Search results for: microwave synthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2451

Search results for: microwave synthesis

501 ZnO Nanoparticles as Photocatalysts: Synthesis, Characterization and Application

Authors: Pachari Chuenta, Suwat Nanan

Abstract:

ZnO nanostructures have been synthesized successfully in high yield via catalyst-free chemical precipitation technique by varying zinc source (either zinc nitrate or zinc acetate) and oxygen source (either oxalic acid or urea) without using any surfactant, organic solvent or capping agent. The ZnO nanostructures were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), UV-vis diffuse reflection spectroscopy (UV-vis DRS), and photoluminescence spectroscopy (PL). The FTIR peak in the range of 450-470 cm-1 corresponded to Zn-O stretching in ZnO structure. The synthesized ZnO samples showed well crystalized hexagonal wurtzite structure. SEM micrographs displayed spherical droplet of about 50-100 nm. The band gap of prepared ZnO was found to be 3.4-3.5 eV. The presence of PL peak at 468 nm was attributed to surface defect state. The photocatalytic activity of ZnO was studied by monitoring the photodegradation of reactive red (RR141) azo dye under ultraviolet (UV) light irradiation. Blank experiment was also separately carried out by irradiating the aqueous solution of the dye in absence of the photocatalyst. The initial concentration of the dye was fixed at 10 mgL-1. About 50 mg of ZnO photocatalyst was dispersed in 200 mL dye solution. The sample was collected at a regular time interval during the irradiation and then was analyzed after centrifugation. The concentration of the dye was determined by monitoring the absorbance at its maximum wavelength (λₘₐₓ) of 544 nm using UV-vis spectroscopic analysis technique. The sources of Zn and O played an important role on photocatalytic performance of the ZnO photocatalyst. ZnO nanoparticles which prepared by zinc acetate and oxalic acid at molar ratio of 1:1 showed high photocatalytic performance of about 97% toward photodegradation of reactive red azo dye (RR141) under UV light irradiation for only 60 min. This work demonstrates the promising potential of ZnO nanomaterials as photocatalysts for environmental remediation.

Keywords: azo dye, chemical precipitation, photocatalytic, ZnO

Procedia PDF Downloads 118
500 Quantitative Detection of the Conformational Transitions between Open and Closed Forms of Cytochrome P450 Oxidoreductase (CYPOR) at the Membrane Surface in Different Functional States

Authors: Sara Arafeh, Kovriguine Evguine

Abstract:

Cytochromes P450 are enzymes that require a supply of electrons to catalyze the synthesis of steroid hormones, fatty acids, and prostaglandin hormone. Cytochrome P450 Oxidoreductase (CYPOR), a membrane bound enzyme, provides these electrons in its open conformation. CYPOR has two cytosolic domains (FAD domain and FMN domain) and an N-terminal in the membrane. In its open conformation, electrons flow from NADPH, FAD, and finally to FMN where cytochrome P450 picks up these electrons. In the closed conformation, cytochrome P450 does not bind to the FMN domain to take the electrons. It was found that when the cytosolic domains are isolated, CYPOR could not bind to cytochrome P450. This suggested that the membrane environment is important for CYPOR function. This project takes the initiative to better understand the dynamics of CYPOR in its full length. Here, we determine the distance between specific sites in the FAD and FMN binding domains in CYPOR by Forster Resonance Energy Transfer (FRET) and Ultrafast TA spectroscopy with and without NADPH. The approach to determine these distances will rely on labeling these sites with red and infrared fluorophores. Mimic membrane attachment is done by inserting CYPOR in lipid nanodiscs. By determining the distances between the donor-acceptor sites in these domains, we can observe the open/closed conformations upon reducing CYPOR in the presence and absence of cytochrome P450. Such study is important to better understand CYPOR mechanism of action in various endosomal membranes including hepatic CYPOR which is vital in plasma cholesterol homeostasis. By investigating the conformational cycles of CYPOR, we can synthesize drugs that would be more efficient in affecting the steroid hormonal levels and metabolism of toxins catalyzed by Cytochrome P450.

