Search results for: molecular catalysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2205

Search results for: molecular catalysis

2145 Treatment of Municipal Wastewater by Means of Uv-Assisted Irradiation Technologies: Fouling Studies and Optimization of Operational Parameters

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

UV-assisted irradiation technologies are well-established for water and wastewater treatment. UVC treatments are widely used at large-scale, while UVA irradiation has more often been applied in combination with a catalyst (e.g. TiO₂ or FeSO₄) in smaller-scale systems. A technical issue of these systems is the formation of fouling on the quartz sleeves that houses the lamps. This fouling can prevent complete irradiation, therefore reducing the efficiency of the process. This paper investigates the effects of operational parameters, such as the type of wastewater, irradiation source, H₂O₂ addition, and water pH on fouling formation and, ultimately, the treatment of municipal wastewater. Batch experiments have been performed at lab-scale while monitoring water quality parameters including: COD, TS, TSS, TDS, temperature, pH, hardness, alkalinity, turbidity, TOC, UV transmission, UV₂₅₄ absorbance, and metal concentrations. The residence time of the wastewater in the reactor was 5 days in order to observe any fouling formation on the quartz surface. Over this period, it was observed that chemical oxygen demand (COD) decreased by 30% and 59% during photolysis (Ultraviolet A) and photo-catalysis (UVA/Fe/H₂O₂), respectively. Higher fouling formation was observed with iron-rich and phosphorous-rich wastewater. The highest rate of fouling was developed with phosphorous-rich wastewater, followed by the iron-rich wastewater. Photo-catalysis (UVA/Fe/H₂O₂) had better removal efficiency than photolysis (UVA). This was attributed to the Photo-Fenton reaction, which was initiated under these operational conditions. Scanning electron microscope (SEM) measurements of fouling formed on the quartz sleeves showed that particles vary in size, shape, and structure; some have more distinct structures and are generally larger and have less compact structure than the others. Energy-dispersive X-ray spectroscopy (EDX) results showed that the major metals present in the fouling cake were iron, phosphorous, and calcium. In conclusion, iron-rich wastewaters are more suitable for UV-assisted treatment since fouling formation on quartz sleeves can be minimized by the formation of oxidizing agents during treatment, such as hydroxyl radicals.

Keywords: advanced oxidation processes, photo-fenton treatment, photo-catalysis, wastewater treatment

Procedia PDF Downloads 48
2144 Kinetic and Mechanistic Study on the Degradation of Typical Pharmaceutical and Personal Care Products in Water by Using Carbon Nanodots/C₃N₄ Composite and Ultrasonic Irradiation

Authors: Miao Yang

Abstract:

PPCPs (pharmaceutical and personal care products) in water, as an environmental pollutant, becomes an issue of increasing concern. Therefore, the techniques for degradation of PPCPs has been a hotspot in water pollution control field. Since there are several disadvantages for common degradation techniques of PPCPs, such as low degradation efficiency for certain PPCPs (ibuprofen and Carbamazepine) this proposal will adopt a combined technique by using CDs (carbon nanodots)/C₃N₄ composite and ultrasonic irradiation to mitigate or overcome these shortages. There is a significant scientific problem that the mechanism including PPCPs, major reactants, and interfacial active sites is not clear yet in the study of PPCPs degradation. This work aims to solve this problem by using both theoretical and experimental methodologies. Firstly, optimized parameters will be obtained by evaluating the kinetics and oxidation efficiency under different conditions. The competition between H₂O₂ and PPCPs with HO• will be elucidated, after which the degradation mechanism of PPCPs by the synergy of CDs/C₃N₄ composite and ultrasonic irradiation will be proposed. Finally, a sonolysis-adsorption-catalysis coupling mechanism will be established which is the theoretical basis and technical support for developing new efficient degradation techniques for PPCPs in the future.

Keywords: carbon nanodots/C₃N₄, pharmaceutical and personal care products, ultrasonic irradiation, hydroxyl radical, heterogeneous catalysis

Procedia PDF Downloads 152
2143 The Effect of Molecular Weight on the Cross-Linking of Two Different Molecular Weight LLDPE Samples

Authors: Ashkan Forootan, Reza Rashedi

Abstract:

Polyethylene has wide usage areas such as blow molding, pipe, film, cable insulation. However, regardless to its growing applications, it has some constraints such as the limited 70C operating temperature. Polyethylene thermo setting procedure whose molecules are knotted and 3D-molecular-network formed , is developed to conquer the above problem and to raise the applicable temperature of the polymer. This paper reports the cross-linking for two different molecular weight grades of LLDPE by adding 0.5, 1, and 2% of DCP (Dicumyl Peroxide). DCP was chosen for its prevalence among various cross-linking agents. Structural parameters such as molecular weight, melt flow index, comonomer, number of branches,etc. were obtained through the use of relative tests as Gel Permeation Chromatography and Fourier Transform Infra Red spectrometer. After calculating the percentage of gel content, properties of the pure and cross-linked samples were compared by thermal and mechanical analysis with DMTA and FTIR and the effects of cross-linking like viscous and elastic modulus were discussed by using various structural paprameters such as MFI, molecular weight, short chain branches, etc. Studies showed that cross-linked polymer, unlike the pure one, had a solid state with thermal mechanical properties in the range of 110 to 120C and this helped overcome the problem of using polyethylene in temperatures near the melting point.

