Search results for: nuclear reactor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1451

Search results for: nuclear reactor

1091 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell

Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem

Abstract:

To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.

Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction

Procedia PDF Downloads 34
1090 Application of Robotics to Assemble a Used Fuel Container in the Canadian Used Fuel Packing Plant

Authors: Dimitrie Marinceu

Abstract:

The newest Canadian Used Fuel Container (UFC)- (called also “Mark II”) modifies the design approach for its Assembly Robotic Cell (ARC) in the Canadian Used (Nuclear) Fuel Packing Plant (UFPP). Some of the robotic design solutions are presented in this paper. The design indicates that robots and manipulators are expected to be used in the Canadian UFPP. As normally, the UFPP design will incorporate redundancy of all equipment to allow expedient recovery from any postulated upset conditions. Overall, this paper suggests that robot usage will have a significant positive impact on nuclear safety, quality, productivity, and reliability.

Keywords: used fuel packing plant, robotic assembly cell, used fuel container, deep geological repository

Procedia PDF Downloads 260
1089 Experimental Investigation of Heat Transfer on Vertical Two-Phased Closed Thermosyphon

Authors: M. Hadi Kusuma, Nandy Putra, Anhar Riza Antariksawan, Ficky Augusta Imawan

Abstract:

Heat pipe is considered to be applied as a passive system to remove residual heat that generated from reactor core when incident occur or from spent fuel storage pool. The objectives are to characterized the heat transfer phenomena, performance of heat pipe, and as a model for large heat pipe will be applied as passive cooling system on nuclear spent fuel pool storage. In this experimental wickless heat pipe or two-phase closed thermosyphon (TPCT) is used. Variation of heat flux are 611.24 Watt/m2 - 3291.29 Watt/m2. Variation of filling ratio are 45 - 70%. Variation of initial pressure are -62 to -74 cm Hg. Demineralized water is used as working fluid in the TPCT. The results showed that increasing of heat load leads to an increase of evaporation of the working fluid. The optimum filling ratio obtained for 60% of TPCT evaporator volume, and initial pressure variation gave different TPCT wall temperature characteristic. TPCT showed best performance with 60% filling ratio and can be consider to be applied as passive residual heat removal system or passive cooling system on spent fuel storage pool.

Keywords: two-phase closed term syphon, heat pipe, passive cooling, spent fuel storage pool

Procedia PDF Downloads 305
1088 The Transcription Factor HNF4a: A Key Player in Haematological Disorders

Authors: Tareg Belali, Mosleh Abomughaid, Muhanad Alhujaily

Abstract:

HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a.

Keywords: hepatocyte nuclear factor 4 alpha, HNF4a nuclear receptor, steroid hormone receptor family of transcription factors, hematological disorders

Procedia PDF Downloads 71
1087 Determination of Inactivation and Recovery of Saccharomyces cerevisiae Cells after the Gas-Phase Plasma Treatment

Authors: Z. Herceg, V. Stulic, T. Vukusic, A. Rezek Jambrak

Abstract:

Gas phase plasma treatment is a new nonthermal technology used for food and water decontamination. In this study, we have investigated influence of the gas phase plasma treatment on yeast cells of S. cerevisiae. Sample was composed of 10 mL of yeast suspension and 190 mL of 0.01 M NaNO₃ with a medium conductivity of 100 µS/cm. Samples were treated in a glass reactor with a point- to-plate electrode configuration (high voltage electrode-titanium wire in the gas phase and grounded electrode in the liquid phase). Air or argon were injected into the headspace of the reactor at the gas flow of 5 L/min. Frequency of 60, 90 and 120 Hz, time of 5 and 10 min and positive polarity were defined parameters. Inactivation was higher with the applied higher frequency, longer treatment time and injected argon. Inactivation was not complete which resulted in complete recovery. Cellular leakage (260 nm and 280 nm) was higher with a longer treatment time and higher frequency. Leakage at 280 nm which defines a leakage of proteins was higher than leakage at 260 nm which defines a leakage of nucleic acids. The authors would like to acknowledge the support by Croatian Science Foundation and research project 'Application of electrical discharge plasma for preservation of liquid foods'.