Keywords: conformational cycle of CYPOR, cytochrome P450, cytochrome P450 oxidoreductase, FAD domain, FMN domain, FRET, Ultrafast TA Spectroscopy

Procedia PDF Downloads 245
499 Techno-Economic Optimization and Evaluation of an Integrated Industrial Scale NMC811 Cathode Active Material Manufacturing Process

Authors: Usama Mohamed, Sam Booth, Aliysn J. Nedoma

Abstract:

As part of the transition to electric vehicles, there has been a recent increase in demand for battery manufacturing. Cathodes typically account for approximately 50% of the total lithium-ion battery cell cost and are a pivotal factor in determining the viability of new industrial infrastructure. Cathodes which offer lower costs whilst maintaining or increasing performance, such as nickel-rich layered cathodes, have a significant competitive advantage when scaling up the manufacturing process. This project evaluates the techno-economic value proposition of an integrated industrial scale cathode active material (CAM) production process, closing the mass and energy balances, and optimizing the operation conditions using a sensitivity analysis. This is done by developing a process model of a co-precipitation synthesis route using Aspen Plus software and validated based on experimental data. The mechanism chemistry and equilibrium conditions were established based on previous literature and HSC-Chemistry software. This is then followed by integrating the energy streams, adding waste recovery and treatment processes, as well as testing the effect of key parameters (temperature, pH, reaction time, etc.) on CAM production yield and emissions. Finally, an economic analysis estimating the fixed and variable costs (including capital expenditure, labor costs, raw materials, etc.) to calculate the cost of CAM ($/kg and $/kWh), total plant cost ($) and net present value (NPV). This work sets the foundational blueprint for future research into sustainable industrial scale processes for CAM manufacturing.

Keywords: cathodes, industrial production, nickel-rich layered cathodes, process modelling, techno-economic analysis

Procedia PDF Downloads 66
498 Determinants of Child Malnutrition in Sub-Saharan Africa

Authors: Habtamu Fufa, Yemane Berhane

Abstract:

Child under nutrition has long-term consequences for intellectual ability, economic productivity, reproductive performance and susceptibility to metabolic and cardiovascular disease. The unacceptably high prevalence of malnutrition in young children of the region has not changed much over the last decades, which could make the achievement of the corresponding Millennium Development Goals very unlikely. Despite the well-documented problems of child malnutrition in Sub-Saharan Africa, there is few systematic review of evidences on determinants of child malnutrition in the region. The current available evidence on determinants of child under nutrition in Sub-Saharan Africa is systematically reviewed. The method used in searching relevant literature was using bio medical databases PUBMED, Google scholar and the website of the World Health Organization on nutrition using the following key words: "Determinants “, "Child Malnutrition", and "Sub- Saharan Africa". The search was limited to articles published in and after 1995 up to date. In all the reviewed articles, the data were analyzed using multivariate regression analysis and or odds ratios for significance of determinants in child malnutrition. Synthesis of 40 published articles from various countries of the region is done and noted that household economic status, maternal education, disease, breastfeeding practices, age and sex of a child, birth interval and residential areas were found to be determinants of child under nutrition. Poverty remains the main factor of malnutrition in Sub-Saharan Africa and poor education of parents aggravates the malnutrition through perpetuation of poor nutrition practices. Male children under five years are the most affected ones. Understanding of these determinants of poor nutritional attainment would provide insights in designing interventions for reducing the high levels of child malnutrition in this region. Large-scale multi-sectoral community-based interventions are urgently needed for a sustainable improvement of child nutritional & health status in Sub-Saharan Africa.

Keywords: child malnutrition, determinants, Sub-Saharan Africa, health status

Procedia PDF Downloads 443
497 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants

Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino

Abstract:

Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.

Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants

Procedia PDF Downloads 435
496 Low Temperature PVP Capping Agent Synthesis of ZnO Nanoparticles by a Simple Chemical Precipitation Method and Their Properties

Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar

Abstract:

We are reporting a simple and low-cost chemical precipitation method adopted to prepare zinc oxide nanoparticles (ZnO) using polyvinyl pyrrolidone (PVP) as a capping agent. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) was applied on the dried gel sample to record the phase transformation temperature of zinc hydroxide Zn(OH)2 to zinc oxide (ZnO) to obtain the annealing temperature of 800C. The thermal, structure, morphology and optical properties have been employed by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM). X-ray diffraction results confirmed the wurtzite hexagonal structure of ZnO nanoparticles. The two intensive peaks at 160 and 432 cm-1 in the Raman Spectrum are mainly attributed to the first order modes of the wurtzite ZnO nanoparticles. The energy band gap obtained from the UV-Vis absorption spectra, shows a blue shift, which is attributed to increase in carrier concentration (Burstein Moss Effect). Photoluminescence studies of the single crystalline ZnO nanoparticles, show a strong peak centered at 385 nm, corresponding to the near band edge emission in ultraviolet range. The mixed shape of grapes, sphere, hexagonal and rock like structure has been noticed in FESEM. The results showed that PVP is a suitable capping agent for the preparation of ZnO nanoparticles by simple chemical precipitation method.

