Search results for: monitoring signals
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3822

Search results for: monitoring signals

3642 A Cellular-Based Structural Health Monitoring Device (HMD) Based on Cost-Effective 1-Axis Accelerometers

Authors: Chih-Hsing Lin, Wen-Ching Chen, Chih-Ting Kuo, Gang-Neng Sung, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

This paper proposes a cellular-based structure health monitoring device (HMD) for temporary bridge monitoring without the requirement of power line and internet service. The proposed HMD includes sensor node, power module, cellular gateway, and rechargeable batteries. The purpose of HMD focuses on short-term collection of civil infrastructure information. It achieves the features of low cost by using three 1-axis accelerometers with data synchronization problem being solved. Furthermore, instead of using data acquisition system (DAQ) sensed data is transmitted to Host through cellular gateway. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 50.5% cost saving with high sensitivity 2000mv/g. In addition to fit different monitoring environments, the proposed system can be easily replaced and/or extended with different PCB boards, such as communication interfaces and sensors, to adapt to various applications. Therefore, with using the proposed device, the real-time diagnosis system for civil infrastructure damage monitoring can be conducted effectively.

Keywords: cellular-based structural health monitoring, cost-effective 1-axis accelerometers, short-term monitoring, structural engineering

Procedia PDF Downloads 485
3641 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications

Authors: Xianwei Zheng, Yuan Yan Tang

Abstract:

Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.

Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis

Procedia PDF Downloads 311
3640 Robust Adaptation to Background Noise in Multichannel C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev, Viktor M. Denisov

Abstract:

A robust sequential nonparametric method is proposed for adaptation to background noise parameters for real-time. The distribution of background noise was modelled like to Huber contamination mixture. The method is designed to operate as an adaptation-unit, which is included inside a detection subsystem of an integrated multichannel monitoring system. The proposed method guarantees the given size of a nonasymptotic confidence set for noise parameters. Properties of the suggested method are rigorously proved. The proposed algorithm has been successfully tested in real conditions of a functioning C-OTDR monitoring system, which was designed to monitor railways.

Keywords: guaranteed estimation, multichannel monitoring systems, non-asymptotic confidence set, contamination mixture

Procedia PDF Downloads 396
3639 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 18
3638 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life

Procedia PDF Downloads 101
3637 Comparison of Linear Discriminant Analysis and Support Vector Machine Classifications for Electromyography Signals Acquired at Five Positions of Elbow Joint

Authors: Amna Khan, Zareena Kausar, Saad Malik

Abstract:

Bio Mechatronics has extended applications in the field of rehabilitation. It has been contributing since World War II in improving the applicability of prosthesis and assistive devices in real life scenarios. In this paper, classification accuracies have been compared for two classifiers against five positions of elbow. Electromyography (EMG) signals analysis have been acquired directly from skeletal muscles of human forearm for each of the three defined positions and at modified extreme positions of elbow flexion and extension using 8 electrode Myo armband sensor. Features were extracted from filtered EMG signals for each position. Performance of two classifiers, support vector machine (SVM) and linear discriminant analysis (LDA) has been compared by analyzing the classification accuracies. SVM illustrated classification accuracies between 90-96%, in contrast to 84-87% depicted by LDA for five defined positions of elbow keeping the number of samples and selected feature the same for both SVM and LDA.

Keywords: classification accuracies, electromyography, linear discriminant analysis (LDA), Myo armband sensor, support vector machine (SVM)

Procedia PDF Downloads 326
3636 The Impact of Information Technology Monitoring on Employee Theft and Productivity

Authors: Ajayi Oluwasola Felix

Abstract:

This paper examines how firm investments in technology-based employee monitoring impact both misconduct and productivity. We use unique and detailed theft and sales data from 392 restaurant locations from five firms that adopt a theft monitoring information technology (IT) product. We use difference-in-differences (DD) models with staggered adoption dates to estimate the treatment effect of IT monitoring on theft and productivity. We find significant treatment effects in reduced theft and improved productivity that appear to be primarily driven by changed worker behavior rather than worker turnover. We examine four mechanisms that may drive this productivity result: economic and cognitive multitasking, fairness-based motivation, and perceived increases of general oversight. The observed productivity results represent substantial financial benefits to both firms and the legitimate tip-based earnings of workers. Our results suggest that employee misconduct is not solely a function of individual differences in ethics or morality, but can also be influenced by managerial policies that can benefit both firms and employees.