Keywords: LLDPE, cross-link, structural parameters, DCP, DMTA, GPC

Procedia PDF Downloads 274
2142 Quantitative Structure–Activity Relationship Analysis of Some Benzimidazole Derivatives by Linear Multivariate Method

Authors: Strahinja Z. Kovačević, Lidija R. Jevrić, Sanja O. Podunavac Kuzmanović

Abstract:

The relationship between antibacterial activity of eighteen different substituted benzimidazole derivatives and their molecular characteristics was studied using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on inhibitory activity towards Staphylococcus aureus, by using molecular descriptors, as well as minimal inhibitory activity (MIC). Molecular descriptors were calculated from the optimized structures. Principal component analysis (PCA) followed by hierarchical cluster analysis (HCA) and multiple linear regression (MLR) was performed in order to select molecular descriptors that best describe the antibacterial behavior of the compounds investigated, and to determine the similarities between molecules. The HCA grouped the molecules in separated clusters which have the similar inhibitory activity. PCA showed very similar classification of molecules as the HCA, and displayed which descriptors contribute to that classification. MLR equations, that represent MIC as a function of the in silico molecular descriptors were established. The statistical significance of the estimated models was confirmed by standard statistical measures and cross-validation parameters (SD = 0.0816, F = 46.27, R = 0.9791, R2CV = 0.8266, R2adj = 0.9379, PRESS = 0.1116). These parameters indicate the possibility of application of the established chemometric models in prediction of the antibacterial behaviour of studied derivatives and structurally very similar compounds.

Keywords: antibacterial, benzimidazole, molecular descriptors, QSAR

Procedia PDF Downloads 336
2141 Molecular Interaction of Acetylcholinesterase with Flavonoids Involved in Neurodegenerative Diseases

Authors: W. Soufi, F. Boukli Hacene, S. Ghalem

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disease that leads to a progressive and permanent deterioration of nerve cells. This disease is progressively accompanied by an intellectual deterioration leading to psychological manifestations and behavioral disorders that lead to a loss of autonomy. It is the most frequent of degenerative dementia. Alzheimer's disease (AD), which affects a growing number of people, has become a major public health problem in a few years. In the context of the study of the mechanisms governing the evolution of AD disease, we have found that natural flavonoids are good acetylcholinesterase inhibitors that reduce the rate of ßA secretion in neurons. This work is to study the inhibition of acetylcholinesterase (AChE) which is an enzyme involved in Alzheimer's disease, by methods of molecular modeling. These results will probably help in the development of an effective therapeutic tool in the fight against the development of Alzheimer's disease. Our goal of the research is to study the inhibition of acetylcholinesterase (AChE) by molecular modeling methods.

Keywords: Alzheimer's disease, acetylcholinesterase, flavonoids, molecular modeling

Procedia PDF Downloads 75
2140 Polymeric Micelles Based on Block Copolymer α-Tocopherol Succinate-g-Carboxymethyl Chitosan for Tamoxifen Delivery

Authors: Sunil K. Jena, Sanjaya K. Samal, Mahesh Chand, Abhay T. Sangamwar

Abstract:

Tamoxifen (TMX) and its analogues are approved as a first line therapy for the treatment of estrogen receptor-positive tumors. However, clinical development of TMX has been hampered by its low bioavailability and severe hepatotoxicity. Herein, we attempt to design a new drug delivery vehicle that could enhance the pharmacokinetic performance of TMX. Initially, high-molecular weight carboxymethyl chitosan was hydrolyzed to low-molecular weight carboxymethyl chitosan (LMW CMC) with hydrogen peroxide under the catalysis of phosphotungstic acid. Amphiphilic block copolymers of LMW CMC were synthesized via amidation reaction between the carboxyl group of α-tocopherol succinate (TS) and an amine group of LMW CMC. These amphiphilic block copolymers were self-assembled to nanosize core-shell-structural micelles in the aqueous medium. The critical micelle concentration (CMC) decreased with the increasing substitution of TS on LMW CMC, which ranged from 1.58 × 10-6 to 7.94 × 10-8 g/mL. Maximum TMX loading up to 8.08 ± 0.98% was achieved with Cmc-TS4.5 (TMX/Cmc-TS4.5 with 1:8 weight ratio). Both blank and TMX-loaded polymeric micelles (TMX-PM) of Cmc-TS4.5 exhibits spherical shape with the particle size below 200 nm. TMX-PM has been found to be stable in the gastrointestinal conditions and released only 44.5% of the total drug content by the first 72 h in simulated gastric fluid (SGF), pH 1.2. However, the presence of pepsin does not significantly increased the TMX release in SGF, pH 1.2, released only about 46.2% by the first 72 h suggesting its inability to cleave the peptide bond. In contrast, the release of TMX from TMX-PM4.5 in SIF, pH 6.8 (without pancreatin) was slow and sustained, released only about 10.43% of the total drug content within the first 30 min and nearly about 12.41% by the first 72 h. The presence of pancreatin in SIF, pH 6.8 led to an improvement in drug release. About 28.09% of incorporated TMX was released in the presence of pancreatin in 72 h. A cytotoxicity study demonstrated that TMX-PM exhibited time-delayed cytotoxicity in human MCF-7 breast cancer cells. Pharmacokinetic studies on Sprague-Dawley rats revealed a remarkable increase in oral bioavailability (1.87-fold) with significant (p < 0.0001) enhancement in AUC0-72 h, t1/2 and MRT of TMX-PM4.5 than that of TMX-suspension. Thus, the results suggested that CMC-TS micelles are a promising carrier for TMX delivery.