Keywords: ZnO nanoparticles, simple chemical precipitation route, mixed shape morphology, UV-visible absorption, photoluminescence, Fourier transform infra-Red spectroscopy

Procedia PDF Downloads 416
495 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 188
494 Quantum Dot – DNA Conjugates for Biological Applications

Authors: A. Banerjee, C. Grazon, B. Nadal, T. Pons, Y. Krishnan, B. Dubertret

Abstract:

Quantum Dots (QDs) have emerged as novel fluorescent probes for biomedical applications. The photophysical properties of QDs such as broad absorption, narrow emission spectrum, reduced blinking, and enhanced photostability make them advantageous over organic fluorophores. However, for some biological applications, QDs need to be first targeted to specific intracellular locations. It parallel, base pairing properties and biocompatibility of DNA has been extensively used for biosensing, targetting and intracellular delivery of numerous bioactive agents. The combination of the photophysical properties of QDs and targettability of DNA has yielded fluorescent, stable and targetable nanosensors. QD-DNA conjugates have used in drug delivery, siRNA, intracellular pH sensing and several other applications; and continue to be an active area of research. In this project, a novel method to synthesise QD-DNA conjugates and their applications in bioimaging are investigated. QDs are first solubilized in water using a thiol based amphiphilic co-polymer and, then conjugated to amine functionalized DNA using a heterobifunctional linker. The conjugates are purified by size exclusion chromatography and characterized by UV-Vis absorption and fluorescence spectroscopy, electrophoresis and microscopy. Parameters that influence the conjugation yield such as reducing agents, the excess of salt and pH have been investigated in detail. In optimized reaction conditions, up to 12 single-stranded DNA (15 mer length) can be conjugated per QD. After conjugation, the QDs retain their colloidal stability and high quantum yield; and the DNA is available for hybridization. The reaction has also been successfully tested on QDs emitting different colors and on Gold nanoparticles and therefore highly generalizable. After extensive characterization and robust synthesis of QD-DNA conjugates in vitro, the physical properties of these conjugates in cellular milieu are being invistigated. Modification of QD surface with DNA appears to remarkably alter the fate of QD inside cells and can have potential implications in therapeutic applications.

Keywords: bioimaging, cellular targeting, drug delivery, photostability

Procedia PDF Downloads 398
493 Sirt1 Activators Promote Skin Cell Regeneration and Cutaneous Wound Healing

Authors: Hussain Mustatab Wahedi, Sun You Kim

Abstract:

Skin acts as a barrier against the harmful environmental factors. Integrity and timely recovery of the skin from injuries and harmful effects of radiations is thus very important. This study aimed to investigate the importance of Sirt1 in the recovery of skin from UVB-induced damage and cutaneous wounds by using natural and synthetic novel Sirt1 activators. Juglone, known as a natural Pin1 inhibitor, and NED416 a novel synthetic Sirt1 activator were checked for their ability to regulate the expression and activity of Sirt1 and hence photo-damage and wound healing in cultured skin cells (NHDF and HaCaT cells) and mouse model by using Sirt1 siRNA knockdown, cell migration assay, GST-Pulldown assay, western blot analysis, tube formation assay, and immunohistochemistry. Interestingly, Sirt1 knockdown inhibited skin cell migration in vitro. Juglone up regulated the expression of Sirt1 in both the cell lines under normal and UVB irradiated conditions, enhanced Sirt1 activity and increased the cell viability by reducing reactive oxygen species synthesis and apoptosis. Juglone promoted wound healing by increasing cell migration and angiogenesis through Cdc42/Rac1/PAK, MAPKs and Smad pathways in skin cells. NED416 upregulated Sirt1 expression in HaCaT and NHDF cells as well as increased Sirt1 activity. NED416 promoted the process of wound healing in early as well as later stages by increasing macrophage recruitment, skin cell migration, and angiogenesis through Cdc42/Rac1 and MAPKs pathways. So, both these compounds activated Sirt1 and promoted the process of wound healing thus pointing towards the possible role of Sirt1 in skin regeneration and wound healing.