Keywords: Saccharomyces cerevisiae, inactivation, gas-phase plasma treatment, cellular leakage

Procedia PDF Downloads 173
1086 Reforming of CO₂-Containing Natural Gas by Using an AC Gliding Arc Discharge Plasma System

Authors: Krittiya Pornmai, Sumaeth Chavadej

Abstract:

The increasing in global energy demand has affected the climate change caused by the generation of greenhouse gases. Therefore, the objective of this work was to investigate a direct production of synthesis gas from a CO₂-containing natural gas by using gliding arc discharge plasma technology. In this research, the effects of steam reforming, combined steam reforming and partial oxidation, and using multistage gliding arc discharge system on the process performance have been discussed. The simulated natural gas used in this study contains 70% methane, 5% ethane, 5% propane, and 20% carbon dioxide. In comparison with different plasma reforming processes (under their optimum conditions), the steam reforming provides the highest H₂ selectivity resulting from the cracking reaction of steam. In addition, the combined steam reforming and partial oxidation process gives a very high CO production implying that the addition of both oxygen and steam can offer the acceptably highest synthesis gas production. The stage number of plasma reactor plays an important role in the improvement of CO₂ conversion. Moreover, 3 stage number of plasma reactor is considered as an optimum stage number for the reforming of CO₂-containing natural gas with steam and partial oxidation in term of providing low energy consumption as compared with other plasma reforming processes.

Keywords: natural gas, reforming process, gliding arc discharge, plasma technology

Procedia PDF Downloads 145
1085 Regulation Aspects for a Radioisotope Production Installation in Brazil

Authors: Rian O. Miranda, Lidia V. de Sa, Julio C. Suita

Abstract:

The Brazilian Nuclear Energy Commission (CNEN) is the main manufacturer of radiopharmaceuticals in Brazil. The Nuclear Engineering Institute (IEN), located at Rio de Janeiro, is one of its main centers of research and production, attending public and private hospitals in the state. This radiopharmaceutical production is used in diagnostic and therapy procedures and allows one and a half million nuclear medicine procedures annually. Despite this, the country is not self-sufficient to meet national demand, creating the need for importation and consequent dependence on other countries. However, IEN facilities were designed in the 60's, and today its structure is inadequate in relation to the good manufacturing practices established by sanitary regulator (ANVISA) and radiological protection leading to the need for a new project. In order to adapt and increase production in the country, a new plant will be built and integrated to the existing facilities with a new 30 MeV Cyclotron that is actually in project detailing process. Thus, it is proposed to survey current CNEN and ANVISA standards for radiopharmaceutical production facilities, as well as the radiological protection analysis of each area of the plant, following good manufacturing practices recommendations adopted nationally besides licensing exigencies for radioactive facilities. In this way, the main requirements for proper operation, equipment location, building materials, area classification, and maintenance program have been implemented. The access controls, interlocks, segregation zones and pass-through boxes integrated into the project were also analyzed. As a result, IEN will in future have the flexibility to produce all necessary radioisotopes for nuclear medicine application, more efficiently by simultaneously bombarding two targets, allowing the simultaneous production of two different radioisotopes, minimizing radiation exposure and saving operating costs.

Keywords: cyclotron, legislation, norms, production, radiopharmaceuticals

Procedia PDF Downloads 110
1084 The Concentration Analysis of CO2 Using ALOHA Code for Kuosheng Nuclear Power Plant

Authors: W. S. Hsu, Y. Chiang, H. C. Chen, J. R. Wang, S. W. Chen, J. H. Yang, C. Shih

Abstract:

Not only radiation materials, but also the normal chemical material stored in the power plant can cause a risk to the residents. In this research, the ALOHA code was used to perform the concentration analysis under the CO2 storage burst or leakage conditions for Kuosheng nuclear power plant (NPP). The Final Safety Analysis Report (FSAR) and data were used in this study. Additionally, the analysis results of ALOHA code were compared with the R.G. 1.78 failure criteria in order to confirm the control room habitability. The comparison results show that the ALOHA result for burst case was 0.923 g/m3 which was below the criteria. However, the ALOHA results for leakage case was 11.3 g/m3.

Keywords: BWR, ALOHA, habitability, Kuosheng

Procedia PDF Downloads 324
1083 Anticancer Lantadene Derivatives: Synthesis, Cytotoxic and Docking Studies

Authors: A. Monika, Manu Sharma, Hong Boo Lee, Richa Dhingra, Neelima Dhingra

Abstract:

Nuclear factor-κappa B serve as a molecular lynchpin that links persistent infections and chronic inflammation to increased cancer risk. Inflammation has been recognized as a hallmark and cause of cancer. Natural products present a privileged source of inspiration for chemical probe and drug design. Herbal remedies were the first medicines used by humans due to the many pharmacologically active secondary metabolites produced by plants. Some of the metabolites like Lantadene (pentacyclic triterpenoids) from the weed Lantana camara has been known to inhibit cell division and showed anti-antitumor potential. The C-3 aromatic esters of lantadenes were synthesized, characterized and evaluated for cytotoxicity and inhibitory potential against Tumor necrosis factor alpha-induced activation of Nuclear factor-κappa B in lung cancer cell line A549. The 3-methoxybenzoyloxy substituted lead analogue inhibited kinase activity of the inhibitor of nuclear factor-kappa B kinase in a single-digit micromolar concentration. At the same time, the lead compound showed promising cytotoxicity against A549 lung cancer cells with IC50 ( half maximal inhibitory concentration) of 0.98l µM. Further, molecular docking of 3-methoxybenzoyloxy substituted analogue against Inhibitor of nuclear factor-kappa B kinase (Protein data bank ID: 3QA8) showed hydrogen bonding interaction involving oxygen atom of 3-methoxybenzoyloxy with the Arginine-31 and Glutamine-110. Encouraging results indicate the Lantadene’s potential to be developed as anticancer agents.