Keywords: carboxymethyl chitosan, d-α-tocopherol succinate, pharmacokinetic, polymeric micelles, tamoxifen

Procedia PDF Downloads 310
2139 Mechanistic Analysis of an L-2-Haloacid Dehalogenase (DehL) from Rhizobium Sp. RC1: Computational Approach

Authors: Aliyu Adamu, Fahrul Huyop, Roswanira Abdul Wahab, Mohd Shahir Shamsir

Abstract:

Halogenated organic compounds occur in huge amount in biosphere. This is attributable to the diverse use of halogen-based compounds in the synthesis of various industrially important products. Halogenated compound is toxic and may persist in the environment, thereby causing serious health and environmental pollution problems. L-2-haloacid dehalogenases (EC 3.8.1.2) catalyse the specific cleavage of carbon-halogen bond in L-isomers of halogenated compounds, which consequently reverse the effects of environmental halogen-associated pollution. To enhance the efficiency and utility of these enzymes, this study investigates the catalytic amino acid residues and the molecular functional mechanism of DehL, by classical molecular dynamic simulations, MM-PBSA and ab initio fragments molecular orbital (FMO) calculations. The results of the study will serve as the basis for the molecular engineering of the enzyme.

Keywords: DehL, Functional mechanism, Catalytic residues, L-2-haloacid dehalogenase

Procedia PDF Downloads 329
2138 Theoretical Study of Carbonic Anhydrase-Ii Inhibitors for Treatment of Glaucoma

Authors: F. Boukli Hacene, W. Soufi, S. Ghalem

Abstract:

Glaucoma disease is a progressive degenerative optic neuropathy, with irreversible visual field deficits and high eye pressure being one of the risk factors. Sulfonamides are carbonic anhydrase-II inhibitors that aim to decrease the secretion of aqueous humor by direct inhibition of this enzyme at the level of the ciliary processes. These drugs present undesirable effects that are difficult to accept by the patient. In our study, we are interested in the inhibition of carbonic anhydrase-II by different natural ligands (curcumin analogues) using molecular modeling methods using molecular operating environment (MOE) software to predict their interaction with this enzyme.

Keywords: carbonic anhydrase-II, curcumin analogues, drug research, molecular modeling

Procedia PDF Downloads 62
2137 Polyphosphate Kinase 1 Active Site Characterization for the Identification of Novel Antimicrobial Targets

Authors: Sanaa Bardaweel

Abstract:

Inorganic polyphosphate (poly P) is present in all living forms tested to date, from each of the three kingdoms of life. Studied mainly in prokaryotes, poly P and its associated enzymes are vital in diverse basic metabolism, in at least some structural functions and, notably, in stress responses. These plentiful and unrelated roles for poly P are probably the consequence of its presence in life-forms early in evolution. The genomes of many bacterial species, including pathogens, encode a homologue of a major poly P synthetic enzyme, poly P kinase 1 (PPK1). Genetic deletion of ppk1 results in reduced poly P levels and loss of pathogens virulence towards protozoa and animals. Thus far, no PPK1 homologue has been identified in higher-order eukaryotes and, therefore, PPK1 represents a novel target for chemotherapy. The idea of the current study is to purify the PPK1 from Escherichia coli to homogeneity in order to study the effect of active site point mutations on PPK1 catalysis via the application of site-directed mutagenesis strategy. The knowledge obtained about the active site of PPK1 will be utilized to characterize the catalytic and kinetic mechanism of PPK1 with model substrates. Comprehensive understanding of the enzyme kinetic mechanism and catalysis will be used to design and screen a library of synthetic compounds for potential discovery of selective PPK1-inhibitors.