Keywords: skin regeneration, wound healing, Sirt1, UVB light

Procedia PDF Downloads 158
492 Development and Characterization of Cobalt Metal Loaded ZSM-5 and H-ZSM-5 Catalyst for Fischer -Tropsch Synthesis

Authors: Shashank Bahri, Divyanshu Arya, Rajni Jain, Sreedevi Upadhyayula

Abstract:

Petroleum products can be obtained from syngas catalytic conversion using Fischer Tropsch Reaction. The liquid fuels obtained from FTS are sulphur and nitrogen free and thus may easily meet the increasing stringent environment regulations. In the present work we have synthesized Meso porous ZSM-5 supported catalyst. Meso structure were created in H-ZSM-5 crystallites by demetalation via subsequent base and acid treatment. Desilication through base treatment provides H-ZSM-5 with pore size and volumes similar to amorphous SiO2 (Conventional Carrier). Modifying the zeolite texture and surface chemistry by Desilication and acid washing alters its accessibility and interactions with metal phase and consequently the CO adsorption behavior and hydrocarbon product distribution. Increasing the mesoporosity via desilication provides the micro porous zeolite with essential surface area to support optimally sized metal crystallites. This improves the metal dispersion and hence improve the activity of the catalyst. Transition metal (Co) was loaded using wet impregnation method. Synthesized catalysts were characterized by Infrared Spectroscopy, Powdered X-Ray Diffraction, Scanning Electron Microscopy (SEM), BET Method analytical techniques. Acidity of the catalyst which plays an important role in FTS reaction was measured by DRIFT setup pyridine adsorption instead of NH3 Temperature Programmed Desorption. The major difference is that, Pyridine Adsorption can distinguish between Lewis acidity and Bronsted Acidity, thus giving their relative strengths in the catalyst sample, whereas TPD gives total acidity including Lewis and Bronsted ones.

Keywords: mesopourus, fischer tropsch reaction, pyridine adsorrption, drift study

Procedia PDF Downloads 273
491 Comparative in silico and in vitro Study of N-(1-Methyl-2-Oxo-2-N-Methyl Anilino-Ethyl) Benzene Sulfonamide and Its Analogues as an Anticancer Agent

Authors: Pamita Awasthi, Kirna, Shilpa Dogra, Manu Vatsal, Ritu Barthwal

Abstract:

Doxorubicin, also known as adriamycin, is an anthracycline class of drug used in cancer chemotherapy. It is used in the treatment of non-Hodgkin’s lymphoma, multiple myeloma, acute leukemias, breast cancer, lung cancer, endometrium cancer and ovary cancers. It functions via intercalating DNA and ultimately killing cancer cells. The major side effects of doxorubicin are hair loss, myelosuppression, nausea & vomiting, oesophagitis, diarrhoea, heart damage and liver dysfunction. The minor modifications in the structure of compound exhibit large variation in the biological activity, has prompted us to carry out the synthesis of sulfonamide derivatives. Sulfonamide is an important feature with broad spectrum of biological activity such as antiviral, antifungal, diuretics, anti-inflammatory, antibacterial and anticancer activities. Structure of the synthesized compound N-(1-methyl-2-oxo-2-N-methyl anilino-ethyl)benzene sulfonamide confirmed by proton nuclear magnetic resonance (1H NMR),13C NMR, Mass and FTIR spectroscopic tools to assure the position of all protons and hence stereochemistry of the molecule. Further we have reported the binding potential of synthesized sulfonamide analogues in comparison to doxorubicin drug using Auto Dock 4.2 software. Computational binding energy (B.E.) and inhibitory constant (Ki) has been evaluated for the synthesized compound in comparison of doxorubicin against Poly (dA-dT).Poly (dA-dT) and Poly (dG-dC).Poly (dG-dC) sequences. The in vitro cytotoxic study against human breast cancer cell lines confirms the better anticancer activity of the synthesized compound over currently in use anticancer drug doxorubicin. The IC50 value of the synthesized compound is 7.12 µM where as for doxorubicin is 7.2 µ.

Keywords: Doxorubicin, auto dock, in silco, in vitro

Procedia PDF Downloads 393
490 Category-Base Theory of the Optimum Signal Approximation Clarifying the Importance of Parallel Worlds in the Recognition of Human and Application to Secure Signal Communication with Feedback

Authors: Takuro Kida, Yuichi Kida

Abstract:

We show a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detailed algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory and it is indicated that introducing conversations with feedback does not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.