Keywords: anticancer, lantadenes, pentacyclic triterpenoids, weed

Procedia PDF Downloads 133
1082 Canada Deuterium Uranium Updated Fire Probabilistic Risk Assessment Model for Canadian Nuclear Plants

Authors: Hossam Shalabi, George Hadjisophocleous

Abstract:

The Canadian Nuclear Power Plants (NPPs) use some portions of NUREG/CR-6850 in carrying out Fire Probabilistic Risk Assessment (PRA). An assessment for the applicability of NUREG/CR-6850 to CANDU reactors was performed and a CANDU Fire PRA was introduced. There are 19 operating CANDU reactors in Canada at five sites (Bruce A, Bruce B, Darlington, Pickering and Point Lepreau). A fire load density survey was done for all Fire Safe Shutdown Analysis (FSSA) fire zones in all CANDU sites in Canada. National Fire Protection Association (NFPA) Standard 557 proposes that a fire load survey must be conducted by either the weighing method or the inventory method or a combination of both. The combination method results in the most accurate values for fire loads. An updated CANDU Fire PRA model is demonstrated in this paper that includes the fuel survey in all Canadian CANDU stations. A qualitative screening step for the CANDU fire PRA is illustrated in this paper to include any fire events that can damage any part of the emergency power supply in addition to FSSA cables.

Keywords: fire safety, CANDU, nuclear, fuel densities, FDS, qualitative analysis, fire probabilistic risk assessment

Procedia PDF Downloads 105
1081 Heterogeneous Catalytic Hydroesterification of Soybean Oil to Develop a Biodiesel Formation

Authors: O. Mowla, E. Kennedy, M. Stockenhuber

Abstract:

Finding alternative renewable resources of energy has attracted the attentions in consequence of limitation of the traditional fossil fuel resources, increasing of crude oil price and environmental concern over greenhouse gas emissions. Biodiesel (or Fatty Acid Methyl Esters (FAME)), an alternative energy source, is synthesised from renewable sources such as vegetable oils and animal fats and can be produced from waste oils. FAME can be produced via hydroesterification of oils. The process involves two stages. In the first stage of this process, fatty acids and glycerol are being obtained by hydrolysis of the feed stock oil. In the second stage, the recovered fatty acids are then esterified with an alcohol to methyl esters. The presence of a catalyst accelerates the rate of the hydroesterification reaction of oils. The overarching aim of this study is to find the effect of using zeolite as a catalyst in the heterogeneous hydroesterification of soybean oil. Both stages of the catalytic hydroesterification of soybean oil had been conducted at atmospheric and high-pressure conditions using reflux glass reactor and Parr reactor, respectively. The effect of operating parameters such as temperature and reaction time on the overall yield of biodiesel formation was also investigated.

Keywords: biodiesel, heterogeneous catalytic hydroesterification, soybean oil, zeolite

Procedia PDF Downloads 403
1080 Further Investigation of α+12C and α+16O Elastic Scattering

Authors: Sh. Hamada

Abstract:

The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.

Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model

Procedia PDF Downloads 201
1079 Informed Decision-Making in Classrooms among High School Students regarding Nuclear Power Use in India

Authors: Dinesh N. Kurup, Celine Perriera

Abstract:

The economic development of any country is based on the policies adopted by the government from time to time. If these policies are framed by the opinion of the people of the country, there is need for having strong knowledge base, right from the school level. There should be emphasis to provide in education, an ability to take informed decisions regarding socio-scientific issues. It would be better to adopt this practice in high school classrooms to build capacity among future citizens. This study is an attempt to provide a different approach of teaching and learning in classrooms at the high school level in Indian schools for providing opportunity for informed decision making regarding nuclear power use. A unit of work based on the 5E instructional model about the use of nuclear energy is used to build knowledge base and find out the effectiveness in terms of its influence for taking decisions as a future citizen. A sample of 120 students from three high schools using different curricula and teaching and learning methods were chosen for this study. This research used a design based research method. A pre and post questionnaire based on the theory of reasoned action, structured observations, focus group interviews and opportunity for decision making were used during the intervention. The data analysed qualitatively and quantitatively, and the qualitative data were coded into categories based on responses. The results of the study show that students were able to make informed decisions and could give reasons for their decisions. They were enthusiastic in formulating policy making based on their knowledge base and have strong held views and reasoning for their choice.