Keywords: antimicobial, Escherichia coli, inorganic polyphosphate, PPK1-inhibitors

Procedia PDF Downloads 247
2136 Molecular Motors in Smart Drug Delivery Systems

Authors: Ainoa Guinart, Maria Korpidou, Daniel Doellerer, Cornelia Palivan, Ben L. Feringa

Abstract:

Stimuli responsive systems arise from the need to meet unsolved needs of current molecular drugs. Our study presents the design of a delivery system with high spatiotemporal control and tuneable release profiles. We study the incorporation of a hydrophobic synthetic molecular motor into PDMS-b-PMOXA block copolymer vesicles to create a self-assembled system. We prove their successful incorporation and selective activation by low powered visible light (λ 430 nm, 6.9 mW). We trigger the release of a fluorescent dye with high release efficiencies over sequential cycles (up to 75%) with the ability to turn on and off the release behaviour on demand by light irradiation. Low concentrations of photo-responsive units are proven to trigger release down to 1 mol% of molecular motor. Finally, we test our system in relevant physiological conditions using a lung cancer cell line and the encapsulation of an approved drug. Similar levels of cell viability are observed compared to the free-given drugshowing the potential of our platform to deliver functional drugs on demand with the same efficiency and lower toxicity.

Keywords: molecular motor, polymer, drug delivery, light-responsive, cancer, selfassembly

Procedia PDF Downloads 95
2135 Heterogeneous and Homogeneous Photocatalytic Degradation of Acid Orange 10 in Aqueous Solution

Authors: Merouani Djilali Redha, F. Abdelmalek, A. A. Addou

Abstract:

Advanced oxidation processes (AOPs) utilizing Homogenous photocatalysis (Fenton and photo-Fenton reactions), and Heterogeneous photocatalyse (TiO2 and ZnO) were investigated for the degradation of commercial azo dye ‘Orange G’ wastewater. Fenton and photo-Fenton experimental conditions were: Hydrogen peroxide concentration (10-2 M), Ferrous ions concentration (5.10-4 M), pH (2.8 – 3), UV lamp power (6 watt). Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The optimum catalyst loading was found 2.0 g.L-1 in our case for both catalysts TiO2 and ZnO. A comparative study of the photocatalytic degradation showed that these two catalysts have a comparable reactivity; it follows a pseudo-first-order kinetics. The degradation trends followed the order: UV365/Fenton > UV365/TiO2 > Solar Fenton > Solar TiO2 > Fenton ~UV365/ZnO. Among AOPs, processes using Fenton type reagent are relatively cheap and easy to operate and maintain. Moreover, UV365/Fenton process has been shown as effective in the treatment of OG dye. Dye was degraded following second-order kinetics. The rate constants was 0,041 .10+6 L.M-1.min-1. The degradation was followed by spectrophotometric method, chemical oxygen demand (COD) measures and high performance liquid chromatography analyses (HPLC). Some aromatic and aliphatic degradation compounds were identified. Degradation of Orange G by UV Fenton mechanism was also proposed.

Keywords: AOPs, homogeneous catalysis, heterogeneous catalysis, acid orange 10, hydroxyl radical

Procedia PDF Downloads 382
2134 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 75
2133 Characterization of the Catalytic and Structural Roles of the Human Hexokinase 2 in Cancer Progression

Authors: Mir Hussain Nawaz, Lyudmila Nedyalkova, Haizhong Zhu, Wael M. Rabeh

Abstract:

In this study, we aim to biochemically and structurally characterize the interactions of human HK2 with the mitochondria in addition to the role of its N-terminal domain in catalysis and stability of the full-length enzyme. Here, we solved the crystal structure of human HK2 in complex with glucose and glucose-6-phosphate (PDB code: 2NZT), where it is a homodimer with catalytically active N- and C-terminal domains linked by a seven-turn α-helix. Different from the inactive N-terminal domains of isozymes 1 and 3, the N- domain of HK2 not only capable to catalyze a reaction but it is responsible for the thermodynamic stabilizes of the full-length enzyme. Deletion of first α-helix of the N-domain that binds to the mitochondria altered the stability and catalytic activity of the full-length HK2. In addition, we found the linker helix between the N- and C-terminal domains to play an important role in controlling the catalytic activity of the N-terminal domain. HK2 is a major step in the regulation of glucose metabolism in cancer making it an ideal target for the development of new anticancer therapeutics. Characterizing the structural and molecular mechanisms of human HK2 and its role in cancer metabolism will accelerate the design and development of new cancer therapeutics that are safe and cancer specific.

Keywords: cancer metabolism, enzymology, drug discovery, protein stability

Procedia PDF Downloads 234
2132 Selection Effects on the Molecular and Abiotic Evolution of Antibiotic Resistance

Authors: Abishek Rajkumar

Abstract:

Antibiotic resistance can occur naturally given the selective pressure placed on antibiotics. Within a large population of bacteria, there is a significant chance that some of those bacteria can develop resistance via mutations or genetic recombination. However, a growing public health concern has arisen over the fact that antibiotic resistance has increased significantly over the past few decades. This is because humans have been over-consuming and producing antibiotics, which has ultimately accelerated the antibiotic resistance seen in these bacteria. The product of all of this is an ongoing race between scientists and the bacteria as bacteria continue to develop resistance, which creates even more demand for an antibiotic that can still terminate the newly resistant strain of bacteria. This paper will focus on a myriad of aspects of antibiotic resistance in bacteria starting with how it occurs on a molecular level and then focusing on the antibiotic concentrations and how they affect the resistance and fitness seen in bacteria.

