Stratified and non- stratified electrode system were considered in the solved model and soil conductivity (σ) varied between 10 – 58 mS/m. The result discussed therein were the electric field distribution, current distribution and soil ionization phenomena. It can be concluded that the electric field and current distribution is influenced by the injected electric potential and the non-linearity in soil conductivity. The result from numerical calculation also agrees with previously laboratory scale empirical results.

Keywords: current distribution, grounding systems, lightning discharge, numerical model, soil conductivity, soil ionization

Procedia PDF Downloads 287
3907 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves

Authors: Jui-Ching Chou

Abstract:

Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.

Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model

Procedia PDF Downloads 129
3906 Numerical Modelling of Dry Stone Masonry Structures Based on Finite-Discrete Element Method

Authors: Ž. Nikolić, H. Smoljanović, N. Živaljić

Abstract:

This paper presents numerical model based on finite-discrete element method for analysis of the structural response of dry stone masonry structures under static and dynamic loads. More precisely, each discrete stone block is discretized by finite elements. Material non-linearity including fracture and fragmentation of discrete elements as well as cyclic behavior during dynamic load are considered through contact elements which are implemented within a finite element mesh. The application of the model was conducted on several examples of these structures. The performed analysis shows high accuracy of the numerical results in comparison with the experimental ones and demonstrates the potential of the finite-discrete element method for modelling of the response of dry stone masonry structures.

Keywords: dry stone masonry structures, dynamic load, finite-discrete element method, static load

Procedia PDF Downloads 378
3905 Modeling Study of Short Fiber Orientation in Simple Injection Molding Processes

Authors: Ihsane Modhaffar, Kamal Gueraoui, Abouelkacem Qais, Abderrahmane Maaouni, Samir Men-La-Yakhaf, Hamid Eltourroug

Abstract:

The main objective of this paper is to develop a Computational Fluid Dynamics (CFD) model to simulate and characterize the fiber suspension in flow in rectangular cavities. The model is intended to describe the velocity profile and to predict the fiber orientation. The flow was considered to be incompressible, and behave as Newtonian fluid containing suspensions of short-fibers. The numerical model for determination of velocity profile and fiber orientation during mold-filling stage of injection molding process was solved using finite volume method. The governing equations of this problem are: the continuity, the momentum and the energy. The obtained results were compared to available experimental findings. A good agreement between the numerical results and the experimental data was achieved.

Keywords: injection, composites, short-fiber reinforced thermoplastics, fiber orientation, incompressible fluid, numerical simulation

Procedia PDF Downloads 440
3904 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: settlement, Subway Line, FLAC3D, ANFIS Method

Procedia PDF Downloads 195
3903 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 492
3902 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology

Authors: Mouhamadou Diop, Mohamed I. Hassan

Abstract:

Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.

Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field

Procedia PDF Downloads 218