Keywords: informed decision making, socio-scientific issues, nuclear energy use, policy making

Procedia PDF Downloads 279
1078 Concentration and Stability of Fatty Acids and Ammonium in the Samples from Mesophilic Anaerobic Digestion

Authors: Mari Jaakkola, Jasmiina Haverinen, Tiina Tolonen, Vesa Virtanen

Abstract:

These process monitoring of biogas plant gives valuable information of the function of the process and help to maintain a stable process. The costs of basic monitoring are often much lower than the costs associated with re-establishing a biologically destabilised plant. Reactor acidification through reactor overload is one of the most common reasons for process deterioration in anaerobic digesters. This occurs because of a build-up of volatile fatty acids (VFAs) produced by acidogenic and acetogenic bacteria. VFAs cause pH values to decrease, and result in toxic conditions in the reactor. Ammonia ensures an adequate supply of nitrogen as a nutrient substance for anaerobic biomass and increases system's buffer capacity, counteracting acidification lead by VFA production. However, elevated ammonia concentration is detrimental to the process due to its toxic effect. VFAs are considered the most reliable analytes for process monitoring. To obtain accurate results, sample storage and transportation need to be carefully controlled. This may be a challenge for off-line laboratory analyses especially when the plant is located far away from the laboratory. The aim of this study was to investigate the correlation between fatty acids, ammonium, and bacteria in the anaerobic digestion samples obtained from an industrial biogas factory. The stability of the analytes was studied comparing the results of the on-site analyses performed in the factory site to the results of the samples stored at room temperature and -18°C (up to 30 days) after sampling. Samples were collected in the biogas plant consisting of three separate mesofilic AD reactors (4000 m³ each) where the main feedstock was swine slurry together with a complex mixture of agricultural plant and animal wastes. Individual VFAs, ammonium, and nutrients (K, Ca, Mg) were studied by capillary electrophoresis (CE). Longer chain fatty acids (oleic, hexadecanoic, and stearic acids) and bacterial profiles were studied by GC-MSD (Gas Chromatography-Mass Selective Detector) and 16S rDNA, respectively. On-site monitoring of the analytes was performed by CE. The main VFA in all samples was acetic acid. However, in one reactor sample elevated levels of several individual VFAs and long chain fatty acids were detected. Also bacterial profile of this sample differed from the profiles of other samples. Acetic acid decomposed fast when the sample was stored in a room temperature. All analytes were stable when stored in a freezer. Ammonium was stable even at a room temperature for the whole testing period. One reactor sample had higher concentration of VFAs and long chain fatty acids than other samples. CE was utilized successfully in the on-site analysis of separate VFAs and NH₄ in the biogas production site. Samples should be analysed in the sampling day if stored in RT or freezed for longer storage time. Fermentation reject can be stored (and transported) at ambient temperature at least for one month without loss of NH₄. This gives flexibility to the logistic solutions when reject is used as a fertilizer.

Keywords: anaerobic digestion, capillary electrophoresis, ammonium, bacteria

Procedia PDF Downloads 151
1077 Microbial Fuel Cells and Their Applications in Electricity Generating and Wastewater Treatment

Authors: Shima Fasahat

Abstract:

This research is an experimental research which was done about microbial fuel cells in order to study them for electricity generating and wastewater treatment. These days, it is very important to find new, clean and sustainable ways for energy supplying. Because of this reason there are many researchers around the world who are studying about new and sustainable energies. There are different ways to produce these kind of energies like: solar cells, wind turbines, geothermal energy, fuel cells and many other ways. Fuel cells have different types one of these types is microbial fuel cell. In this research, an MFC was built in order to study how it can be used for electricity generating and wastewater treatment. The microbial fuel cell which was used in this research is a reactor that has two tanks with a catalyst solution. The chemical reaction in microbial fuel cells is a redox reaction. The microbial fuel cell in this research is a two chamber MFC. Anode chamber is an anaerobic one (ABR reactor) and the other chamber is a cathode chamber. Anode chamber consists of stabilized sludge which is the source of microorganisms that do redox reaction. The main microorganisms here are: Propionibacterium and Clostridium. The electrodes of anode chamber are graphite pages. Cathode chamber consists of graphite page electrodes and catalysts like: O2, KMnO4 and C6N6FeK4. The membrane which separates the chambers is Nafion117. The reason of choosing this membrane is explained in the complete paper. The main goal of this research is to generate electricity and treating wastewater. It was found that when you use electron receptor compounds like: O2, MnO4, C6N6FeK4 the velocity of electron receiving speeds up and in a less time more current will be achieved. It was found that the best compounds for this purpose are compounds which have iron in their chemical formula. It is also important to pay attention to the amount of nutrients which enters to bacteria chamber. By adding extra nutrients in some cases the result will be reverse.  By using ABR the amount of chemical oxidation demand reduces per day till it arrives to a stable amount.

