Search results for: nitrogen fixing bacteria
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2507

Search results for: nitrogen fixing bacteria

287 Computational Modelling of pH-Responsive Nanovalves in Controlled-Release System

Authors: Tomilola J. Ajayi

Abstract:

A category of nanovalves system containing the α-cyclodextrin (α-CD) ring on a stalk tethered to the pores of mesoporous silica nanoparticles (MSN) is theoretically and computationally modelled. This functions to control opening and blocking of the MSN pores for efficient targeted drug release system. Modeling of the nanovalves is based on the interaction between α-CD and the stalk (p-anisidine) in relation to pH variation. Conformational analysis was carried out prior to the formation of the inclusion complex, to find the global minimum of both neutral and protonated stalk. B3LYP/6-311G**(d, p) basis set was employed to attain all theoretically possible conformers of the stalk. Six conformers were taken into considerations, and the dihedral angle (θ) around the reference atom (N17) of the p-anisidine stalk was scanned from 0° to 360° at 5° intervals. The most stable conformer was obtained at a dihedral angle of 85.3° and was fully optimized at B3LYP/6-311G**(d, p) level of theory. The most stable conformer obtained from conformational analysis was used as the starting structure to create the inclusion complexes. 9 complexes were formed by moving the neutral guest into the α-CD cavity along the Z-axis in 1 Å stepwise while keeping the distance between dummy atom and OMe oxygen atom on the stalk restricted. The dummy atom and the carbon atoms on α-CD structure were equally restricted for orientation A (see Scheme 1). The generated structures at each step were optimized with B3LYP/6-311G**(d, p) methods to determine their energy minima. Protonation of the nitrogen atom on the stalk occurs at acidic pH, leading to unsatisfactory host-guest interaction in the nanogate; hence there is dethreading. High required interaction energy and conformational change are theoretically established to drive the release of α-CD at a certain pH. The release was found to occur between pH 5-7 which agreed with reported experimental results. In this study, we applied the theoretical model for the prediction of the experimentally observed pH-responsive nanovalves which enables blocking, and opening of mesoporous silica nanoparticles pores for targeted drug release system. Our results show that two major factors are responsible for the cargo release at acidic pH. The higher interaction energy needed for the complex/nanovalve formation to exist after protonation as well as conformational change upon protonation are driving the release due to slight pH change from 5 to 7.

Keywords: nanovalves, nanogate, mesoporous silica nanoparticles, cargo

Procedia PDF Downloads 97
286 Determining the Presence of Brucella abortus Antibodies by the Indirect Elisa Method in Bovine Bulk Milk and Risk Factors in the Peri-Urban Zones of Bamenda Cameroon

Authors: Cha-ah C. N., Awah N. J., Mouiche M. M. M.

Abstract:

Brucellosis is a neglected zoonotic disease of animals and man caused by bacteria of genus Brucella. Though eradicated in some parts of the world, it remains endemic in sub-Saharan Africa including Cameroon. The aim of this study was to contribute to the epidemiology of brucellosis in the North-West region of Cameroon by detecting the presence of anti-Brucella antibodies in bovine bulk milk as this serves as a route of transmission from animals to man. A cross sectional study was conducted to determine the prevalence of Brucella abortus antibodies in bovine bulk milk in the peri-urban zones of Bamenda. One hundred bulk milk samples were collected from 100 herds and tested by milk I-ELISA test. The conducted study revealed the presence of anti-Brucella abortus antibodies in bovine bulk milk. The study revealed that bovine brucellosis is widespread in animal production systems in this area. The animal infection pressure in these systems has remained strong due to movement of livestock in search of pasture, co-existence of animal husbandry, communal sharing of grazing land, concentration of animals around water points, abortions in production systems, locality of production systems and failure to quarantine upon introduction of new animals. The circulation of Brucella abortus antibodies in cattle farms recorded in the study revealed potential public health implication and suggest economic importance of brucellosis to the cattle industry in the Northwest region of Cameroon. The risk for re-emergence and transmission of brucellosis is evident as a result of the co-existence of animal husbandry activities and social-cultural activities that promote brucellosis transmission. Well-designed countrywide, evidence-based studies of brucellosis are needed. These could help to generate reliable frequency and potential impact estimates, to identify Brucella reservoirs, and to propose control strategies of proven efficacy.

Keywords: brucellosis, bulk milk, northwest region Cameroon, prevalence

Procedia PDF Downloads 122
285 Reorientation of Sustainable Livestock Management: A Case Study Applied to Wastes Management in Faculty of Animal Husbandry, Padjadjaran University, Indonesia

Authors: Raka Rahmatulloh, Mohammad Ilham Nugraha, Muhammad Ifan Fathurrahman

Abstract:

The agricultural sector covers a wide area, one of them is livestock subsector that supply needs of the food source of animal protein. Animal protein is produced by the main livestock production such as meat, milk, eggs, etc. Besides the main production, livestock would produce metabolic residue, so called livestock wastes. Characteristics of livestock wastes can be either solid (feces), liquid (urine), and gas (methane) which turned out to be useful and has economical value when well-processed and well-controlled. Nowadays, this livestock wastes is considered as a source of pollutants, especially water pollution. If the source of pollutants used in an integrated way, it will have a positive impact on organic farming and a healthy environment. Management of livestock wastes can be integrated with the farming sector to the planting and caring that rely on fertilizers. Most Indonesian farmers still use chemical fertilizers, where the use of it in the long term will disturb the ecological balance of the environment. One of the main efforts is to use organic fertilizers instead of chemical fertilizer that conducted by the Faculty of Animal Husbandry, Padjadjaran University. The method is to use the solid waste of livestock and agricultural wastes into liquid organic fertilizer, feed additive, biogas and vermicompost through decomposition. The decomposition takes as long as 14 days including aeration and extraction process using water as a nutrients solvent media which contained in decomposes and disinfection media to release pathogenic microorganisms in decomposes. Liquid organic fertilizer has highly efficient for the farmers to have a ratio of carbon/nitrogen (C/N) 25/1 to 30/1 and neutral pH (6.5-7.5) which is good for plant growth. Feed additive may be given to improve the digestibility of feed so that substances can be easily absorbed by the body for production. Biogas contains methane (CH4), which has a high enough heat to produce electricity. Vermicompost is an overhaul of waste organic material that has excellent structure, porosity, aeration, drainage, and moisture holding capacity. Based on the case study above, an integrated livestock wastes management program strongly supports the Indonesian government in the achievement of sustainable livestock development.

Keywords: integrated, livestock wastes, organic fertilizer, sustainable livestock development

Procedia PDF Downloads 399
284 Isolation and Molecular Characterization of Lytic Bacteriophage against Carbapenem Resistant Klebsiella pneumoniae

Authors: Guna Raj Dhungana, Roshan Nepal, Apshara Parajuli, , Archana Maharjan, Shyam K. Mishra, Pramod Aryal, Rajani Malla

Abstract:

Introduction: Klebsiella pneumoniae is a well-known opportunistic human pathogen, primarily causing healthcare-associated infections. The global emergence of carbapenemase-producing K. pneumoniaeis a major public health burden, which is often extensively multidrug resistant.Thus, because of the difficulty to treat these ‘superbug’ and menace and some term as ‘apocalypse’ of post antibiotics era, an alternative approach to controlling this pathogen is prudent and one of the approaches is phage mediated control and/or treatment. Objective: In this study, we aimed to isolate novel bacteriophage against carbapenemase-producing K. pneumoniaeand characterize for potential use inphage therapy. Material and Methods: Twenty lytic phages were isolated from river water using double layer agar assay and purified. Biological features, physiochemical characters, burst size, host specificity and activity spectrum of phages were determined. One most potent phage: Phage TU_Kle10O was selected and characterized by electron microscopy. Whole genome sequences of the phage were analyzed for presence/absence of virulent factors, and other lysin genes. Results: Novel phage TU_Kle10O showed multiple host range within own genus and did not induce any BIM up to 5th generation of host’s life cycle. Electron microscopy confirmed that the phage was tailed and belonged to Caudovirales family. Next generation sequencing revealed its genome to be 166.2 Kb. bioinformatical analysis further confirmed that the phage genome ‘did not’ contain any ‘bacterial genes’ within phage genome, which ruled out the concern for transfer of virulent genes. Specific 'lysin’ enzyme was identified phages which could be used as 'antibiotics'. Conclusion: Extensively multidrug resistant bacteria like carbapenemase-producing K. pneumoniaecould be treated efficiently by phages.Absence of ‘virulent’ genes of bacterial origin and presence of lysin proteins within phage genome makes phages an excellent candidate for therapeutics.