Keywords: information technology, monitoring, misconduct, employee theft

Procedia PDF Downloads 376
3635 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 501
3634 Automating and Optimization Monitoring Prognostics for Rolling Bearing

Authors: H. Hotait, X. Chiementin, L. Rasolofondraibe

Abstract:

This paper presents a continuous work to detect the abnormal state in the rolling bearing by studying the vibration signature analysis and calculation of the remaining useful life. To achieve these aims, two methods; the first method is the classification to detect the degradation state by the AOM-OPTICS (Acousto-Optic Modulator) method. The second one is the prediction of the degradation state using least-squares support vector regression and then compared with the linear degradation model. An experimental investigation on ball-bearing was conducted to see the effectiveness of the used method by applying the acquired vibration signals. The proposed model for predicting the state of bearing gives us accurate results with the experimental and numerical data.

Keywords: bearings, automatization, optimization, prognosis, classification, defect detection

Procedia PDF Downloads 94
3633 Using Multiple Strategies to Improve the Nursing Staff Edwards Lifesciences Hemodynamic Monitoring Correctness of Operation

Authors: Hsin-Yi Lo, Huang-Ju Jiun, Yu-Chiao Chu

Abstract:

Hemodynamic monitoring is an important in the intensive care unit. Advances in medical technology in recent years, more diversification of intensive care equipment, there are many kinds of instruments available for monitoring of hemodynamics, Edwards Lifesciences Hemodynamic Monitoring (FloTrac) is one of them. The recent medical safety incidents in parameters were changed, nurses have not to notify doctor in time, therefore, it is hoped to analyze the current problems and find effective improvement strategies. In August 2021, the survey found that only 74.0% of FloTrac correctness of operation, reasons include lack of education, the operation manual is difficulty read, lack of audit mechanism, nurse doesn't know those numerical changes need to notify doctor, work busy omission, unfamiliar with operation and have many nursing records then omissions. Improvement methods include planning professional nurse education, formulate the secret arts of FloTrac, enacting an audit mechanism, establish FloTrac action learning, make「follow the sun」care map, hold simulated training and establish monitoring data automatically upload nursing records. After improvement, FloTrac correctness of operation increased to 98.8%. The results are good, implement to the ICU of the hospital.

Keywords: hemodynamic monitoring, edwards lifesciences hemodynamic monitoring, multiple strategies, intensive care

Procedia PDF Downloads 51
3632 IOT Based Process Model for Heart Monitoring Process

Authors: Dalyah Y. Al-Jamal, Maryam H. Eshtaiwi, Liyakathunisa Syed

Abstract:

Connecting health services with technology has a huge demand as people health situations are becoming worse day by day. In fact, engaging new technologies such as Internet of Things (IOT) into the medical services can enhance the patient care services. Specifically, patients suffering from chronic diseases such as cardiac patients need a special care and monitoring. In reality, some efforts were previously taken to automate and improve the patient monitoring systems. However, the previous efforts have some limitations and lack the real-time feature needed for chronic kind of diseases. In this paper, an improved process model for patient monitoring system specialized for cardiac patients is presented. A survey was distributed and interviews were conducted to gather the needed requirements to improve the cardiac patient monitoring system. Business Process Model and Notation (BPMN) language was used to model the proposed process. In fact, the proposed system uses the IOT Technology to assist doctors to remotely monitor and follow-up with their heart patients in real-time. In order to validate the effectiveness of the proposed solution, simulation analysis was performed using Bizagi Modeler tool. Analysis results show performance improvements in the heart monitoring process. For the future, authors suggest enhancing the proposed system to cover all the chronic diseases.

Keywords: IoT, process model, remote patient monitoring system, smart watch

Procedia PDF Downloads 301
3631 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network

Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung

Abstract:

This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.