Keywords: anaerobic baffled reactor, bioenergy, electrode, energy efficient, microbial fuel cell, renewable chemicals, sustainable

Procedia PDF Downloads 195
1076 Reclamation of Molding Sand: A Chemical Approach to Recycle Waste Foundry Sand

Authors: Mohd Moiz Khan, S. M. Mahajani, G. N. Jadhav

Abstract:

Waste foundry sand (total clay content 15%) contains toxic heavy metals and particulate matter which make dumping of waste sand an environmental and health hazard. Disposal of waste foundry sand (WFS) remains one of the substantial challenges faced by Indian foundries nowadays. To cope up with this issue, the chemical method was used to reclaim WFS. A stirrer tank reactor was used for chemical reclamation. Experiments were performed to reduce the total clay content from 15% to as low as 0.9% in chemical reclamation. This method, although found to be effective for WFS reclamation, it may face a challenge due to the possibly high operating cost. Reclaimed sand was found to be satisfactory in terms of sand qualities such as total clay (0.9%), active clay (0.3%), acid demand value (ADV) (2.6%), loss on igniting (LOI) (3 %), grain fineness number (GFN) (56), and compressive strength (60 kPa). The experimental data generated on chemical reactor under different conditions is further used to optimize the design and operating parameters (rotation speed, sand to acidic solution ratio, acid concentration, temperature and time) for the best performance. The use of reclaimed sand within the foundry would improve the economics and efficiency of the process and reduce environmental concerns.

Keywords: chemical reclamation, clay content, environmental concerns, recycle, waste foundry sand

Procedia PDF Downloads 113
1075 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 197
1074 Integrated Process Modelling of a Thermophilic Biogas Plant

Authors: Obiora E. Anisiji, Jeremiah L. Chukwuneke, Chinonso H. Achebe, Paul C. Okolie

Abstract:

This work developed a mathematical model of a biogas plant from a mechanistic point of view, for urban area clean energy requirement. It aimed at integrating thermodynamics; which deals with the direction in which a process occurs and Biochemical kinetics; which gives the understanding of the rates of biochemical reaction. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analysis were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500m3 biogas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of biogas production is essentially a function of enthalpy ratio, the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.

Keywords: anaerobic digestion, biogas plant, biogas production, bio-reactor, energy, fermentation, rate of production, temperature, therm

Procedia PDF Downloads 400
1073 One year later after the entry into force of the Treaty on the Prohibition of Nuclear Weapons (TPNW): Reviewing Legal Impact and Implementation

Authors: Cristina Siserman-Gray

Abstract:

TheTreaty on the Prohibition of Nuclear Weapons(TPNW)will mark in January 2022 one year since the entry into force of the treaty. TPNW provides that within one year of entry into force, the 86 countries that have signed it so far will convene to discuss and take decisions on the treaty’s implementation at the first meeting of states-parties. Austria has formally offered to host the meeting in Vienna in the spring of 2022. At this first meeting, the States Parties would need to work. Among others, on the interpretations of some of the provisions of the Treaty, disarmament timelines under Article 4, and address universalization of the Treaty. The main objective of this paper is to explore the legal implications of the TPNW for States-Parties and discuss how these will impact non-State Parties, particularly the United States. In a first part, the article will address the legal requirements that States Parties to this treaty must adhere to by illustrating some of the progress made by these states regarding the implementation of the TPNW. In a second part, the paper will address the challenges and opportunities for universalizing the treaty and will focus on the response of Nuclear Weapons States, and particularly the current US administration. Since it has become clear that TPNW has become a new and important element to the nonproliferation and disarmament architecture, the article will provide a number of suggestions regarding ways US administration could positively contribute to the international discourse on TPNW.

Keywords: disarmament, arms control and nonproliferation, legal regime, TPNW

Procedia PDF Downloads 136
1072 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant

Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu

Abstract:

After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.

