World Academy of Science, Engineering and Technology International Journal of Mathematical and Computational Sciences Vol:14, No:12, 2020

Further Investigation of $\alpha+12C$ and $\alpha+16O$ Elastic Scattering

Authors: Sh. Hamada

Abstract : The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both $\langle \sup 12 \langle \sup C \rangle$ and $\langle \sup 16 \langle \sup O \rangle$ nuclei. We reanalyzed the experimental elastic scattering angular distributions data for $\alpha + \langle \sup 12 \langle \sup C \rangle$ and $\alpha + \langle \sup 16 \langle \sup O \rangle$ nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor ($\langle Strong \rangle (Sub \rangle$

Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model **Conference Title:** ICSRD 2020: International Conference on Scientific Research and Development

Conference Location : Chicago, United States **Conference Dates :** December 12-13, 2020