Keywords: bacteriophage, Klebsiella pneumoniae, MDR, phage therapy, carbapenemase,

Procedia PDF Downloads 156
283 Prevalence, Antimicrobial Susceptibility Pattern and Associated Risk Factors for Salmonella Species and Escherichia Coli from Raw Meat at Butchery Houses in Mekelle, Tigray, Northern Ethiopia

Authors: Haftay Abraha Tadesse, Dawit Gebreegziabiher Hagos, Atsebaha Gebrekidan Kahsay, Mahumd Abdulkader

Abstract:

Background: Salmonella species and Escherichia coli (E. coli) are important foodborne pathogens affecting humans and animals. They are among the most important causes of infection that are associated with the consumption of contaminated food. This study was aimed to determine the prevalence, antimicrobial susceptibility patterns and associated risk factors for Salmonella species and E. coli in raw meat from butchery houses of Mekelle, Northern Ethiopia. Method: A cross-sectional study was conducted from January to December 2019. Socio-demographic data and risk factors were collected using a predesigned questionnaire. Meat samples were collected aseptically from the butchery houses and transported using icebox to Mekelle University, College of Veterinary Sciences for the isolation and identification of Salmonella species and E. coli. Antimicrobial susceptibility patterns were determined using Kirby disc diffusion method. Data obtained were cleaned and entered into Statistical Package for the Social Sciences version 22 and logistic regression models with odds ratio were calculated. P-value < 0.05 was considered as statistically significant. Results: A total of 153 out of 384 (39.8%) of the meat specimens were found to be contaminated. The contamination of Salmonella species and E. coli were 15.6% (n=60) and 20.8%) (n=80), respectively. Mixed contamination (Salmonella species and E. coli) was observed in 13 (3.4 %) of the analyzed. Poor washing hands regularly (AOR = 8.37; 95% CI: 2.75-25.50) and not using gloves during meat handling (AOR=11. 28; 95% CI:(4.69 27.10) were associated with overall bacterial contamination. About 100% of the tested isolates were sensitive to ciprofloxacin, gentamicin, Co trimoxazole , sulphamethoxazole, ceftriaxone, and trimethoprim and ciprofloxacin, gentamicin, and norfloxacine of E. coli and Salmonella species, respectively, while the resistance of amoxyclav_amoxicillin and erythromycin were both isolated bacteria species. The overall multidrug resistance pattern for Salmonella and E. coli were 51.4% (n=19) and 31.8% (14), respectively. Conclusion: Of the 153 (153/384) contaminated raw meat, 60 (15.6%) and 80 (20.8%) were contaminated by Salmonella species and E. coli, respectively. Poor handwashing practice and not using glove during meat handling showed a significant association with bacterial contamination. Multidrug-resistant showed in Salmonella species, and E. coli were 19 (51.4%) and 14 (31.8%), respectively.

Keywords: antimicrobial susceptibility test, butchery houses, E. coli, raw meat, salmonella species

Procedia PDF Downloads 143
282 Insectivorous Medicinal Plant Drosera Ecologyand its Biodiversity Conservation through Tissue Culture and Sustainable Biotechnology

Authors: Sushil Pradhan

Abstract:

Biotechnology contributes to sustainable development in several ways such as biofertilizer production, biopesticide production and management of environmental pollution, tissue culture and biodiversity conservation in vitro, in vivo and in situ, Insectivorous medicinal plant Drosera burmannii Vahl belongs to the Family-Droseraceae under Order-Caryophyllales, Dicotyledoneae, Angiospermeae which has 31 (thirty one) living genera and 194 species besides 7 (seven) extinct (fossil) genera. Locally it is known as “Patkanduri” in Odia. Its Hindi name is “Mukhajali” and its English name is “Sundew”. The earliest species of Drosera was first reported in 1753 by Carolous Linnaeus called Drosera indica L (Indian Sundew). The latest species of Drosera reported by Fleisch A, Robinson, AS, McPherson S, Heinrich V, Gironella E and Madulida D.A. (2011) is Drosera ultramafica from Malaysia. More than 50 % species of Drosera have been reported from Australia and next to Australia is South Africa. India harbours only 3 species such as D. indica L, Drosera burmannii Vahl and D. peltata L. From our Odisha only D. burmannii Vahl is being reported for the first time from the district of Subarnapur near Sonepur (Arjunpur Reserve Forest Area). Drosera plant is autotrophic but to supplement its Nitrogen (N2) requirement it adopts heterotrophic mode of nutrition (insectivorous/carnivorous) as well. The colour of plant in mostly red and about 20-30cm in height with beautiful pink or white pentamerous flowers. Plants grow luxuriantly during November to February in shady and moist places near small water bodies of running water stream. Medicinally it is a popular herb in the locality for the treatment of cold and cough in children in rainy season by the local Doctors (Kabiraj and Baidya). In the present field investigation an attempt has been made to understand the unique reproductive phase and life cycle of the plant thereby planning for its conservation and propagation through various techniques of tissue culture and biotechnology. More importantly besides morphological and anatomical studies, cytological investigation is being carried out to find out the number of chromosomes in the cell and its genomics as there is no such report as yet for Drosera burmannii Vahl. The ecological significance and biodiversity conservation of Drosera with special reference to energy, environmental and chemical engineering has been discussed in the research paper presentation.

Keywords: insectivorous, medicinal, drosera, biotechnology, chromosome, genome

Procedia PDF Downloads 359
281 Effect of Pulmonary Rehabilitation towards Length of Stay and IL-6 Level on Community-Acquired Pneumonia Patients

Authors: Santony Santony, Teguh Rahayu Sartono, Iin Noor Chozin

Abstract:

Introduction: Pneumonia is acute inflammation on lung parenchyma which is caused by bacteria, virus, fungi, or parasite. In Indonesia, Pneumonia is among the ten inpatient cases. Length of stay is related to the increased morbidity rate, nosocomial infection, and costs. The aim of this study is to assess the effect of pulmonary rehabilitation on the difference in length of stay and the level of Interleukin 6 (IL-6) as an inflammation biomarker for community-acquired pneumonia (CAP) patients in non-intensive rooms. Therefore, pulmonary rehabilitation as adjunctive therapy can be routinely exercised in order to shorten the length of stay, along with the decrease in IL-6 level. Methods: This study was conducted from May to October 2019 at Saiful Anwar General Hospital, Malang. 40 community-acquired pneumonia patients in non-intensive rooms were divided into two groups. 20 patients in the treatment group and 20 patients in the control group, all of them were selected through both inclusion and exclusion criteria. This study used simple consecutive random sampling. In the treatment group, pulmonary rehabilitation performed was composed of breathing exercise, effective coughing technique, clapping (percussion), postural drainage, as well as respiratory muscle training using incentive spirometry device. Pulmonary rehabilitation was conducted twice over five days with a minimum duration of 15 minutes. Blood samples were taken both on the first and the fifth day of the treatment to measure IL-6 level as an inflammation biomarker. Result: For the treatment group, the length of stay was 5.35 days whereas the control group 7.6 days. It can be seen that the treatment group had a shorter length of stay by 2.25 days (P<0,001). The IL-6 level on the first day for the treatment group was 36.27 pg/ml, whereas on the fifth day was 34.36 pg/ml. There was a decrease in IL-6 level on the fifth day of treatment even though it was not statistically significant (P=0.628). IL-6 level on the control group for the first day was 67.76 pg/ml, and after the fifth day, the level decreased to 54.43 pg/ml. There seemed to be a decrease in the IL-6, but it was not statistically significant (P=0.502). On the fifth day, the treatment group showed an average IL-6 level of 34.36 pg/ml. This value was lower than that of the control group which did not receive pulmonary rehabilitation having an IL-6 level of 54.43 pg/ml, even though it was not statistically significant (p=0.221). Conclusion: This study concluded that pulmonary rehabilitation as an adjunctive therapy shortened length of stay by 2.25 days for community-acquired pneumonia patients in a non-intensive room. Both groups experienced a decrease in IL-6 level on the fifth day in comparison with the first day even though it was not statistically significant P>0,05. IL-6 level as an inflammation biomarker decreased on the fifth day of treatment which was in accordance with improvement on pneumonia patients.