Keywords: RELAP5, TRACE, SNAP, BWR

Procedia PDF Downloads 394
1071 Investigating the Process Kinetics and Nitrogen Gas Production in Anammox Hybrid Reactor with Special Emphasis on the Role of Filter Media

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a novel and promising technology that has changed the traditional concept of biological nitrogen removal. The process facilitates direct oxidation of ammonical nitrogen under anaerobic conditions with nitrite as an electron acceptor without the addition of external carbon sources. The present study investigated the feasibility of anammox hybrid reactor (AHR) combining the dual advantages of suspended and attached growth media for biodegradation of ammonical nitrogen in wastewater. The experimental unit consisted of 4 nos. of 5L capacity AHR inoculated with mixed seed culture containing anoxic and activated sludge (1:1). The process was established by feeding the reactors with synthetic wastewater containing NH4-H and NO2-N in the ratio 1:1 at HRT (hydraulic retention time) of 1 day. The reactors were gradually acclimated to higher ammonium concentration till it attained pseudo steady state removal at a total nitrogen concentration of 1200 mg/l. During this period, the performance of the AHR was monitored at twelve different HRTs varying from 0.25-3.0 d with increasing NLR from 0.4 to 4.8 kg N/m3d. AHR demonstrated significantly higher nitrogen removal (95.1%) at optimal HRT of 1 day. Filter media in AHR contributed an additional 27.2% ammonium removal in addition to 72% reduction in the sludge washout rate. This may be attributed to the functional mechanism of filter media which acts as a mechanical sieve and reduces the sludge washout rate many folds. This enhances the biomass retention capacity of the reactor by 25%, which is the key parameter for successful operation of high rate bioreactors. The effluent nitrate concentration, which is one of the bottlenecks of anammox process was also minimised significantly (42.3-52.3 mg/L). Process kinetics was evaluated using first order and Grau-second order models. The first-order substrate removal rate constant was found as 13.0 d-1. Model validation revealed that Grau second order model was more precise and predicted effluent nitrogen concentration with least error (1.84±10%). A new mathematical model based on mass balance was developed to predict N2 gas in AHR. The mass balance model derived from total nitrogen dictated significantly higher correlation (R2=0.986) and predicted N2 gas with least error of precision (0.12±8.49%). SEM study of biomass indicated the presence of the heterogeneous population of cocci and rod shaped bacteria of average diameter varying from 1.2-1.5 mm. Owing to enhanced NRE coupled with meagre production of effluent nitrate and its ability to retain high biomass, AHR proved to be the most competitive reactor configuration for dealing with nitrogen laden wastewater.

Keywords: anammox, filter media, kinetics, nitrogen removal

Procedia PDF Downloads 351
1070 Organic Rejection and Membrane Fouling with Inorganic Alumina Membrane for Industrial Wastewater Treatment

Authors: Rizwan Ahmad, Soomin Chang, Daeun Kwon, Jeonghwan Kim

Abstract:

Interests in an inorganic membrane are growing rapidly for industrial wastewater treatment due to its excellent chemical and thermal stability over polymeric membrane. Nevertheless, understanding of the membrane rejection and fouling rate caused by the deposit of contaminants on membrane surface and within membrane pores through inorganic porous membranes still requires much attention. Microfiltration alumina membranes were developed and applied for the industrial wastewater treatment to investigate rejection efficiency of organic contaminant and membrane fouling at various operational conditions. In this study, organic rejection and membrane fouling were investigated by using the alumina flat-tubular membrane developed for the treatment of industrial wastewaters. The flat-tubular alumina membranes were immersed in a fluidized membrane reactor added with granular activated carbon (GAC) particles. Fluidization was driven by recirculating a bulk industrial wastewater along membrane surface through the reactor. In the absence of GAC particles, for hazardous anionic dye contaminants, functional group characterized by the organic contaminant was found as one of the main factors affecting both membrane rejection and fouling rate. More fouling on the membrane surface led to the existence of dipolar characterizations and this was more pronounced at lower solution pH, thereby improving membrane rejection accordingly. Similar result was observed with a real metal-plating wastewater. Strong correlation was found that higher fouling rate resulted in higher organic rejection efficiency. Hydrophilicity exhibited by alumina membrane improved the organic rejection efficiency of the membrane due to the formation of hydrophilic fouling layer deposited on it. In addition, less surface roughness of alumina membrane resulted in less fouling rate. Regardless of the operational conditions applied in this study, fluidizing the GAC particles along the surface of alumina membrane was very effective to enhance organic removal efficiency higher than 95% and provide an excellent tool to reduce membrane fouling. Less than 0.1 bar as suction pressure was maintained with the alumina membrane at 25 L/m²hr of permeate set-point flux during the whole operational periods without performing any backwashing and chemical enhanced cleaning for the membrane.