Keywords: antibiotic, molecular, mutation, resistance

Procedia PDF Downloads 297
2131 Synthesis of Biofuels of New Generation

Authors: Selena Gutiérrez, Araceli Martínez

Abstract:

One of the most important challenges worldwide, scientific and technological, is to have a sustainable energy source; friendly to the environment and widely available. Currently, the 85% of the energy used comes from the fossil sources. Another important environmental problem is that several rubber products (tires, gloves, hoses, among others) are discarded practically without any treatment. In nature, the degradation of such products will take at least 500 years. In 2009, the worldwide rubber production was about 23.6 million tons. In order to solve this problems, our research focus in an alternative synthesis of biofuels in a two-step approach: The metathesis degradation of industrial rubber (models of rubber waste), and the oligomers transesterification. Thus, cis-1,4-polybutadiene (Mn= 9.1x105, Mw/Mn= 2.2) and styrene-butadiene block copolymers with 30% (Mn= 1.61x105; Mw/Mn= 1.3) and 21% wt styrene (Mn= 1.92x105; Mw/Mn= 1.4) were degraded via metathesis with soybean oil as chain transfer agent (CTA) and green solvent; using [(PCy3)2Cl2Ru=CHPh] and [(1,3-diphenyl-4,5-dihydroimidazol-2-ylidene)(PCy3)Ru=CHPh] catalysts. Afterwards, the products were transesterified by basic homogeneous catalysis. Before transesterification, the polystyrene microblocks (Mn= 16,761; Mw/Mn= 1.2) were isolated. Finally, the biofuels obtained (BO) were purified, characterized and showed similar properties to standards biodiesel (SB) (Norms: EN 14214-03 and ASTM D6751-02), i.e. (SB / BO): molecular weight [Daltons] (570 / 543-596), density [g/cm3] (0.86-0.90 / 0.88), kinematic viscosity [mm2/s] (1.90-6.0 / 3.5-4.5), iodine (97 / 97-98) and cetane number (Min.47 / 56-58).

Keywords: biofuels, industrial rubber, metathesis, vegetable oils

Procedia PDF Downloads 232
2130 In Silico Study of Alpha glucosidase Inhibitors by Flavonoids

Authors: Boukli Hacene Faiza, Soufi Wassila, Ghalem Said

Abstract:

The oral antidiabetics drugs such as alpha glucosidase inhibitors present undesirable effects like acarbose. Flavonoids are class of molecules widely distributed in plants, for this reason we are interested in our work to study the inhibition in silico of alpha glucosidase by natural ligands ( flavonoids analogues) using molecular modeling methods using MOE (Molecular Operating Environment) software to predict their interaction with this enzyme with score energy, ADME /T tests and druglikeness properties experiments. Two flavonoids Beicalein and Apigenin have high binding affinity with alpha glucosidase with lower IC50 supposed potent inhibitors.

Keywords: alpha glucosidase, flavonoides analogues, drug research, molecular modeling

Procedia PDF Downloads 76
2129 Surface Sensing of Atomic Behavior of Polymer Nanofilms via Molecular Dynamics Simulation

Authors: Ling Dai

Abstract:

Surface-sensing devices such as atomic force microscope have been widely used to characterize the surface structure and properties of nanoscale polymer films. However, using molecular dynamics simulations, we show that there is intrinsic and unavoidable inelastic deformation at polymer surfaces induced by the sensing tip. For linear chain polymers like perfluoropolyether, such tip-induced deformation derives from the differences in the atomic interactions which are atomic specie-based Van der Waals interactions, and resulting in atomic shuffling and causing inelastic alternation in both molecular structures and mechanical properties at the regions of the polymer surface. For those aromatic chain polymers like epoxy, the intrinsic deformation is depicted as the intra-chain rotation of aromatic rings and kinking of linear atomic connections. The present work highlights the need to reinterpret the data obtained from surface-sensing tests by considering this intrinsic inelastic deformation occurring at polymer surfaces.