Keywords: community-acquired pneumonia, interleukin-6, length of stay, pulmonary rehabilitation

Procedia PDF Downloads 78
280 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco

Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad

Abstract:

The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.

Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility

Procedia PDF Downloads 149
279 Identification and Characterization of Polysaccharide Biosynthesis Protein (CAPD) of Enterococcus faecium

Authors: Liaqat Ali, Hubert E. Blum, Türkân Sakinc

Abstract:

Enterococcus faecium is an emerging multidrug-resistant nosocomial pathogen increased dramatically worldwide and causing bacteremia, endocarditis, urinary tract and surgical site infections in immunocomprised patients. The capsular polysaccharides that contribute to pathogenesis through evasion of the host innate immune system are also involved in hindering leukocyte killing of enterococci. The gene cluster (enterococcal polysaccharide antigen) of E. faecalis encoding homologues of many genes involved in polysaccharide biosynthesis. We identified two putative loci with 22 kb and 19 kb which contained 11 genes encoding for glycosyltransferases (GTFs); this was confirmed by using genome comparison of already sequenced strains that has no homology to known capsule genes and the epa-locus. The polysaccharide-conjugate vaccines have rapidly emerged as a suitable strategy to combat different pathogenic bacteria, therefore, we investigated a polysaccharide biosynthesis CapD protein in E. faecium contains 336 amino acids and had putative function for N-linked glycosylation. The deletion/knock-out capD mutant was constructed and complemented by homologues recombination method and confirmed by using PCR and sequencing. For further characterization and functional analysis, in-vitro cell culture and in-vivo a mouse infection models were used. Our ΔcapD mutant shows a strong hydrophobicity and all strains exhibited biofilm production. Subsequently, the opsonic activity was tested in an opsonophagocytic assay which shows increased in mutant compared complemented and wild type strains but more than two fold decreased in colonization and adherence was seen on surface of uroepithelial cells. However, a significant higher bacterial colonialization was observed in capD mutant during animal bacteremia infection. Unlike other polysaccharides biosynthesis proteins, CapD does not seems to be a major virulence factor in enterococci but further experiments and attention is needed to clarify its function, exact mechanism and involvement in pathogenesis of enteroccocal nosocomial infections eventually to develop a vaccine/ or targeted therapy.

Keywords: E. faecium, pathogenesis, polysaccharides, biofilm formation

Procedia PDF Downloads 295
278 Potential of Ozonation and Phytoremediation to Reduce Hydrocarbon Levels Remaining after the Pilot Scale Microbial Based Bioremediation (Land-Farming) of a Heavily Polluted Soil

Authors: Hakima Althalb

Abstract:

Petroleum contamination of sandy soils is a severe environmental problem in Libya, but relatively little work has been carried out to optimize the bioremediation of such heavily contaminated soil, particularly at a pilot scale. The purpose of this research was to determine the potential for the microbial-based bioremediation of hydrocarbon-contaminated soil obtained from an oil refinery in Libya and to assess the potential of both ozonation and phytoremediation (both applied after initial bioremediation) to reduce residual hydrocarbon levels. Plots containing 500 kg soil (triplicates) (contaminated soil diluted with clean soil 50% volume) were set up, (designated as Land Treatment Units; LTUs) containing five different nutrient levels and mixtures (Urea + NPK (nitrogen; phosphor; potassium) mixtures) to obtain C:N:P ratios 100:10:1, and monitored for 90 days. Hydrocarbon levels, microbial numbers, and toxicity (EC50 using luminescent microbial based tests) were assessed. Hydrocarbon levels in non-diluted and diluted soil ranged from 20 733-22 366 mg/kg and from 16 000-17 000 mg/kg respectively. Although all the land treatment units revealed a significant hydrocarbon reduction over time, the highest reduction in hydrocarbon levels obtained was around 60%. For example, 63% hydrocarbon removal was observed using a mixture of urea and NPK with a C:N:P ratio of 100:10:1). Soil toxicity (as assessed using luminescence based toxicity assays) reduced in line with the reduction in total petroleum hydrocarbons observed. However, as relatively high residual TPH (total petroleum hydrocarbon) levels (ranging from 6033-14166mg/kg) were still present after initial bioremediation two ‘post-treatments’ (phytoremediation and ozonation) were attempted to remove residual hydrocarbons remaining. Five locally grown (agriculturally important) plant species were tested. The germination of all plants examined was strongly inhibited (80-100%) and seedlings failed to grow well in the contaminated soil, indicating that the previously bioremediated soils were still toxic to the plants. Subsequent ozonation followed by another bioremediation of soil was more successful than phytoremediation. But even the most promising successful treatment in this study (ozonation for 6 hours at 25ppm followed by bioremediation) still only removed approximately 31% of the residual hydrocarbons. Overall, this work showed that the bioremediation of such highly contaminated soils is difficult and that a combination of treatments would be required to achieve successful remediation. Even after initial dilution and bioremediation the soils remained toxic to plant growth and were therefore not suitable for phytoremediation.

Keywords: bioremediation, petroleum hydrocarbons, ozone, phytoremediation

Procedia PDF Downloads 147
277 Sustainable Treatment of Vegetable Oil Industry Wastewaters by Xanthomonas campestris

Authors: Bojana Ž. Bajić, Siniša N. Dodić, Vladimir S. Puškaš, Jelena M. Dodić

Abstract:

Increasing industrialization as a response to the demands of the consumer society greatly exploits resources and generates large amounts of waste effluents in addition to the desired product. This means it is a priority to implement technologies with the maximum utilization of raw materials and energy, minimum generation of waste effluents and/or their recycling (secondary use). Considering the process conditions and the nature of the raw materials used by the vegetable oil industry, its wastewaters can be used as substrates for the biotechnological production which requires large amounts of water. This way the waste effluents of one branch of industry become raw materials for another branch which produces a new product while reducing wastewater pollution and thereby reducing negative environmental impacts. Vegetable oil production generates wastewaters during the process of rinsing oils and fats which contain mainly fatty acid pollutants. The vegetable oil industry generates large amounts of waste effluents, especially in the processes of degumming, deacidification, deodorization and neutralization. Wastewaters from the vegetable oil industry are generated during the whole year in significant amounts, based on the capacity of the vegetable oil production. There are no known alternative applications for these wastewaters as raw materials for the production of marketable products. Since the literature has no data on the potential negative impact of fatty acids on the metabolism of the bacterium Xanthomonas campestris, these wastewaters were considered as potential raw materials for the biotechnological production of xanthan. In this research, vegetable oil industry wastewaters were used as the basis for the cultivation media for xanthan production with Xanthomonas campestris ATCC 13951. Examining the process of biosynthesis of xanthan on vegetable oil industry wastewaters as the basis for the cultivation media was performed to obtain insight into the possibility of its use in the aforementioned biotechnological process. Additionally, it was important to experimentally determine the absence of substances that have an inhibitory effect on the metabolism of the production microorganism. Xanthan content, rheological parameters of the cultivation media, carbon conversion into xanthan and conversions of the most significant nutrients for biosynthesis (carbon, nitrogen and phosphorus sources) were determined as indicators of the success of biosynthesis. The obtained results show that biotechnological production of the biopolymer xanthan by bacterium Xanthomonas campestris on vegetable oil industry wastewaters based cultivation media simultaneously provides preservation of the environment and economic benefits which is a sustainable solution to the problem of wastewater treatment.