Keywords: alumina membrane, fluidized membrane reactor, industrial wastewater, membrane fouling, rejection

Procedia PDF Downloads 139
1069 Software Tool Design for Heavy Oil Upgrading by Hydrogen Donor Addition in a Hydrodynamic Cavitation Process

Authors: Munoz A. Tatiana, Solano R. Brandon, Montes C. Juan, Cierco G. Javier

Abstract:

The hydrodynamic cavitation is a process in which the energy that the fluids have in the phase changes is used. From this energy, local temperatures greater than 5000 °C are obtained where thermal cracking of the fluid molecules takes place. The process applied to heavy oil affects variables such as viscosity, density, and composition, which constitutes an important improvement in the quality of crude oil. In this study, the need to design a software through mathematical integration models of mixing, cavitation, kinetics, and reactor, allows modeling changes in density, viscosity, and composition of a heavy oil crude, when the fluid passes through a hydrodynamic cavitation reactor. In order to evaluate the viability of this technique in the industry, a heavy oil of 18° API gravity, was simulated using naphtha as a hydrogen donor at concentrations of 1, 2 and 5% vol, where the simulation results showed an API gravity increase to 0.77, 1.21 and 1.93° respectively and a reduction viscosity by 9.9, 12.9 and 15.8%. The obtained results allow to have a favorable panorama on this technological development, an appropriate visualization on the generation of innovative knowledge of this technique and the technical-economic opportunity that benefits the development of the hydrocarbon sector related to heavy crude oil that includes the largest world oil production.

Keywords: hydrodynamic cavitation, thermal cracking, hydrogen donor, heavy oil upgrading, simulator

Procedia PDF Downloads 124
1068 SAR and B₁ Considerations for Multi-Nuclear RF Body Coils

Authors: Ria Forner

Abstract:

Introduction: Due to increases in the SNR at 7T and above, it becomes more favourable to make use of X-nuclear imaging. Integrated body coils tuned to 120MHz for 31P, 79MHz for 23Na, and 75 MHz for 13C at 7T were simulated with a human male, female, or child body model to assess strategies of use for metabolic MR imaging in the body. Methods: B1 and SAR efficiencies in the heart, liver, spleen, and kidneys were assessed using numerical simulations over the three frequencies with phase shimming. Results: B1+ efficiency is highly variable over the different organs, particularly for the highest frequency; however, local SAR efficiency remains relatively constant over the frequencies in all subjects. Although the optimal phase settings vary, one generic phase setting can be identified for each frequency at which the penalty in B1+ is at a max of 10%. Discussion: The simulations provide practical strategies for power optimization, B1 management, and maintaining safety. As expected, the B1 field is similar at 75MHz and 79MHz, but reduced at 120MHz. However, the B1 remains relatively constant when normalised by the square root of the peak local SAR. This is in contradiction to generalized SAR considerations of 1H MRI at different field strengths, which is defined by global SAR instead. Conclusion: Although the B1 decreases with frequency, SAR efficiency remains constant throughout the investigated frequency range. It is possible to shim the body coil to obtain a maximum of 10% extra B1+ in a specific organ in a body when compared to a generic setting.

Keywords: birdcage, multi-nuclear, B1 shimming, 7 Tesla MRI, liver, kidneys, heart, spleen

Procedia PDF Downloads 21
1067 Study of Proton-9,11Li Elastic Scattering at 60~75 MeV/Nucleon

Authors: Arafa A. Alholaisi, Jamal H. Madani, M. A. Alvi

Abstract:

The radial form of nuclear matter distribution, charge and the shape of nuclei are essential properties of nuclei, and hence, are of great attention for several areas of research in nuclear physics. More than last three decades have witnessed a range of experimental means employing leptonic probes (such as muons, electrons etc.) for exploring nuclear charge distributions, whereas the hadronic probes (for example alpha particles, protons, etc.) have been used to investigate the nuclear matter distributions. In this paper, p-9,11Li elastic scattering differential cross sections in the energy range  to  MeV have been studied by means of Coulomb modified Glauber scattering formalism. By applying the semi-phenomenological Bhagwat-Gambhir-Patil [BGP] nuclear density for loosely bound neutron rich 11Li nucleus, the estimated matter radius is found to be 3.446 fm which is quite large as compared to so known experimental value 3.12 fm. The results of microscopic optical model based calculation by applying Bethe-Brueckner–Hartree–Fock formalism (BHF) have also been compared. It should be noted that in most of phenomenological density model used to reproduce the p-11Li differential elastic scattering cross sections data, the calculated matter radius lies between 2.964 and 3.55 fm. The calculated results with phenomenological BGP model density and with nucleon density calculated in the relativistic mean-field (RMF) reproduces p-9Li and p-11Li experimental data quite nicely as compared to Gaussian- Gaussian or Gaussian-Oscillator densities at all energies under consideration. In the approach described here, no free/adjustable parameter has been employed to reproduce the elastic scattering data as against the well-known optical model based studies that involve at least four to six adjustable parameters to match the experimental data. Calculated reaction cross sections σR for p-11Li at these energies are quite large as compared to estimated values reported by earlier works though so far no experimental studies have been performed to measure it.