Keywords: signal prediction, pseudo inverse matrix, artificial intelligence, conditional optimization

Procedia PDF Downloads 128
489 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 209
488 Evaluation of a Chitin Synthesis Inhibitor Novaluron in the Shrimp Palaemon Adspersus: Impact on Ecdysteroids and Chitin Contents

Authors: Hinda Berghiche, Hamida Benradia, Noureddine Soltani

Abstract:

Pesticides are widely used in crop production and are known to induce a major contamination of ecosystems especially in aquatic environments. The leaching of a large amount of pollutants derived from agricultural activities (fertilizers, pesticides) might contaminate rivers which diverse into the likes and estuarine and coastal environments affecting several organisms such as crustacean species. In this context, there is searched for new selective insecticides with minimal toxic effects on the environment and human health such as growth insect regulators (GIRs). The current study aimed to examine the impact of novaluron (CE 20%), a potent benzoylphenylurea derivative insecticide on mosquito larvae, against non-target shrimp, Palaemon adspersus (Decapoda, Palaemonidae). The compound was tested at two concentrations (0.91 mg/L and 4.30 mg/L) corresponding respectively to the LC50 and LC90 determined against fourth-instar larvae of Culiseta longiareolata (Diptera, Culicidae). The molting hormone titer was determined in the haemolymph by an enzyme-immunoassay, while chitin was measured in peripheral integument at different stages during the molting cycle. Under normal conditions, the haemolymphatic ecdysteroid concentrations increased during the molting cycle to reach peak at stage D. In the treated series, we note absence of the peak at stage D and an increase at stages B, C and D as compared to the controls. Concerning the chitin amounts, we observe an increase from stage A to stage C followed by a decrease at stage D. Exposition of shrimps to novaluron resulted in a significant decrease of values at all molting stages with a dose-response effect. Thus, the insecticide can present secondary effects on this non-target arthropod species.

Keywords: toxicology, novaluron, crustacean, palaemon adspersus, ecdysteroids, cuticle, chitin

Procedia PDF Downloads 223
487 Catalytic Production of Hydrogen and Carbon Nanotubes over Metal/SiO2 Core-Shell Catalyst from Plastic Wastes Gasification

Authors: Wei-Jing Li, Ren-Xuan Yang, Kui-Hao Chuang, Ming-Yen Wey

Abstract:

Nowadays, plastic product and utilization are extensive and have greatly improved our life. Yet, plastic wastes are stable and non-biodegradable challenging issues to the environment. Waste-to-energy strategies emerge a promising way for waste management. This work investigated the co-production of hydrogen and carbon nanotubes from the syngas which was from the gasification of polypropylene. A nickel-silica core-shell catalyst was applied for syngas reaction from plastic waste gasification in a fixed-bed reactor. SiO2 were prepared through various synthesis solvents by Stöber process. Ni plays a role as modified SiO2 support, which were synthesized by deposition-precipitation method. Core-shell catalysts have strong interaction between active phase and support, in order to avoid catalyst sintering. Moreover, Fe or Co metal acts as promoter to enhance catalytic activity. The effects of calcined atmosphere, second metal addition, and reaction temperature on hydrogen production and carbon yield were examined. In this study, the catalytic activity and carbon yield results revealed that the Ni/SiO2 catalyst calcined under H2 atmosphere exhibited the best performance. Furthermore, Co promoted Ni/SiO2 catalyst produced 3 times more than Ni/SiO2 on carbon yield at long-term operation. The structure and morphological nature of the calcined and spent catalysts were examined using different characterization techniques including scanning electron microscopy, transmission electron microscopy, X-ray diffraction. In addition, the quality and thermal stability of the nano-carbon materials were also evaluated by Raman spectroscopy and thermogravimetric analysis.

Keywords: plastic wastes, hydrogen, carbon nanotube, core-shell catalysts

Procedia PDF Downloads 291
486 Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease

Authors: Edward Poluyi, Eghosa Morgan, Charles Poluyi, Chibuikem Ikwuegbuenyi, Grace Imaguezegie

Abstract:

Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.

Keywords: amyotrophic lateral sclerosis, Alzheimer's disease, mild traumatic brain injury, neurodegeneration

Procedia PDF Downloads 62
485 The Effect of Reaction Time on the Morphology and Phase of Quaternary Ferrite Nanoparticles (FeCoCrO₄) Synthesised from a Single Source Precursor

Authors: Khadijat Olabisi Abdulwahab, Mohammad Azad Malik, Paul O'Brien, Grigore Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe₂O₄ (M = Fe, Co, Mn, Ni, Zn e.t.c) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Here in, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O₂CᵗBu)₆(HO₂CᵗBu)₃] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO₄) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at 260 °C. The effect of reaction time on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained after one hour was pure phase of cubic iron cobalt chromium ferrite (FeCoCrO₄). TEM showed that a more monodispersed spherical ferrite nanoparticles were obtained after one hour. Magnetic measurements revealed that the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: cobalt chromium ferrite, colloidal, hot injection thermolysis, monodisperse, reaction time, single source precursor, quaternary ferrite nanoparticles