Keywords: biotechnology, sustainable bioprocess, vegetable oil industry wastewaters, Xanthomonas campestris

Procedia PDF Downloads 123
276 Analysis of Eco-Efficiency and the Determinants of Family Agriculture in Southeast Spain

Authors: Emilio Galdeano-Gómez, Ángeles Godoy-Durán, Juan C. Pérez-Mesa, Laura Piedra-Muñoz

Abstract:

Eco-efficiency is receiving ever-increasing interest as an indicator of sustainability, as it links environmental and economic performances in productive activities. In agriculture, these indicators and their determinants prove relevant due to the close relationships in this activity between the use of natural resources, which is generally limited, and the provision of basic goods to society. In this context, various analyses have focused on eco-efficiency by considering individual family farms as the basic production unit. However, not only must the measure of efficiency be taken into account, but also the existence of a series of factors which constitute socio-economic, political-institutional, and environmental determinants. Said factors have been studied to a lesser extent in the literature. The present work analyzes eco-efficiency at a micro level, focusing on small-scale family farms as the main decision-making units in horticulture in southeast Spain, a sector which represents about 30% of the fresh vegetables produced in the country and about 20% of those consumed in Europe. The objectives of this study are a) to obtain a series of eco-efficiency indicators by estimating several pressure ratios and economic value added in farming, b) to analyze the influence of specific social, economic and environmental variables on the aforementioned eco-efficiency indicators. The present work applies the method of Data Envelopment Analysis (DEA), which calculates different combinations of environmental pressures (water usage, phytosanitary contamination, waste management, etc.) and aggregate economic value. In a second stage, an analysis is conducted on the influence of the socio-economic and environmental characteristics of family farms on the eco-efficiency indicators, as endogeneous variables, through the use of truncated regression and bootstrapping techniques, following Simar-Wilson methodology. The results reveal considerable inefficiency in aspects such as waste management, while there is relatively little inefficiency in water usage and nitrogen balance. On the other hand, characteristics, such as product specialization, the adoption of quality certifications and belonging to a cooperative do have a positive impact on eco-efficiency. These results are deemed to be of interest to agri-food systems structured on small-scale producers, and they may prove useful to policy-makers as regards managing public environmental programs in agriculture.

Keywords: data envelopment analysis, eco-efficiency, family farms, horticulture, socioeconomic features

Procedia PDF Downloads 156
275 Co-Synthesis of Exopolysaccharides and Polyhydroxyalkanoates Using Waste Streams: Solid-State Fermentation as an Alternative Approach

Authors: Laura Mejias, Sandra Monteagudo, Oscar Martinez-Avila, Sergio Ponsa

Abstract:

Bioplastics are gaining attention as potential substitutes of conventional fossil-derived plastics and new components of specialized applications in different industries. Besides, these constitute a sustainable alternative since they are biodegradable and can be obtained starting from renewable sources. Thus, agro-industrial wastes appear as potential substrates for bioplastics production using microorganisms, considering they are a suitable source for nutrients, low-cost, and available worldwide. Therefore, this approach contributes to the biorefinery and circular economy paradigm. The present study assesses the solid-state fermentation (SSF) technology for the co-synthesis of exopolysaccharides (EPS) and polyhydroxyalkanoates (PHA), two attractive biodegradable bioplastics, using the leftover of the brewery industry brewer's spent grain (BSG). After an initial screening of diverse PHA-producer bacteria, it was found that Burkholderia cepacia presented the highest EPS and PHA production potential via SSF of BSG. Thus, B. cepacia served to identify the most relevant aspects affecting the EPS+PHA co-synthesis at a lab-scale (100g). Since these are growth-dependent processes, they were monitored online through oxygen consumption using a dynamic respirometric system, but also quantifying the biomass production (gravimetric) and the obtained products (EtOH precipitation for EPS and solid-liquid extraction coupled with GC-FID for PHA). Results showed that B. cepacia has grown up to 81 mg per gram of dry BSG (gDM) at 30°C after 96 h, representing up to 618 times higher than the other tested strains' findings. Hence, the crude EPS production was 53 mg g-1DM (2% carbohydrates), but purity reached 98% after a dialysis purification step. Simultaneously, B. cepacia accumulated up to 36% (dry basis) of the produced biomass as PHA, mainly composed of polyhydroxybutyrate (P3HB). The maximum PHA production was reached after 48 h with 12.1 mg g⁻¹DM, representing threefold the levels previously reported using SSF. Moisture content and aeration strategy resulted in the most significant variables affecting the simultaneous production. Results show the potential of co-synthesis via SSF as an attractive alternative to enhance bioprocess feasibility for obtaining these bioplastics in residue-based systems.

Keywords: bioplastics, brewer’s spent grain, circular economy, solid-state fermentation, waste to product

Procedia PDF Downloads 118
274 Synthesis of Ultra-Small Platinum, Palladium and Gold Nanoparticles by Electrochemically Active Biofilms and Their Enhanced Catalytic Activities

Authors: Elaf Ahmed, Shahid Rasul, Ohoud Alharbi, Peng Wang

Abstract:

Ultra-Small Nanoparticles of metals (USNPs) have attracted the attention from the perspective of both basic and developmental science in a wide range of fields. These NPs exhibit electrical, optical, magnetic, and catalytic phenomena. In addition, they are considered effective catalysts because of their enormously large surface area. Many chemical methods of synthesising USNPs are reported. However, the drawback of these methods is the use of different capping agents and ligands in the process of the production such as Polyvinylpyrrolidone, Thiol and Ethylene Glycol. In this research ultra-small nanoparticles of gold, palladium and platinum metal have been successfully produced using electrochemically active biofilm (EAB) after optimising the pH of the media. The production of ultra-small nanoparticles has been conducted in a reactor using a simple two steps method. Initially biofilm was grown on the surface of a carbon paper for 7 days using Shewanella Loihica bacteria. Then, biofilm was employed to synthesise platinum, palladium and gold nanoparticles in water using sodium lactate as electron donor without using any toxic chemicals at mild operating conditions. Electrochemically active biofilm oxidise the electron donor and produces electrons in the solution. Since these electrons are a strong reducing agent, they can reduce metal precursors quite effectively and quickly. The As-synthesized ultra-small nanoparticles have a size range between (2-7nm) and showed excellent catalytic activity on the degradation of methyl orange. The growth of metal USNPs is strongly related to the condition of the EAB. Where using low pH for the synthesis was not successful due to the fact that it might affect and destroy the bacterial cells. However, increasing the pH to 7 and 9, led to the successful formation of USNPs. By changing the pH value, we noticed a change in the size range of the produced NPs. The EAB seems to act as a Nano factory for the synthesis of metal nanoparticles by offering a green, sustainable and toxic free synthetic route without the use of any capping agents or ligands and depending only on their respiration pathway.

Keywords: electrochemically active biofilm, electron donor, shewanella loihica, ultra-small nanoparticles

Procedia PDF Downloads 173
273 Anti-Colitic and Anti-Inflammatory Effects of Lactobacillus sakei K040706 in Mice with Ulcerative Colitis

Authors: Seunghwan Seo, Woo-Seok Lee, Ji-Sun Shin, Young Kyoung Rhee, Chang-Won Cho, Hee-Do Hong, Kyung-Tae Lee

Abstract:

Doenjang, known as traditional Korean food, is product of a natural mixed fermentation process carried out by lactic acid bacteria (LAB). Lactobacillus sakei K040706 (K040706) has been accepted as the most populous LAB in over ripened doenjang. Recently, we reported the immunostimulatory effects of K040706 in RAW 264.7 macrophages and in a cyclophosphamide-induced mouse model. In this study, we investigated the ameliorative effects of K040706 in a dextran sulfate sodium (DSS)-induced colitis mouse model. We induced colitis using DSS in 5-week-ICR mice over 14 days with or without 0.1, 1 g/kg/day K040706 orally. The body weight, stool consistency, and gross bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and colonic tissues were collected and subjected to histological experiments and myeloperoxidase (MPO) accumulation, cytokine determination, qRT-PCR and Western blot analysis. Results showed that K040706 significantly attenuated DSS-induced DAI score, shortening of colon length, enlargement of spleen and immune cell infiltrations into colonic tissues. Histological examinations indicated that K040706 suppressed edema, mucosal damage, and the loss of crypts induced by DSS. These results were correlated with the restoration of tight junction protein expression, such as, ZO-1 and occludin in K040706-treated mice. Moreover, K040706 reduced the abnormal secretions and mRNA expressions of pro-inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). DSS-induced mRNA expression of intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in colonic tissues was also downregulated by K040706 treatment. Furthermore, K040706 suppressed the protein and mRNA expression of toll-like receptor 4 (TLR4) and phosphorylation of NF-κB and signal transducer and activator of transcription 3 (STAT3). These results suggest that K040706 has an anti-colitic effect by inhibition of intestinal inflammatory responses in DSS-induced colitic mice.