Keywords: Bhagwat-Gambhir-Patil density, Coulomb modified Glauber model, halo nucleus, optical limit approximation

Procedia PDF Downloads 128
1066 Characteristics of the Mortars Obtained by Radioactive Recycled Sand

Authors: Claudiu Mazilu, Ion Robu, Radu Deju

Abstract:

At the end of 2011 worldwide there were 124 power reactors shut down, from which: 16 fully decommissioned, 50 power reactors in a decommissioning process, 49 reactors in “safe enclosure mode”, 3 reactors “entombed”, for other 6 reactors it was not yet have specified the decommissioning strategy. The concrete radioactive waste that will be generated from dismantled structures of VVR-S nuclear research reactor from Magurele (e.g.: biological shield of the reactor core and hot cells) represents an estimated amount of about 70 tons. Until now the solid low activity radioactive waste (LLW) was pre-placed in containers and cementation with mortar made from cement and natural fine aggregates, providing a fill ratio of the container of approximately 50 vol. % for concrete. In this paper is presented an innovative technology in which radioactive concrete is crushed and the mortar made from recycled radioactive sand, cement, water and superplasticizer agent is poured in container with radioactive rubble (that is pre-placed in container) for cimentation. Is achieved a radioactive waste package in which the degree of filling of radioactive waste increases substantially. The tests were carried out on non-radioactive material because the radioactive concrete was not available in a good time. Waste concrete with maximum size of 350 mm were crushed in the first stage with a Liebhher type jaw crusher, adjusted to nominal size of 50 mm. Crushed concrete less than 50 mm was sieved in order to obtain useful sort for preplacement, 10 to 50 mm. The rest of the screening > 50 mm obtained from primary crushing of concrete was crushed in the second stage, with different working principles crushers at size < 2.5 mm, in order to produce recycled fine aggregate (sand) for the filler mortar and which fulfills the technical specifications proposed: –jaw crusher, Retsch type, model BB 100; –hammer crusher, Buffalo Shuttle model WA-12-H; presented a series of characteristics of recycled concrete aggregates by predefined class (the granulosity, the granule shape, the absorption of water, behavior to the Los Angeles test, the content of attached mortar etc.), most in comparison with characteristics of natural aggregates. Various mortar recipes were used in order to identify those that meet the proposed specification (flow-rate: 16-50s, no bleeding, min. 30N/mm2 compressive strength of the mortar after 28 days, the proportion of recycled sand used in mortar: min. 900kg/m3) and allow obtaining of the highest fill ratio for mortar. In order to optimize the mortars following compositional factors were varied: aggregate nature, water/cement (W/C) ratio, sand/cement (S/C) ratio, nature and proportion of additive. To confirm the results obtained on a small scale, it made an attempt to fill the mortar in a container that simulates the final storage drums. Was measured the mortar fill ratio (98.9%) compared with the results of laboratory tests and targets set out in the proposed specification. Although fill ratio obtained on the mock-up is lower by 0.8 vol. % compared to that obtained in the laboratory tests (99.7%), the result meets the specification criteria.

Keywords: characteristics, radioactive recycled concrete aggregate, mortars, fill ratio

Procedia PDF Downloads 168
1065 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change

Authors: Terry Lucas

Abstract:

Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.

Keywords: climate change, emissions, drawdown, energy

Procedia PDF Downloads 94
1064 Investigation of the Thermal Flow inside the Catalytic Combustor for Lean CH4-Air Mixture on a Platinum Catalyst with H2 Addition

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

In order to elaborate the main idea of investigating the flow physics inside the catalytic combustor, the characteristics of the catalytic surface reactions are analyzed by employing the CHEMKIN methodology with detailed gas and surface chemistries. The presence of a catalyst inside an engine enables complete combustion at lower temperatures which promotes desired chemical reactions. A single channel from the honeycomb monolith catalytic combustor is preferred to analyze the gas and surface reactions in the catalyst bed considering the fact that every channel in the honeycomb monolith behaves in similar fashion. The simplified approach with single catalyst channel using plug flow reactor can be used to predict the flow behavior inside the catalytic combustor. The hydrogen addition to the combustion reactants offers a way to light-off catalytic combustion of methane on platinum catalyst and aids to reduce the surface ignition temperature. Indeed, the hydrogen adsorption is higher on the uncovered Pt(s) surface sites because the sticking coefficient of hydrogen is larger than that of methane. The location of flame position in the catalyst bed is validated by igniting the methane fuel with the presence of hydrogen for corresponding multistep surface reactions.

Keywords: catalytic combustor, hydrogen adsorption, plug flow reactor, surface ignition temperature

Procedia PDF Downloads 320
1063 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 16
1062 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model

Authors: Chiung-Hui Chen

Abstract:

Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward a intelligent design, to assist designer to retrieve information and check/review event pattern of past and present.

Keywords: digital diagram, information model, context aware, data analysis

Procedia PDF Downloads 309