Keywords: polymer, surface, nano, molecular dynamics

Procedia PDF Downloads 332
2128 Molecular Modeling of Structurally Diverse Compounds as Potential Therapeutics for Transmissible Spongiform Encephalopathy

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić

Abstract:

Prion is a protein substance whose certain form is considered as infectious agent. It is presumed to be the cause of the transmissible spongiform encephalopathies (TSEs). The protein it is composed of, called PrP, can fold in structurally distinct ways. At least one of those 3D structures is transmissible to other prion proteins. Prions can be found in brain tissue of healthy people and have certain biological role. The structure of prions naturally occurring in healthy organisms is marked as PrPc, and the structure of infectious prion is labeled as PrPSc. PrPc may play a role in synaptic plasticity and neuronal development. Also, it may be required for neuronal myelin sheath maintenance, including a role in iron uptake and iron homeostasis. PrPSc can be considered as an environmental pollutant. The main aim of this study was to carry out the molecular modeling and calculation of molecular descriptors (lipophilicity, physico-chemical and topological descriptors) of structurally diverse compounds which can be considered as anti-prion agents. Molecular modeling was conducted applying ChemBio3D Ultra version 12.0 software. The obtained 3D models were subjected to energy minimization using molecular mechanics force field method (MM2). The cutoff for structure optimization was set at a gradient of 0.1 kcal/Åmol. The Austin Model 1 (AM-1) was used for full geometry optimization of all structures. The obtained set of molecular descriptors is applied in analysis of similarities and dissimilarities among the tested compounds. This study is an important step in further development of quantitative structure-activity relationship (QSAR) models, which can be used for prediction of anti-prion activity of newly synthesized compounds.

Keywords: chemometrics, molecular modeling, molecular descriptors, prions, QSAR

Procedia PDF Downloads 297
2127 The Effect of Extrusion Processing on Solubility and Molecular Weight of Water-Soluble Arabinoxylan

Authors: Abdulmannan Fadel

Abstract:

Arabinoxylan is a non-starch polysaccharide (NSP), which is one of the most important polysaccharides contained within cereal grains. Wheat endosperm pentosan and rice bran contain a significant amount of arabinoxylan (7% in rice bran and 10-12% in wheat endosperm pentosan). Several methods have been used for arabinoxylan extraction with varying degrees of success e.g. enzymatic and alkaline treatment. Yet, the use of extrusion alone as a pre-treatment to increase the yield and reduce the molecular weight in wheat endosperm pentosan and rice bran has not been investigated. The samples (wheat pentosan and rice bran) were extruded using a Twin-screw extruder at a range of screw speeds (80 and 160 rpm) and barrel temperatures range (80 to 140°C) with a throughput of 30 Kg hr-1 and moisture content of 25%. Arabinoxylans were extracted with water and the extraction yield and molecular weight was determined using size exclusion high-pressure liquid chromatography system. It was found that increasing screw speed from 80 rpm to 160 rpm, did not effect the extraction yield (p < 0.05) of arabinoxylan from either the wheat endosperm pentosan or the rice bran. However, the molecular weight of the extracted arabinoxylans from pentosan was found to decrease with increasing screw speed in wheat endosperm pentosan. These low molecular weight arabinoxylans have been suggested as immunomodulators.

Keywords: arabinoxylans, extrusion, wheat endosperm pentosan, rice bran

Procedia PDF Downloads 384
2126 Purification, Biochemical Characterization and Application of an Extracellular Alkaline Keratinase Produced by Aspergillus sp. DHE7

Authors: Dina Helmy El-Ghonemy, Thanaa Hamed Ali

Abstract:

The aim of this study was to purify and characterize a keratinolytic enzyme produced by Aspergillus sp. DHE7 cultured in basal medium containing chicken feather as substrate. The enzyme was purified through ammonium sulfate saturation of 60%, followed by gel filtration chromatography in Sephadex G-100, with a 16.4-purification fold and recovery yield of 52.2%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the purified enzyme is a monomeric enzyme with an apparent molecular mass of 30 kDa — the purified keratinase of Aspergillus sp. DHE7 exhibited activity in a broad range of pH (7- 9) and temperature (40℃-60℃) profiles with an optimal activity at pH eight and 50℃. The keratinolytic activity was inhibited by protease inhibitors such as phenylmethylsulfonyl fluoride and ethylenediaminetetraacetate, while no reduction of activity was detected by the addition of dimethyl sulfoxide (DMSO). Bivalent cations, Ca²⁺ and Mn²⁺, were able to greatly enhance the activity of keratinase by 125.7% and 194.8%, respectively, when used at one mM final concentration. On the other hand, Cu²⁺ and Hg²⁺ inhibited the enzyme activity, which might be indicative of essential vicinal sulfhydryl groups of the enzyme for productive catalysis. Furthermore, the purified keratinase showed significant stability and compatibility against the tested commercial detergents at 37ºC. Therefore, these results suggested that the purified keratinase from Aspergillus sp. DHE7 may have potential use in the detergent industry and should be of interest in the processing of poultry feather waste.