Keywords: Lactobacillus sakei, NF-κB, STAT3, ulcerative colitis

Procedia PDF Downloads 304
272 Impact of ‎Foliar ‎Formulations of Macro and Micro Nutrients on ‎the ‎Tritrophic Association of Wheat Aphid ‎and Entomophagous Insects

Authors: Muhammad Sufyan, Muhammad J. Arif, Muhammad Arshad, Usman Shoukat

Abstract:

In Pakistan, wheat (Triticum aestivum L.) is seriously attacked by the wheat ‎aphid. Naturally, bio control agents play an important role in managing wheat aphid. However, association ‎among pest, natural enemies and host plant is highly affected by food resource ‎concentration and predator/parasitoid factor of any ecosystem. The present ‎study was conducted to estimate the effect of different dose levels of macro ‎and micronutrients on the aphid population and its entomophagous insect ‎on wheat and their tri-trophic association. The experiment was laid out in ‎RCBD with six different combinations of macro and micronutrients and a control treatment. The data was initiated from the second week of ‎the February till the maturity of the crop. Data regarding aphid population and ‎coccinellids counts were collected on weekly basis and subjected to analysis of ‎variance and mean comparison. The data revealed that aphid ‎population was at peak in the last week of March. Coccinellids population ‎increased side by side with aphid population and declined after second week of ‎April. Aphid parasitism was maximum 25% on recommended dose of Double and ‎Flasher and minimum 8.67% on control treatment. Maximum aphid population was observed on first April with 687.2 specimens. However, this maximum population was shown against the application of Double + Flasher treatment. The minimum aphid population was recorded after the application of HiK Gold + Flasher recommended dose on 15th April. The coccinellids population was at peak level at on 8th April and against the treatment double recommended dose of HiK gold + Flasher. Amount of nitrogen, phosphorus and potassium percentage dry leaves ‎components was maximum (2.33, 0.18 and 2.62 % dry leaves. respectively) in ‎plots treated with recommended double dose mixture of Double + Flasher and ‎Hi-K Gold + Flasher while it was minimum (1.43, 0.12 and 1.77 dry leaves ‎respectively) in plots where no nutrients applied. The result revealed that maximum parasitism was at recommended level of micro and macro nutrients application.‎ Maximum micro nutrients zinc, copper, manganese, iron and boron found with values 46.67 ppm, 21.81 ppm, 62.35 ppm, 152.69 ppm and 36.78 respectively. The result also showed that Over application of macro and micro nutrients should be avoided because it do not help in pest control, conversely it may cause stress on plant. The treatment Double and Flasher recommended dose ratio is almost comparable with recommended dose and present studies confirm its usefulness on wheat.

Keywords: entomophagous insects, macro and micro nutrients, tri-trophic, wheat aphid

Procedia PDF Downloads 203
271 Teaching Material, Books, Publications versus the Practice: Myths and Truths about Installation and Use of Downhole Safety Valve

Authors: Robson da Cunha Santos, Caio Cezar R. Bonifacio, Diego Mureb Quesada, Gerson Gomes Cunha

Abstract:

The paper is related to the safety of oil wells and environmental preservation on the planet, because they require great attention and commitment from oil companies and people who work with these equipments. This must occur from drilling the well until it is abandoned in order to safeguard the environment and prevent possible damage. The project had as main objective the constitution resulting from comparatives made among books, articles and publications with information gathered in technical visits to operational bases of Petrobras. After the visits, the information from methods of utilization and present managements, which were not available before, became available to the general audience. As a result, it is observed a huge flux of incorrect and out-of-date information that comprehends not only bibliographic archives, but also academic resources and materials. During the gathering of more in-depth information on the manufacturing, assembling, and use aspects of DHSVs, several issues that were previously known as correct, customary issues were discovered to be uncertain and outdated. Information of great importance resulted in affirmations about subjects as the depth of the valve installation that was before installed to 30 meters from the seabed (mud line). Despite this, the installation should vary in conformity to the ideal depth to escape from area with the biggest tendency to hydrates formation according to the temperature and pressure. Regarding to valves with nitrogen chamber, in accordance with books, they have their utilization linked to water line ≥ 700 meters, but in Brazilian exploratory fields, their use occurs from 600 meters of water line. The valves used in Brazilian fields are able to be inserted to the production column and self-equalizing, but the use of screwed valve in the column of production and equalizing is predominant. Although these valves are more expensive to acquire, they are more reliable, efficient, with a bigger shelf life and they do not cause restriction to the fluid flux. It follows that based on researches and theoretical information confronted to usual forms used in fields, the present project is important and relevant. This project will be used as source of actualization and information equalization that connects academic environment and real situations in exploratory situations and also taking into consideration the enrichment of precise and easy to understand information to future researches and academic upgrading.

Keywords: down hole safety valve, security devices, installation, oil-wells

Procedia PDF Downloads 239
270 A Green Process for Drop-In Liquid Fuels from Carbon Dioxide, Water, and Solar Energy

Authors: Jian Yu

Abstract:

Carbo dioxide (CO2) from fossil fuel combustion is a prime green-house gas emission. It can be mitigated by microalgae through conventional photosynthesis. The algal oil is a feedstock of biodiesel, a carbon neutral liquid fuel for transportation. The conventional CO2 fixation, however, is quite slow and affected by the intermittent solar irradiation. It is also a technical challenge to reform the bio-oil into a drop-in liquid fuel that can be directly used in the modern combustion engines with expected performance. Here, an artificial photosynthesis system is presented to produce a biopolyester and liquid fuels from CO2, water, and solar power. In this green process, solar energy is captured using photovoltaic modules and converted into hydrogen as a stable energy source via water electrolysis. The solar hydrogen is then used to fix CO2 by Cupriavidus necator, a hydrogen-oxidizing bacterium. Under the autotrophic conditions, CO2 was reduced to glyceraldehyde-3-phosphate (G3P) that is further utilized for cell growth and biosynthesis of polyhydroxybutyrate (PHB). The maximum cell growth rate reached 10.1 g L-1 day-1, about 25 times faster than that of a typical bio-oil-producing microalga (Neochloris Oleoabundans) under stable indoor conditions. With nitrogen nutrient limitation, a large portion of the reduced carbon is stored in PHB (C4H6O2)n, accounting for 50-60% of dry cell mass. PHB is a biodegradable thermoplastic that can find a variety of environmentally friendly applications. It is also a platform material from which small chemicals can be derived. At a high temperature (240 - 290 oC), the biopolyester is degraded into crotonic acid (C4H6O2). On a solid phosphoric acid catalyst, PHB is deoxygenated via decarboxylation into a hydrocarbon oil (C6-C18) at 240 oC or so. Aromatics and alkenes are the major compounds, depending on the reaction conditions. A gasoline-grade liquid fuel (77 wt% oil) and a biodiesel-grade fuel (23 wt% oil) were obtained from the hydrocarbon oil via distillation. The formation routes of hydrocarbon oil from crotonic acid, the major PHB degradation intermediate, are revealed and discussed. This work shows a novel green process from which biodegradable plastics and high-grade liquid fuels can be directly produced from carbon dioxide, water and solar power. The productivity of the green polyester (5.3 g L-1 d-1) is much higher than that of microalgal oil (0.13 g L-1 d-1). Other technical merits of the new green process may include continuous operation under intermittent solar irradiation and convenient scale up in outdoor.