Keywords: multi-hop communication, parking monitoring system, TDMA, wireless sensor network

Procedia PDF Downloads 276
3630 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 52
3629 A Building Structure Health Monitoring DeviceBased on Cost Effective 1-Axis Accelerometers

Authors: Chih Hsing Lin, Wen-Ching Chen, Ssu-Ying Chen, Chih-Chyau Yang, Chien-Ming Wu, Chun-Ming Huang

Abstract:

Critical structures such as buildings, bridges and dams require periodic inspections to ensure safe operation. The reliable inspection of structures can be achieved by combing temperature sensor and accelerometers. In this work, we propose a building structure health monitoring device (BSHMD) with using three 1-axis accelerometers, gateway, analog to digital converter (ADC), and data logger to monitoring the building structure. The proposed BSHMD achieves the features of low cost by using three 1-axis accelerometers with the data synchronization problem being solved, and easily installation and removal. Furthermore, we develop a packet acquisition program to receive the sensed data and then classify it based on time and date. Compared with 3-axis accelerometer, our proposed 1-axis accelerometers based device achieves 64.3% cost saving. Compared with previous structural monitoring device, the BSHMD achieves 89% area saving. Therefore, with using the proposed device, the realtime diagnosis system for building damage monitoring can be conducted effectively.

Keywords: building structure health monitoring, cost effective, 1-axis accelerometers, real-time diagnosis

Procedia PDF Downloads 331
3628 An Application of a Machine Monitoring by Using the Internet of Things to Improve a Preventive Maintenance: Case Study of an Automated Plastic Granule-Packing Machine

Authors: Anek Apipatkul, Paphakorn Pitayachaval

Abstract:

Preventive maintenance is a standardized procedure to control and prevent risky problems affecting production in order to increase work efficiency. Machine monitoring also routinely works to collect data for a scheduling maintenance period. This paper is to present the application of machine monitoring by using the internet of things (IOTs) and a lean technique in order to manage with complex maintenance tasks of an automated plastic granule packing machine. To organize the preventive maintenance, there are several processes that the machine monitoring was applied, starting with defining a clear scope of the machine, establishing standards in maintenance work, applying a just-in-time (JIT) technique for timely delivery in the maintenance work, solving problems on the floor, and also improving the inspection process. The result has shown that wasted time was reduced, and machines have been operated as scheduled. Furthermore, the efficiency of the scheduled maintenance period was increased by 95%.

Keywords: internet of things, preventive maintenance, machine monitoring, lean technique

Procedia PDF Downloads 70
3627 Gear Fault Diagnosis Based on Optimal Morlet Wavelet Filter and Autocorrelation Enhancement

Authors: Mohamed El Morsy, Gabriela Achtenová

Abstract:

Condition monitoring is used to increase machinery availability and machinery performance, whilst reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient condition monitoring system provides early warning of faults by predicting them at an early stage. When a localized fault occurs in gears, the vibration signals always exhibit non-stationary behavior. The periodic impulsive feature of the vibration signal appears in the time domain and the corresponding gear mesh frequency (GMF) emerges in the frequency domain. However, one limitation of frequency-domain analysis is its inability to handle non-stationary waveform signals, which are very common when machinery faults occur. Particularly at the early stage of gear failure, the GMF contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. In this paper, a new hybrid method based on optimal Morlet wavelet filter and autocorrelation enhancement is presented. First, to eliminate the frequency associated with interferential vibrations, the vibration signal is filtered with a band-pass filter determined by a Morlet wavelet whose parameters are selected or optimized based on maximum Kurtosis. Then, to further reduce the residual in-band noise and highlight the periodic impulsive feature, an autocorrelation enhancement algorithm is applied to the filtered signal. The test stand is equipped with three dynamometers; the input dynamometer serves as the internal combustion engine, the output dynamometers induce a load on the output joint shaft flanges. The pitting defect is manufactured on the tooth side of a gear of the fifth speed on the secondary shaft. The gearbox used for experimental measurements is of the type most commonly used in modern small to mid-sized passenger cars with transversely mounted powertrain and front wheel drive: a five-speed gearbox with final drive gear and front wheel differential. The results obtained from practical experiments prove that the proposed method is very effective for gear fault diagnosis.