Keywords: Aspergillus sp. DHE7, biochemical characterization, keratinase, purification, waste management

Procedia PDF Downloads 94
2125 Substituted Thiazole Analogues as Anti-Tumor Agents

Authors: Menna Ewida, Dalal Abou El-Ella, Dina Lasheen, Huessin El-Subbagh

Abstract:

Introduction: Vascular Endothelial Growth Factor receptor (VEGF) is a signal protein produced by cells that stimulates vasculogenesis to create new blood vessels. VEGF family binds to three trans-membrane tyrosine kinase receptors,Dihydrofolate reductase (DHFR) is an enzyme of crucial importance in medicinal chemistry. DHFR catalyzes the reduction 7,8 dihydro-folate to tetrahydrofolate and intimately couples with thymidylate synthase which is a pivotal enzyme that catalysis the reductive methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) utilizing N5,N10-methylene tetrahydrofolate as a cofactor which functions as the source of the methyl group. Purpose: Novel substituted Thiazole agents were designed as DHFR and VEGF-TK inhibitors with increased synergistic activity and decreased side effects. Methods: Five series of compounds were designed with a rational that mimic the pharmacophoric features present in the reported active compounds that target DHFR & VEGFR. These molecules were docked against Methotrexate & Sorafenib as controls. An in silico ADMET study was also performed to validate the bioavailability of the newly designed compounds. The in silico molecular docking & ADMET study were also applied to the non-classical antifolates for comparison. The interaction energy comparable to that of MTX for DHFRI and Sorafenib for VEGF-TKI activity were recorded. Results: Compound 5 exhibited the highest interaction energy when docked against Sorafenib, While Compound 9 showed the highest interaction energy when docked against MTX with the perfect binding mode. Comparable results were also obtained for the ADMET study. Most of the compounds showed absorption within (95-99) zone which varies according to the type of substituents. Conclusions: The Substituted Thiazole Analogues could be a suitable template for antitumor drugs that possess enhanced bioavailability and act as DHFR and VEGF-TK inhibitors.

Keywords: anti-tumor agents, DHFR, drug design, molecular modeling, VEGFR-TKIs

Procedia PDF Downloads 200
2124 DNA PLA: A Nano-Biotechnological Programmable Device

Authors: Hafiz Md. HasanBabu, Khandaker Mohammad Mohi Uddin, Md. IstiakJaman Ami, Rahat Hossain Faisal

Abstract:

Computing in biomolecular programming performs through the different types of reactions. Proteins and nucleic acids are used to store the information generated by biomolecular programming. DNA (Deoxyribose Nucleic Acid) can be used to build a molecular computing system and operating system for its predictable molecular behavior property. The DNA device has clear advantages over conventional devices when applied to problems that can be divided into separate, non-sequential tasks. The reason is that DNA strands can hold so much data in memory and conduct multiple operations at once, thus solving decomposable problems much faster. Programmable Logic Array, abbreviated as PLA is a programmable device having programmable AND operations and OR operations. In this paper, a DNA PLA is designed by different molecular operations using DNA molecules with the proposed algorithms. The molecular PLA could take advantage of DNA's physical properties to store information and perform calculations. These include extremely dense information storage, enormous parallelism, and extraordinary energy efficiency.

Keywords: biological systems, DNA computing, parallel computing, programmable logic array, PLA, DNA

Procedia PDF Downloads 94
2123 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan

Abstract:

The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 284
2122 Mycobacterium tuberculosis and Molecular Epidemiology: An Overview

Authors: Asho Ali

Abstract:

Tuberculosis is a disease of grave concern which infects one-third of the global population. The high incidence of tuberculosis is further compounded by the increasing emergence of drug resistant strains including multi drug resistant (MDR). Global incidence MDR-TB is ~4%. Molecular epidemiological studies, based on the assumption that patients infected with clustered strains are epidemiologically linked, have helped understand the transmission dynamics of disease. It has also helped to investigate the basis of variation in Mycobacterium tuberculosis (MTB) strains, differences in transmission, and severity of disease or drug resistance mechanisms from across the globe. This has helped in developing strategies for the treatment and prevention of the disease including MDR.

Keywords: Mycobcaterium tuberculosis, molecular epidemiology, drug resistance, disease

Procedia PDF Downloads 370
2121 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys

Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz

Abstract:

There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.

Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys

Procedia PDF Downloads 204
2120 DFT Study of Half Sandwich of Vanadium (IV) Cyclopentadienyl Complexes

Authors: Salem El-Tohami Ashoor

Abstract:

A novel new vanadium (IV) complexes incorporating the chelating diamido cyclopentadienyl {ArN(CH2)3NAr)}2-((ηn-Cp)Cp)} (Ar = 2,6-Pri2C6H3)(Cp = C5H5 and n = 1,2,3,4 and 5) have been studied with calculation of the properties of species involved in various of cyclopentadienyl reaction. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP (Becke) (Lee–Yang–Parr) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [V(ArN(CH2)3NAr)2Cl(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of vanadium cyclopentadienyl. In the meantime the complex [V(ArN(CH2)3NAr)2Cl(η1-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) which is showed a low thermal stability in case of the just one carbon of cyclopentadienyl can be insertion with vanadium metal centre. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO.