Keywords: bioplastics, carbon dioxide fixation, drop-in liquid fuels, green process

Procedia PDF Downloads 164
269 Study on the Relative Factors of Introducing Table Vinegar in Reducing Urinary Tract Infection in Patients with Long-Term Indwelling Catheter

Authors: Yu-Ju Hsieh, Lin-Hung Lin, Wen-Hui Chang

Abstract:

This study was designed as an interventional research and intended to validate whether the introduction of drinking vinegar every day can reduce and even prevent urinary tract infection in Taiwan home stayed disabilities who using indwelling catheter. The data was collected from the subjects who have received home care case at northern Taiwan, according to the questionnaire and a medical records retroactive methodology, the subjects were informed and consent to drink 15ml of table vinegar in a daily diet, and through routine urine testing and culture study. Home care nurses would assist collecting urine at the point of before and after a meal from total 35 studied subjects per month, and total collected 4 times for testing. The results showed that when the average age of study subjects was 65.46 years and catheter indwelling time was 15 years, drinking table vinegar could inhibit the activity of E. coli O157: H7 and reduce its breeding. Before drinking table vinegar daily, the subjects’ urine pH value was 7.0-8.0, and the average was 7.5, and the urine PH value dropped to 6.5 after drinking table vinegar for a month. There were two purple urine cases whose urine were changed from purple to normal color after two weeks of drinking, and the protein and bacteria values of urine gradually improved. Urine smell unpleasant before attending to this study, and the symptom improved significantly only after 1 week, and the urine smell returned to normal ammonia and became clean after 1 month later. None of these subjects received treatment in a hospital due to urinary tract infection, and there were no signs of bleeding in all cases during this study. The subjects of this study are chronic patients with a long-term bedridden catheterization; drinking cranberry juice is an economic burden for them, and also highly prohibited for diabetes patients. By adapting to use cheaper table vinegar to acidified urine and improve its smell and ease Purple Urine Syndrome, to furthermore, proven urinary tract infection, it can also to reduce the financial burden on families, the cost of social resources and the rate of re-admission.

Keywords: table vinegar, urinary tract infection, disability patients, long-term indwelling catheter

Procedia PDF Downloads 235
268 Evaluation of Antibody Titer Produced in Layer Chicken after Vaccination with an Experimental Ornitobacterium rhinotracheal Vaccine

Authors: Mohammad Javad Mehrabanpour, Mohammad Hosein Hosseini, Ali Shirazi, Dorsa Mehrabanpour

Abstract:

Respiratory infections are the most important diseases that affect poultry. Ornithobacterium rhinotracheale is a bacterium that causes respiratory infections including alveolar inflation and pneumonia in birds. The aim of this study was to evaluated antibody titer against Ornitobacterium rhinotracheal in layer chicken sera after vaccination with an experimental ORT vaccine that produced in Razi Vaccine and Serum Research Institute. Cultured bacteria were inactivated by formalin, and controlled tests were conducted on it. The obtained antigens were formulated using Montanide oil and were homogenized using homogenizer. Eighty SPF chickens were kept until the age of 14 days under existing standards for temperature, humidity, and light. At the age of 14 days, chickens were divided into 3 groups. The first group included 50 chickens injected with prepared ORT vaccine, the second group, as control group, included 15 chickens injected with sterile PBS to get stress of infection and the third group included 15 chickens with no injection performed to them. All 3 groups were kept in separate cages at same room. Blood samples were regularly taken from the chickens every week for serum separation and evaluation of antibody titer. During the fifth week post vaccination, booster vaccine was injected into the chickens of vaccinated group. The chickens were inspected every day in terms of mortality as well as any injection site reactions. Three weeks after the booster injection, blood samples were taken from all chickens of all groups, and sera were isolated. The sera of immunized (vaccinated) SPF chickens with ORT vaccine as well as that of SPF chickens in the control groups were reviewed according to the recommendations of ELISA kit manufacturer to examine the chicken’s humeral immune response to the studied vaccine. Potency, stability and sterility tests were also performed on the above mentioned vaccine. Results obtained indicate high antibody titer in sera of chickens vaccinated with experimental ORT vaccine as compared with the control groups that emphasize the ability of experimentally prepared ORT vaccine to stimulate humoral immune response of chicken. After the second injection, antibody titer increased and remained almost stable up to 9 weeks after the injection. ORT vaccine can cause potency in chickens and can protect them against disease.

Keywords: antibody, layer chicken, Ornithobactrium rhinotracitis, vaccine

Procedia PDF Downloads 386
267 A Retrospective Study on the Spectrum of Infection and Emerging Antimicrobial Resistance in Type 2 Diabetes Mellitus

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

People with diabetes mellitus are more susceptible to developing infections, as high blood sugar levels can weaken the patient's immune system defences. People with diabetes are more adversely affected when they get an infection than someone without the disease, because you have weakened immune defences in diabetes. People who have minimally elevated blood sugar levels experience worse outcomes with infections. Diabetic patients in hospitals do not necessarily have a higher mortality rate due to infections, but they do face longer hospitalisation and recovery times. A study was done in a tertiary care unit in eastern India. Patients with type 2 diabetes mellitus infection were recruited in the study. A total of 520 cases of Type 2 Diabetes Mellitus were recorded out of which 200 infectious cases was included in the study. All subjects underwent detailed history & clinical examination. Microbiological samples were collected from respective site of the infection for microbial culture and antibiotic sensitivity test. Out of the 200 infectious cases urinary tract infection(UTI) was found in majority of the cases followed by diabetic foot ulcer (DFU), respiratory tract infection(RTI) and sepsis. It was observed that Escherichia coli was the most commonest pathogen isolated from UTI cases and Staphylococcus aureus was predominant in foot ulcers followed by other organisms. Klebsiella pneumonia was the major organism isolated from RTI and Enterobacter aerogenes was commonly observed in patients with sepsis. Isolated bacteria showed differential sensitivity pattern against commonly used antibiotics. The majority of the isolates were resistant to several antibiotics that are usually prescribed on an empirical basis. These observations are important, especially for patient management and the development of antibiotic treatment guidelines. It is recommended that diabetic patients receive pneumococcal and influenza vaccine annually to reduce morbidity and mortality. Appropriate usage of antibiotics based on local antibiogram pattern can certainly help the clinician in reducing the burden of infections.

Keywords: antimicrobial resistance, diabetic foot ulcer, respiratory tract infection, urinary tract infection

Procedia PDF Downloads 320
266 Valorization of Mineralogical Byproduct TiO₂ Using Photocatalytic Degradation of Organo-Sulfur Industrial Effluent

Authors: Harish Kuruva, Vedasri Bai Khavala, Tiju Thomas, K. Murugan, B. S. Murty

Abstract:

Industries are growing day to day to increase the economy of the country. The biggest problem with industries is wastewater treatment. Releasing these wastewater directly into the river is more harmful to human life and a threat to aquatic life. These industrial effluents contain many dissolved solids, organic/inorganic compounds, salts, toxic metals, etc. Phenols, pesticides, dioxins, herbicides, pharmaceuticals, and textile dyes were the types of industrial effluents and more challenging to degrade eco-friendly. So many advanced techniques like electrochemical, oxidation process, and valorization have been applied for industrial wastewater treatment, but these are not cost-effective. Industrial effluent degradation is complicated compared to commercially available pollutants (dyes) like methylene blue, methylene orange, rhodamine B, etc. TiO₂ is one of the widely used photocatalysts which can degrade organic compounds using solar light and moisture available in the environment (organic compounds converted to CO₂ and H₂O). TiO₂ is widely studied in photocatalysis because of its low cost, non-toxic, high availability, and chemically and physically stable in the atmosphere. This study mainly focused on valorizing the mineralogical product TiO₂ (IREL, India). This mineralogical graded TiO₂ was characterized and compared with its structural and photocatalytic properties (industrial effluent degradation) with the commercially available Degussa P-25 TiO₂. It was testified that this mineralogical TiO₂ has the best photocatalytic properties (particle shape - spherical, size - 30±5 nm, surface area - 98.19 m²/g, bandgap - 3.2 eV, phase - 95% anatase, and 5% rutile). The industrial effluent was characterized by TDS (total dissolved solids), ICP-OES (inductively coupled plasma – optical emission spectroscopy), CHNS (Carbon, Hydrogen, Nitrogen, and sulfur) analyzer, and FT-IR (fourier-transform infrared spectroscopy). It was observed that it contains high sulfur (S=11.37±0.15%), organic compounds (C=4±0.1%, H=70.25±0.1%, N=10±0.1%), heavy metals, and other dissolved solids (60 g/L). However, the organo-sulfur industrial effluent was degraded by photocatalysis with the industrial mineralogical product TiO₂. In this study, the industrial effluent pH value (2.5 to 10), catalyst concentration (50 to 150 mg) were varied, and effluent concentration (0.5 Abs) and light exposure time (2 h) were maintained constant. The best degradation is about 80% of industrial effluent was achieved at pH 5 with a concentration of 150 mg - TiO₂. The FT-IR results and CHNS analyzer confirmed that the sulfur and organic compounds were degraded.

Keywords: wastewater treatment, industrial mineralogical product TiO₂, photocatalysis, organo-sulfur industrial effluent

Procedia PDF Downloads 87
265 Nanobiosensor System for Aptamer Based Pathogen Detection in Environmental Waters

Authors: Nimet Yildirim Tirgil, Ahmed Busnaina, April Z. Gu

Abstract:

Environmental waters are monitored worldwide to protect people from infectious diseases primarily caused by enteric pathogens. All long, Escherichia coli (E. coli) is a good indicator for potential enteric pathogens in waters. Thus, a rapid and simple detection method for E. coli is very important to predict the pathogen contamination. In this study, to the best of our knowledge, as the first time we developed a rapid, direct and reusable SWCNTs (single walled carbon nanotubes) based biosensor system for sensitive and selective E. coli detection in water samples. We use a novel and newly developed flexible biosensor device which was fabricated by high-rate nanoscale offset printing process using directed assembly and transfer of SWCNTs. By simple directed assembly and non-covalent functionalization, aptamer (biorecognition element that specifically distinguish the E. coli O157:H7 strain from other pathogens) based SWCNTs biosensor system was designed and was further evaluated for environmental applications with simple and cost-effective steps. The two gold electrode terminals and SWCNTs-bridge between them allow continuous resistance response monitoring for the E. coli detection. The detection procedure is based on competitive mode detection. A known concentration of aptamer and E. coli cells were mixed and after a certain time filtered. The rest of free aptamers injected to the system. With hybridization of the free aptamers and their SWCNTs surface immobilized probe DNA (complementary-DNA for E. coli aptamer), we can monitor the resistance difference which is proportional to the amount of the E. coli. Thus, we can detect the E. coli without injecting it directly onto the sensing surface, and we could protect the electrode surface from the aggregation of target bacteria or other pollutants that may come from real wastewater samples. After optimization experiments, the linear detection range was determined from 2 cfu/ml to 10⁵ cfu/ml with higher than 0.98 R² value. The system was regenerated successfully with 5 % SDS solution over 100 times without any significant deterioration of the sensor performance. The developed system had high specificity towards E. coli (less than 20 % signal with other pathogens), and it could be applied to real water samples with 86 to 101 % recovery and 3 to 18 % cv values (n=3).

Keywords: aptamer, E. coli, environmental detection, nanobiosensor, SWCTs

Procedia PDF Downloads 166
264 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel

Authors: M. El-haj, Z. Olama, H. Holail

Abstract:

Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.

Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi

Procedia PDF Downloads 372
263 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 240
262 Proniosomes as a Carrier for Ocular Drug Delivery

Authors: Rawia M. Khalil, Ghada Abd-Elbary, Mona Basha, Ghada E. A. Awad, Hadeer A. Elhashemy

Abstract:

Background: Bacterial infections of the eye are the clinical conditions responsible for ocular morbidity and blindness. Conjunctivitis is an inflammation of the conjunctiva, due to Staphylococcus aureus. Lomefloxacin HCl (LXN) is a third generation flouroquinolone antibiotic with a broad spectrum against wide range of bacteria and very effective against Staph infections especially in conjunctiva (conjunctivitis). The present study aims to develop and evaluate novel ocular proniosomal gels of Lomefloxacin Hcl (LXN); in order to improve its ocular bioavailability for the management of bacterial conjunctivitis. Materials and methods: Proniosomes were prepared by coacervation phase separation method using different types of nonionic surfactants (Span 60,40,20,Tween 20,40,60,80,Brij 35,98,72) solely and as mixtures with Span® 60. The formed gels were characterized for entrapment efficiency, vesicle size and in vitro drug release. The optimum proniosomal gel; P-LXN 7 were characterized for pH measurement, transmission electron microscopy (TEM) and differential scanning calorimetry (DSC) as well as Stability study and microbiological evaluation .The results revealed that only Span 60 was able to form stable LXN proniosomal gel when used individually while the other nonionic surfactants formed gels only in combination with Span 60 at different ratios. The optimum proniosomal gel; P-LXN 7 (Span60:Tween60, 9:1) appeared as spherical shaped vesicles having high entrapment efficiency (>80 %), appropriate vesicle size (187 nm) as well as controlled drug release over 12h. DSC confirmed the amorphous nature and the uniformity of LXN inclusion within the vesicles. Physical stability study did not show any significant changes in appearance or entrapment efficiency or vesicle size after storage for 3 months at 4°C. Ocular irritancy test revealed that P-LXN 7 was safe, well tolerable and suitable for ocular delivery. In vivo antibacterial activity of P-LXN 7 evaluated using the susceptibility test and topical therapy of induced ocular conjunctivitis confirmed the enhanced antibacterial therapeutic efficacy of the LXN-proniosomal gel compared to the commercially available LXN eye drops; Orchacin®. Conclusions: Our results suggest that proniosomal gels could provide a promising carrier of LXN for efficient ocular treatment of bacterial conjunctivitis.

Keywords: bacterial conjunctivitis, lomefloxacin HCl, ocular drug delivery, proniosomes

Procedia PDF Downloads 202
261 Effect of Locally Produced Sweetened Pediatric Antibiotics on Streptococcus mutans Isolated from the Oral Cavity of Pediatric Patients in Syria - in Vitro Study

Authors: Omar Nasani, Chaza Kouchaji, Muznah Alkhani, Maisaa Abd-alkareem

Abstract:

Objective: To evaluate the influence of sweetening agents used in pediatric medications on the growth of Streptococcus mutans colonies and its effect on the cariogenic activity in the oral cavity. No previous studies are registered yet in Syrian children. Methods: Specimens were isolated from the oral cavity of pediatric patients, then in-vitro study is applied on locally manufactured liquid pediatric antibiotic drugs, containing natural or synthetic sweeteners. The selected antibiotics are Ampicillin (sucrose), Amoxicillin (sucrose), Amoxicillin + Flucloxacillin (sorbitol), Amoxicillin+Clavulanic acid (Sorbitol or sucrose). These antibiotics have a known inhibitory effect on gram positive aerobic/anaerobic bacteria especially Streptococcus mutans strains in children’s oral biofilm. Five colonies are studied with each antibiotic. Saturated antibiotics were spread on a 6mm diameter filter disc. Incubated culture media were compared with each other and with the control antibiotic discs. Results were evaluated by measuring the diameter of the inhibition zones. The control group of antibiotic discs was resourced from Abtek Biologicals Ltd. Results: The diameter of inhibition zones around discs of antibiotics sweetened with sorbitol was larger than those sweetened with sucrose. The effect was most important when comparing Amoxicillin + Clavulanic Acid (sucrose 25mm; versus sorbitol 27mm). The highest inhibitory effect was observed with the usage of Amoxicillin + Flucloxacillin sweetened with sorbitol (38mm). Whereas the lowest inhibitory effect was observed with Amoxicillin and Ampicillin sweetened with sucrose (22mm and 21mm). Conclusion: The results of this study indicate that although all selected antibiotic produced an inhibitory effect on S. mutans, sucrose weakened the inhibitory action of the antibiotic to varying degrees, meanwhile antibiotic formulations containing sorbitol simulated the effects of the control antibiotic. This study calls attention to effects of sweeteners included in pediatric drugs on the oral hygiene and tooth decay.