Keywords: wavelet analysis, pitted gear, autocorrelation, gear fault diagnosis

Procedia PDF Downloads 361
3626 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 22
3625 Inter-Area Oscillation Monitoring in Maghrebian Power Grid Using Phasor Measurement Unit

Authors: M. Tsebia, H. Bentarzi

Abstract:

In the inter-connected power systems, a phenomenon called inter-area oscillation may be caused by several defects. In this paper, a study of the Maghreb countries inter-area power networks oscillation has been investigated. The inter-area oscillation monitoring can be enhanced by integrating Phasor Measurement Unit (PMU) technology installed in different places. The data provided by PMU and recorded by PDC will be used for the monitoring, analysis, and control purposes. The proposed approach has been validated by simulation using MATLAB/Simulink.

Keywords: PMU, inter-area oscillation, Maghrebian power system, Simulink

Procedia PDF Downloads 323
3624 Classification of Echo Signals Based on Deep Learning

Authors: Aisulu Tileukulova, Zhexebay Dauren

Abstract:

Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.

Keywords: radar, neural network, convolutional neural network, echo signals

Procedia PDF Downloads 314
3623 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 63
3622 Novel Phenolic Biopolyether with Potential Therapeutic Effect

Authors: V.Barbakadze, L.Gogilashvili, L.Amiranashvili, M.Merlani, K.Mulkijanyan

Abstract:

The high-molecular fractions from the several species of two genera (Symphytum and Anchusa) of Boraginaceae family Symphytum asperum, S. caucasicum, S. officinale, and Anchusa italica were isolated. According to IR, 13C and 1H NMR, 2D heteronuclear 1H/13C HSQC spectral data and 1D NOE experiment, the main structural element of these preparations was found to be a regularly substituted polyoxyethylene, namely poly[3-(3,4-dihydroxyenyl)glyceric acid] (PDPGA) or poly[oxy-1-carboxy-2-(3,4-dihydroxyphenyl)ethylene]. Such caffeic acid-derived biopolymer to our knowledge has not been known and has been identified for the first time. This compound represents a new class of natural polyethers with a residue of 3-(3,4-dihydroxyphenyl)glyceric acid as the repeating unit. Most of the carboxylic groups of PDPGA from A. italica unlike the polymer of S. asperum, S. caucasicum, and S. officinale are methylated. The 2D DOSY experiment gave the similar diffusion coefficient for the methylated and non-methylated signals of A. italica PDPGA. Both sets of signals fell in the same horizontal. This would imply a similar molecular weight for methylated and non-methylated polymers. This was further evidenced by graphic representations of the intensity decay of the 1H signals of aromatic H-2″ and H-1 at δ 7.16 and 5.24 and that of the methoxy group at δ 3.85. These three signals essentially showed the same curve shape. According to results of in vitro and in vivo experiments PDPGA of S.asperum and S.caucasicum could be considered as potential anti-inflammatory, wound healing and anti-cancer therapeutic agent.

Keywords: caffeic acid-derived polyether, poly[3-(3, 4-dihydroxyphenyl)glyceric acid], poly[oxy-1-carboxy-2-(3, 4-dihydroxyphenyl)ethylene], symphytum, anchusa

Procedia PDF Downloads 367
3621 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.

Procedia PDF Downloads 440
3620 Factor Study Affecting Visual Awareness on Dynamic Object Monitoring

Authors: Terry Liang Khin Teo, Sun Woh Lye, Kai Lun Brendon Goh

Abstract:

As applied to dynamic monitoring situations, the prevailing approach to situation awareness (SA) assumes that the relevant areas of interest (AOI) be perceived before that information can be processed further to affect decision-making and, thereafter, action. It is not entirely clear whether this is the case. This study seeks to investigate the monitoring of dynamic objects through matching eye fixations with the relevant AOIs in boundary-crossing scenarios. By this definition, a match is where a fixation is registered on the AOI. While many factors may affect monitoring characteristics, traffic simulations were designed in this study to explore two factors, namely: the number of inbounds/outbound traffic transfers and the number of entry and/or exit points in a radar monitoring sector. These two factors were graded into five levels of difficulty ranging from low to high traffic flow numbers. Combined permutation in terms of levels of difficulty of these two factors yielded a total of thirty scenarios. Through this, results showed that changes in the traffic flow numbers on transfer resulted in greater variations having match limits ranging from 29%-100%, as compared to the number of sector entry/exit points of range limit from 80%-100%. The subsequent analysis is able to determine the type and combination of traffic scenarios where imperfect matching is likely to occur.

Keywords: air traffic simulation, eye-tracking, visual monitoring, focus attention

Procedia PDF Downloads 29
3619 Preference Heterogeneity as a Positive Rather Than Negative Factor towards Acceptable Monitoring Schemes: Co-Management of Artisanal Fishing Communities in Vietnam

Authors: Chi Nguyen Thi Quynh, Steven Schilizzi, Atakelty Hailu, Sayed Iftekhar

Abstract:

Territorial Use Rights for Fisheries (TURFs) have been emerged as a promising tool for fisheries conservation and management. However, illegal fishing has undermined the effectiveness of TURFs, profoundly degrading global fish stocks and marine ecosystems. Conservation and management of fisheries, therefore, largely depends on effectiveness of enforcing fishing regulations, which needs co-enforcement by fishers. However, fishers tend to resist monitoring participation, as their views towards monitoring scheme design has not been received adequate attention. Fishers’ acceptability of a monitoring scheme is likely to be achieved if there is a mechanism allowing fishers to engage in the early planning and design stages. This study carried out a choice experiment with 396 fishers in Vietnam to elicit fishers’ preferences for monitoring scheme and to estimate the relative importance that fishers place on the key design elements. Preference heterogeneity was investigated using a Scale-Adjusted Latent Class Model that accounts for both preference and scale variance. Welfare changes associated with the proposed monitoring schemes were also examined. It is found that there are five distinct preference classes, suggesting that there is no one-size-fits-all scheme well-suited to all fishers. Although fishers prefer to be compensated more for their participation, compensation is not a driving element affecting fishers’ choice. Most fishers place higher value on other elements, such as institutional arrangements and monitoring capacity. Fishers’ preferences are driven by their socio-demographic and psychological characteristics. Understanding of how changes in design elements’ levels affect the participation of fishers could provide policy makers with insights useful for monitoring scheme designs tailored to the needs of different fisher classes.

Keywords: Design of monitoring scheme, Enforcement, Heterogeneity, Illegal Fishing, Territorial Use Rights for Fisheries

Procedia PDF Downloads 298
3618 Remote Monitoring and Control System of Potentiostat Based on the Internet of Things

Authors: Liang Zhao, Guangwen Wang, Guichang Liu

Abstract:

Constant potometer is an important component of pipeline anti-corrosion systems in the chemical industry. Based on Internet of Things (IoT) technology, Programmable Logic Controller (PLC) technology and database technology, this paper developed a set of a constant potometer remote monitoring management system. The remote monitoring and remote adjustment of the working status of the constant potometer are realized. The system has real-time data display, historical data query, alarm push management, user permission management, and supporting Web access and mobile client application (APP) access. The actual engineering project test results show the stability of the system, which can be widely used in cathodic protection systems.

Keywords: internet of things, pipe corrosion protection, potentiostat, remote monitoring

Procedia PDF Downloads 116
3617 Polydimethylsiloxane Applications in Interferometric Optical Fiber Sensors

Authors: Zeenat Parveen, Ashiq Hussain

Abstract:

This review paper consists of applications of PDMS (polydimethylsiloxane) materials for enhanced performance, optical fiber sensors in acousto-ultrasonic, mechanical measurements, current applications, sensing, measurements and interferometric optical fiber sensors. We will discuss the basic working principle of fiber optic sensing technology, various types of fiber optic and the PDMS as a coating material to increase the performance. Optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high frequency signals i.e. ultrasonic/ultrasound, and other signals such as acoustic emission and impact induced dynamic strain. Optical fiber sensors have Industrial and civil engineering applications in mechanical measurements. Sometimes it requires different configurations and parameters of sensors. Optical fiber current sensors are based on Faraday Effect due to which we obtain better performance as compared to the conventional current transformer. Recent advancement and cost reduction has simulated interest in optical fiber sensing. Optical techniques are also implemented in material measurement. Fiber optic interferometers are used to sense various physical parameters including temperature, pressure and refractive index. There are four types of interferometers i.e. Fabry–perot, Mach-Zehnder, Michelson, and Sagnac. This paper also describes the future work of fiber optic sensors.

Keywords: fiber optic sensing, PDMS materials, acoustic, ultrasound, current sensor, mechanical measurements

Procedia PDF Downloads 360
3616 Real-Time Nonintrusive Heart Rate Measurement: Comparative Case Study of LED Sensorics' Accuracy and Benefits in Heart Monitoring

Authors: Goran Begović

Abstract:

In recent years, many researchers are focusing on non-intrusive measuring methods when it comes to human biosignals. These methods provide solutions for everyday use, whether it’s health monitoring or finessing the workout routine. One of the biggest issues with these solutions is that the sensors’ accuracy is highly variable due to many factors, such as ambiental light, skin color diversity, etc. That is why we wanted to explore different outcomes under those kinds of circumstances in order to find the most optimal algorithm(s) for extracting heart rate (HR) information. The optimization of such algorithms can benefit the wider, cheaper, and safer application of home health monitoring, without having to visit medical professionals as often when it comes to observing heart irregularities. In this study, we explored the accuracy of infrared (IR), red, and green LED sensorics in a controlled environment and compared the results with a medically accurate ECG monitoring device.

Keywords: data science, ECG, heart rate, holter monitor, LED sensors

Procedia PDF Downloads 93
3615 Impact of Digitized Monitoring & Evaluation System in Technical Vocational Education and Training

Authors: Abdul Ghani Rajput

Abstract:

Although monitoring and evaluation concept adopted by Technical Vocational Education and Training (TVET) organization to track the progress over the continuous interval of time based on planned interventions and subsequently, evaluating it for the impact, quality assurance and sustainability. In digital world, TVET providers are giving preference to have real time information to do monitoring of training activities. Identifying the benefits and challenges of digitized monitoring & evaluation real time information system has not been sufficiently tackled in this date. This research paper looks at the impact of digitized M&E in TVET sector by analyzing two case studies and describe the benefits and challenges of using digitized M&E system. Finally, digitized M&E have been identified as carriers for high potential of TVET sector.

Keywords: digitized M&E, innovation, quality assurance, TVET

Procedia PDF Downloads 189
3614 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines

Authors: Cristobal García

Abstract:

The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.

Keywords: SHM, vibrations, connections, floating offshore platform

Procedia PDF Downloads 87
3613 Are the Organizations Prepared for Potential Crises? A Research Intended to Measure the Proactivity Level of Industrial Organizations

Authors: M. Tahir Demirsel, Mustafa Atsan

Abstract:

Many elements of the environment in which businesses operate today leave them faced with unexpected threats and opportunities. One of the major threats is business crisis. The crisis is a state of affairs in a business wherein the executives must take urgent and unprecedented action to try to save the business from failure. In order to survive in the business environment, organizations should be prepared for the potential crises. Technological developments, uncertainty in the market and the intense competition increase the probability of encountering a crisis for organizations. Therefore, by acting proactively to predict crisis, to detect signals of crisis and be prepared for a crisis by taking necessary precautions accordingly, is of great importance for businesses. In this context, the objective of this study is to reveal that how much organizations are proactive and can predict the future crises and investigate whether they are prepared for possible crises or not. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). The findings are analyzed through descriptive statistics and multiple regression analysis. According to the results, it has been observed that organizations cannot predict the crisis signals and are not prepared for potential crises.

Keywords: crisis preparedness, crisis signals, industrial organizations, proactivity

Procedia PDF Downloads 488