Keywords: vanadium (IV) cyclopentadienyl complexes, DFT, MO, HOMO, LUMO

Procedia PDF Downloads 390
2119 Exploring 1,2,4-Triazine-3(2H)-One Derivatives as Anticancer Agents for Breast Cancer: A QSAR, Molecular Docking, ADMET, and Molecular Dynamics

Authors: Said Belaaouad

Abstract:

This study aimed to explore the quantitative structure-activity relationship (QSAR) of 1,2,4-Triazine-3(2H)-one derivative as a potential anticancer agent against breast cancer. The electronic descriptors were obtained using the Density Functional Theory (DFT) method, and a multiple linear regression techniques was employed to construct the QSAR model. The model exhibited favorable statistical parameters, including R2=0.849, R2adj=0.656, MSE=0.056, R2test=0.710, and Q2cv=0.542, indicating its reliability. Among the descriptors analyzed, absolute electronegativity (χ), total energy (TE), number of hydrogen bond donors (NHD), water solubility (LogS), and shape coefficient (I) were identified as influential factors. Furthermore, leveraging the validated QSAR model, new derivatives of 1,2,4-Triazine-3(2H)-one were designed, and their activity and pharmacokinetic properties were estimated. Subsequently, molecular docking (MD) and molecular dynamics (MD) simulations were employed to assess the binding affinity of the designed molecules. The Tubulin colchicine binding site, which plays a crucial role in cancer treatment, was chosen as the target protein. Through the simulation trajectory spanning 100 ns, the binding affinity was calculated using the MMPBSA script. As a result, fourteen novel Tubulin-colchicine inhibitors with promising pharmacokinetic characteristics were identified. Overall, this study provides valuable insights into the QSAR of 1,2,4-Triazine-3(2H)-one derivative as potential anticancer agent, along with the design of new compounds and their assessment through molecular docking and dynamics simulations targeting the Tubulin-colchicine binding site.

Keywords: QSAR, molecular docking, ADMET, 1, 2, 4-triazin-3(2H)-ones, breast cancer, anticancer, molecular dynamic simulations, MMPBSA calculation

Procedia PDF Downloads 63
2118 Molecular Dynamics Simulation of Beta-Glucosidase of Streptomyces

Authors: Adam Abate, Elham Rasti, Philip Romero

Abstract:

Beta-glucosidase is the key enzyme component present in cellulase and completes the final step during cellulose hydrolysis by converting the cellobiose to glucose. The regulatory properties of beta-glucosidases are most commonly found for the retaining and inverting enzymes. Hydrolysis of a glycoside typically occurs with general acid and general base assistance from two amino acid side chains, normally glutamic or aspartic acids. In order to obtain more detailed information on the dynamic events origination from the interaction with enzyme active site, we carried out molecular dynamics simulations of beta-glycosidase in protonated state (Glu-H178) and deprotonated state (Glu178). The theoretical models generated from our molecular dynamics simulations complement and advance the structural information currently available, leading to a more detailed understanding of Beta-glycosidase structure and function. This article presents the important role of Asn307 in enzyme activity of beta-glucosidase

Keywords: Beta-glucosidase, GROMACS, molecular dynamics simulation, structural parameters

Procedia PDF Downloads 371
2117 Molecular Dynamics Simulation on Nanoelectromechanical Graphene Nanoflake Shuttle Device

Authors: Eunae Lee, Oh-Kuen Kwon, Ki-Sub Kim, Jeong Won Kang

Abstract:

We investigated the dynamic properties of graphene-nanoribbon (GNR) memory encapsulating graphene-nanoflake (GNF) shuttle in the potential to be applicable as a non-volatile random access memory via molecular dynamics simulations. This work explicitly demonstrates that the GNR encapsulating the GNF shuttle can be applied to nonvolatile memory. The potential well was originated by the increase of the attractive vdW energy between the GNRs when the GNF approached the edges of the GNRs. So the bistable positions were located near the edges of the GNRs. Such a nanoelectromechanical non-volatile memory based on graphene is also applicable to the development of switches, sensors, and quantum computing.

Keywords: graphene nanoribbon, graphene nanoflake, shuttle memory, molecular dynamics

Procedia PDF Downloads 416
2116 Airborne Molecular Contamination in Clean Room Environment

Authors: T. Rajamäki

Abstract:

In clean room environment molecular contamination in very small concentrations can cause significant harm for the components and processes. This is commonly referred as airborne molecular contamination (AMC). There is a shortage of high sensitivity continuous measurement data for existence and behavior of several of these contaminants. Accordingly, in most cases correlation between concentration of harmful molecules and their effect on processes is not known. In addition, the formation and distribution of contaminating molecules are unclear. In this work sensitive optical techniques are applied in clean room facilities for investigation of concentrations, forming mechanisms and effects of contaminating molecules. Special emphasis is on reactive acid and base gases ammonia (NH3) and hydrogen fluoride (HF). They are the key chemicals in several operations taking place in clean room processes.

Keywords: AMC, clean room, concentration, reactive gas

Procedia PDF Downloads 257