Keywords: pediatric, dentistry, antibiotics, streptococcus mutans, biofilm, sucrose, sugar free

Procedia PDF Downloads 43
260 High-Throughput Artificial Guide RNA Sequence Design for Type I, II and III CRISPR/Cas-Mediated Genome Editing

Authors: Farahnaz Sadat Golestan Hashemi, Mohd Razi Ismail, Mohd Y. Rafii

Abstract:

A huge revolution has emerged in genome engineering by the discovery of CRISPR (clustered regularly interspaced palindromic repeats) and CRISPR-associated system genes (Cas) in bacteria. The function of type II Streptococcus pyogenes (Sp) CRISPR/Cas9 system has been confirmed in various species. Other S. thermophilus (St) CRISPR-Cas systems, CRISPR1-Cas and CRISPR3-Cas, have been also reported for preventing phage infection. The CRISPR1-Cas system interferes by cleaving foreign dsDNA entering the cell in a length-specific and orientation-dependant manner. The S. thermophilus CRISPR3-Cas system also acts by cleaving phage dsDNA genomes at the same specific position inside the targeted protospacer as observed in the CRISPR1-Cas system. It is worth mentioning, for the effective DNA cleavage activity, RNA-guided Cas9 orthologs require their own specific PAM (protospacer adjacent motif) sequences. Activity levels are based on the sequence of the protospacer and specific combinations of favorable PAM bases. Therefore, based on the specific length and sequence of PAM followed by a constant length of target site for the three orthogonals of Cas9 protein, a well-organized procedure will be required for high-throughput and accurate mining of possible target sites in a large genomic dataset. Consequently, we created a reliable procedure to explore potential gRNA sequences for type I (Streptococcus thermophiles), II (Streptococcus pyogenes), and III (Streptococcus thermophiles) CRISPR/Cas systems. To mine CRISPR target sites, four different searching modes of sgRNA binding to target DNA strand were applied. These searching modes are as follows: i) coding strand searching, ii) anti-coding strand searching, iii) both strand searching, and iv) paired-gRNA searching. The output of such procedure highlights the power of comparative genome mining for different CRISPR/Cas systems. This could yield a repertoire of Cas9 variants with expanded capabilities of gRNA design, and will pave the way for further advance genome and epigenome engineering.

Keywords: CRISPR/Cas systems, gRNA mining, Streptococcus pyogenes, Streptococcus thermophiles

Procedia PDF Downloads 224
259 Evaluation of Phytochemical and Antidiarrhoeal Activity of Butanol Fraction of Terminalia avicennioides Leaf in Swiss Albino Rats

Authors: Fatima Mohammed Musa, J. B. Ameh, S. A. Ado, O. S. Olonitola

Abstract:

The study was undertaken to evaluate the phytochemical constituents of extracts of Terminalia avicennioides leaf and the antidiarrhoeal effect of n-butanol fraction of the leaf extract in Swiss albino rats infected with Salmonella Typhimurium and Escherichia coli. Ethanol crude extract of Terminalia avicennioides leaf was dissolved in 1.5 liters of sterile distilled water. The extract solution was partitioned with 250 ml each of chloroform, ethyl acetate and n-butanol solvents (1:1v/v) to obtain soluble fractions from the extract. The leaf extract and its fractions were screened for the presence of phytocompounds using standard analytical methods. The antidirrhoeal activity of n-butanol fraction was evaluated in Swiss albino rats using standard methods. The results of phytochemical screening of extract of Terminalia avicennioides leaf and its fractions, revealed the presence of carbohydrates, alkaloids, tannins, flavonoids, saponins, steroids, triterpens, glycosides and phenols. The results of in vivo activity showed that 60 % of each group of rats infected with 2.0 x 108 cfu/ml viable cells of S. Typhimurium and 2.0 x109 cfu/ml viable cells of E. coli manifested the symptoms of diarrhoea, 72 hours after the rats were challenged with bacteria. Other symptoms observed among the infected animals included, loss of appetite, loss of weight, general body weakness and 40 % mortality in S. Typhimurium infected non treated group of rats. Similarly, 60 %, and 20 % mortality was observed among E. coli infected none treated and E. coli infected antibiotic (metronidazole) treated groups of rats respectively. However, there was a reduction in the number of infected rats defecating watery stools over time among all the infected rats that were treated with n-butanol fraction of the leaf extract and mortality was also not observed in the group, indicating high efficacy of n-butanol fraction of T. avicennioides leaf. The results also indicated that n-butanol can be used as alternative source of antidiarrhoeal agent in the treatment of diarrhoea caused by Salmonella Typhimurium and Escherichia coli. In the light of this, there is a need for further research on the mechanism of action of the candidate fraction of T. avicennioides leaf which could be responsible for the observed in vivo antibacterial activity.

Keywords: antidirrhoeal effect, phytochemical constituents, swiss albino rats, terminalia avicennioides

Procedia PDF Downloads 351
258 The Determination of Pb and Zn Phytoremediation Potential and Effect of Interaction between Cadmium and Zinc on Metabolism of Buckwheat (Fagopyrum Esculentum)

Authors: Nurdan Olguncelik Kaplan, Aysen Akay

Abstract:

Nowadays soil pollution has become a global problem. External added polluters to the soil are destroying and changing the structure of the soil and the problems are becoming more complex and in this sense the correction of these problems is going to be harder and more costly. Cadmium has got a fast mobility in the soil and plant system because of that cadmium can interfere very easily to the human and animal food chain and in the same time this can be very dangerous. The cadmium which is absorbed and stored by the plants is causing to many metabolic changes of the plants like; protein synthesis, nitrogen and carbohydrate metabolism, enzyme (nitrate reductase) activation, photo and chlorophyll synthesis. The biological function of cadmium is not known over the plants and it is not a necessary element. The plant is generally taking in small amounts the cadmium and this element is competing with the zinc. Cadmium is causing root damages. Buckwheat (Fagopyrum esculentum) is an important nutraceutical because of its high content of flavonoids, minerals and vitamins, and their nutritionally balanced amino-acid composition. Buckwheat has relatively high biomass productivity, is adapted to many areas of the world, and can flourish in sterile fields; therefore buckwheat plants are widely used for the phytoremediation process.The aim of this study were to evaluate the phytoremediation capacity of the high-yielding plant Buckwheat (Fagopyrum esculentum) in soils contaminated with Cd and Zn. The soils were applied to differrent doses cd(0-12.5-25-50-100 mg Cd kg−1 soil in the form of 3CdSO4.8H2O ) and Zn (0-10-30 mg Zn kg−1 soil in the form of ZnSO4.7H2O) and incubated about 60 days. Later buckwheat seeds were sown and grown for three mounth under greenhouse conditions. The test plants were irrigated by using pure water after the planting process. Buckwheat seeds (Gunes and Aktas species) were taken from Bahri Dagdas International Agricultural Research. After harvest, Cd and Zn concentrations of plant biomass and grain, yield and translocation factors (TFs) for Cd and Cd were determined. Cadmium accumulation in biomass and grain significantly increased in dose-dependent manner. Long term field trials are required to further investigate the potential of buckwheat to reclaimed the soil. But this could be undertaken in conjunction with actual remediation schemes. However, the differences in element accumulation among the genotypes were affected more by the properties of genotypes than by the soil properties. Gunes genotype accumulated higher lead than Aktas genotypes.

Keywords: buckwheat, cadmium, phytoremediation, zinc

Procedia PDF Downloads 395