Procedia PDF Downloads 276
484 Formulating Anti-Insurgency Curriculum Conceptual and Design Principles for Translation into Anti-Terrorist Curriculum Framework for Muslim Secondary Schools

Authors: Saheed Ahmad Rufai

Abstract:

The growing nature of insurgencies in their various forms in the Muslim world is now of great concern to both the leadership and the citizenry. The high sense of insecurity occasioned by the unpleasant experience has in fact attained an alarming rate in the estimation of both Muslims and non-Muslims alike. Consequently, the situation began to attract contributions from scholars and researchers in security-related fields of humanities and social sciences. However, there is little evidence of contribution to the discourse and the scholarship involved by scholars in the field of education. The purpose of this proposed study is to contribute an education dimension to the growing scholarship on the subject. The study which is situated in the broad scholarship of curriculum making and grounded in both the philosophical and sociological foundations of the curriculum, employs a combination of curriculum criticism and creative synthesis, as methods, in reconstructing Muslim schools’ educational blueprint. The significance of the proposed study lies in its potential to contribute a useful addition to the scholarship of curriculum construction in the context of the Muslim world. The significance also lies in its potential to offer an ameliorative proposal over unnecessary insurgency or militancy thereby paving the way for the enthronement of a regime characterized by peaceful, harmonious and tranquil co-existence among people of diverse orientations and ideological persuasions in the Muslim world. The study is restricted to only the first two stages of curriculum making namely the formulation of philosophy which concerns the articulation of objectives, aims, purposes, goals, and principles, as well as the second stage which covers the translation of such principles to an anti-insurgency secondary school curriculum for the Muslim world.

Keywords: education for conflict resolution, anti-insurgency curriculum principles, peace education, anti-terrorist curriculum framework, curriculum for Muslim secondary schools

Procedia PDF Downloads 194
483 Electrospun Conducting Polymer/Graphene Composite Nanofibers for Gas Sensing Applications

Authors: Aliaa M. S. Salem, Soliman I. El-Hout, Amira Gaber, Hassan Nageh

Abstract:

Nowadays, the development of poisonous gas detectors is considered to be an urgent matter to secure human health and the environment from poisonous gases, in view of the fact that even a minimal amount of poisonous gas can be fatal. Of these concerns, various inorganic or organic sensing materials have been used. Among these are conducting polymers, have been used as the active material in the gassensorsdue to their low-cost,easy-controllable molding, good electrochemical properties including facile fabrication process, inherent physical properties, biocompatibility, and optical properties. Moreover, conducting polymer-based chemical sensors have an amazing advantage compared to the conventional one as structural diversity, facile functionalization, room temperature operation, and easy fabrication. However, the low selectivity and conductivity of conducting polymers motivated the doping of it with varied materials, especially graphene, to enhance the gas-sensing performance under ambient conditions. There were a number of approaches proposed for producing polymer/ graphene nanocomposites, including template-free self-assembly, hard physical template-guided synthesis, chemical, electrochemical, and electrospinning...etc. In this work, we aim to prepare a novel gas sensordepending on Electrospun nanofibers of conducting polymer/RGO composite that is the effective and efficient expectation of poisonous gases like ammonia, in different application areas such as environmental gas analysis, chemical-,automotive- and medical industries. Moreover, our ultimate objective is to maximize the sensing performance of the prepared sensor and to check its recovery properties.

Keywords: electro spinning process, conducting polymer, polyaniline, polypyrrole, polythiophene, graphene oxide, reduced graphene oxide, functionalized reduced graphene oxide, spin coating technique, gas sensors

Procedia PDF Downloads 155
482 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses

Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia

Abstract:

The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.

Keywords: influenza virus, molecular imprinting, nanoparticles, polymers

Procedia PDF Downloads 309
481 Possible Modulation of FAS and PTP-1B Signaling in Ameliorative Potential of Bombax ceiba against High Fat Diet Induced Obesity

Authors: Paras Gupta, Rohit Goyal, Yamini Chauhan, Pyare Lal Sharma

Abstract:

Background: Bombax ceiba Linn., commonly called as Semal, is used in various gastro-intestinal disturbances. It contains lupeol which inhibits PTP-1B, adipogenesis, TG synthesis and accumulation of lipids in adipocytes and adipokines whereas the flavonoids isolated from B. ceiba has FAS inhibitory activity. The present study was aimed to investigate ameliorative potential of Bombax ceiba to experimental obesity in Wistar rats, and its possible mechanism of action. Methods: Male Wistar albino rats weighing 180–220 g were employed in present study. Experimental obesity was induced by feeding high fat diet for 10 weeks. Methanolic extract of B. ceiba extract 100, 200 and 400 mg/kg and Gemfibrozil 50 mg/kg as standard drug were given orally from 7th to 10th week. Results: Induction with HFD for 10 weeks caused significant (p < 0.05) increase in % body wt, BMI, LEE indices; serum glucose, triglyceride, LDL, VLDL, cholesterol, free fatty acid, ALT, AST; tissue TBARS, nitrate/nitrite levels; different fat pads and relative liver weight; and significant decrease in food intake (g and kcal), serum HDL and tissue glutathione levels in HFD control rats. Treatment with B. ceiba extract and Gemfibrozil significantly attenuated these HFD induced changes, as compared to HFD control. The effect of B. ceiba 200 and 400 mg/kg was more pronounced in comparison to Gemfibrozil. Conclusion: On the basis of results obtained, it may be concluded that the methanolic extract of stem bark of Bombax ceiba has significant ameliorative potential against HFD induced obesity in rats, possibly through modulation of FAS and PTP-1B signaling due to the presence of flavonoids and lupeol.

Keywords: obesity, Bombax ceiba, free fatty acid, protein tyrosine phosphatase-1B, fatty acid synthase

Procedia PDF Downloads 368
480 Liquid-Liquid Plug Flow Characteristics in Microchannel with T-Junction

Authors: Anna Yagodnitsyna, Alexander Kovalev, Artur Bilsky

Abstract:

The efficiency of certain technological processes in two-phase microfluidics such as emulsion production, nanomaterial synthesis, nitration, extraction processes etc. depends on two-phase flow regimes in microchannels. For practical application in chemistry and biochemistry it is very important to predict the expected flow pattern for a large variety of fluids and channel geometries. In the case of immiscible liquids, the plug flow is a typical and optimal regime for chemical reactions and needs to be predicted by empirical data or correlations. In this work flow patterns of immiscible liquid-liquid flow in a rectangular microchannel with T-junction are investigated. Three liquid-liquid flow systems are considered, viz. kerosene – water, paraffin oil – water and castor oil – paraffin oil. Different flow patterns such as parallel flow, slug flow, plug flow, dispersed (droplet) flow, and rivulet flow are observed for different velocity ratios. New flow pattern of the parallel flow with steady wavy interface (serpentine flow) has been found. It is shown that flow pattern maps based on Weber numbers for different liquid-liquid systems do not match well. Weber number multiplied by Ohnesorge number is proposed as a parameter to generalize flow maps. Flow maps based on this parameter are superposed well for all liquid-liquid systems of this work and other experiments. Plug length and velocity are measured for the plug flow regime. When dispersed liquid wets channel walls plug length cannot be predicted by known empirical correlations. By means of particle tracking velocimetry technique instantaneous velocity fields in a plug flow regime were measured. Flow circulation inside plug was calculated using velocity data that can be useful for mass flux prediction in chemical reactions.

Keywords: flow patterns, hydrodynamics, liquid-liquid flow, microchannel

Procedia PDF Downloads 361
479 Assessment of Cytogenetic Damage as a Function of Radiofrequency Electromagnetic Radiations Exposure Measured by Electric Field Strength: A Gender Based Study

Authors: Ramanpreet, Gursatej Gandhi

Abstract:

Background: Dependence on electromagnetic radiations involved in communication and information technologies has incredibly increased in the personal and professional world. Among the numerous radiations, sources are fixed site transmitters, mobile phone base stations, and power lines beside indoor devices like cordless phones, WiFi, Bluetooth, TV, radio, microwave ovens, etc. Rather there is the continuous emittance of radiofrequency radiations (RFR) even to those not using the devices from mobile phone base stations. The consistent and widespread usage of wireless devices has build-up electromagnetic fields everywhere. In fact, the radiofrequency electromagnetic field (RF-EMF) has insidiously become a part of the environment and like any contaminant may pose to be health-hazardous requiring assessment. Materials and Methods: In the present study, cytogenetic damage was assessed using the Buccal Micronucleus Cytome (BMCyt) assay as a function of radiation exposure after Institutional Ethics Committee clearance of the study and written voluntary informed consent from the participants. On a pre-designed questionnaire, general information lifestyle patterns (diet, physical activity, smoking, drinking, use of mobile phones, internet, Wi-Fi usage, etc.) genetic, reproductive (pedigrees) and medical histories were recorded. For this, 24 hour-personal exposimeter measurements (PEM) were recorded for unrelated 60 healthy adults (40 cases residing in the vicinity of mobile phone base stations since their installation and 20 controls residing in areas with no base stations). The personal exposimeter collects information from all the sources generating EMF (TETRA, GSM, UMTS, DECT, and WLAN) as total RF-EMF uplink and downlink. Findings: The cases (n=40; 23-90 years) and the controls (n=20; 19-65 years) matched for alcohol drinking, smoking habits, and mobile and cordless phone usage. The PEM in cases (149.28 ± 8.98 mV/m) revealed significantly higher (p=0.000) electric field strength compared to the recorded value (80.40 ± 0.30 mV/m) in controls. The GSM 900 uplink (p=0.000), GSM 1800 downlink (p=0.000),UMTS (both uplink; p=0.013 and downlink; p=0.001) and DECT (p=0.000) electric field strength were significantly elevated in the cases as compared to controls. The electric field strength in the cases was significantly from GSM1800 (52.26 ± 4.49mV/m) followed by GSM900 (45.69 ± 4.98mV/m), UMTS (25.03 ± 3.33mV/m), DECT (18.02 ± 2.14mV/m) and was least from WLAN (8.26 ± 2.35mV/m). The higher significantly (p=0.000) increased exposure to the cases was from GSM (97.96 ± 6.97mV/m) in comparison to UMTS, DECT, and WLAN. The frequencies of micronuclei (1.86X, p=0.007), nuclear buds (2.95X, p=0.002) and cell death parameter (condensed chromatin cells) were significantly (1.75X, p=0.007) elevated in cases compared to that in controls probably as a function of radiofrequency radiation exposure. Conclusion: In the absence of other exposure(s), any cytogenetic damage if unrepaired is a cause of concern as it can cause malignancy. Larger sample size with the clinical assessment will prove more insightful of such an effect.

Keywords: Buccal micronucleus cytome assay, cytogenetic damage, electric field strength, personal exposimeter

Procedia PDF Downloads 128
478 Synthesis of Highly Stable Pseudocapacitors From Secondary Resources

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Mofarah

Abstract:

Fabrication of the state-of-the-art portable pseudocapacitors with the desired transparency, mechanical flexibility, capacitance, and durability is challenging. In most cases, the fabrication of such devices requires critical elements which are either under the crisis of depletion or their extraction from virgin mineral ores have sever environmental impacts. This urges the use of secondary resources instead of virgin resources in fabrication of advanced devices. In this research, ultrathin films of defect-rich Mn1−x−y(CexLay)O2−δ with controllable thicknesses in the range between 5 nm to 627 nm and transmittance (≈29–100%) have been fabricated via an electrochemical chronoamperometric deposition technique using an aqueous precursor derived during the selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries. Intercalation/de-intercalation of anionic O2− through the atomic tunnels of the stratified Mn1−x−y(CexLay)O2−δ crystallites was found to be responsible for outstanding areal capacitance of 3.4 mF cm−2 of films with 86% transmittance. The intervalence charge transfer among interstitial Ce/La cations and Mn oxidation states within the Mn1−x−y(CexLay)O2−δ structure resulted in excellent capacitance retention of ≈90% after 16 000 cycles. The synthesised transparent flexible Mn1−x−y(CexLay)O2−δ full-cell pseudocapacitor device possessed the energy and power densities of 0.088 μWh cm⁻² and 843 µW cm⁻², respectively. These values show insignificant changes under vigorous twisting and bending to 45–180° confirming these value-added materials are intriguing alternatives for size-sensitive energy storage devices. This research confirms the feasibility of utilisation of secondary waste resources for the fabrication of high-quality pseudocapacitors with engineered defects with the desired flexibility, transparency, and cycling stability suitable for size-sensitive portable electronic devices.

Keywords: pseudocapacitors, energy storage devices, flexible and transparent, sustainability

Procedia PDF Downloads 49
477 The Effect of the Combination of Methotrexate Nanoparticles and TiO2 on Breast Cancer

Authors: Nusaiba Al-Nemrawi, Belal Al-Husein

Abstract:

Methotrexate (MTX) is a stoichiometric inhibitor of dihydrofolate reductase, which is essential for DNA synthesis. MTX is a chemotherapeutic agent used for treating many types of cancer cells. However, cells’ resistant to MTX is very common and its pharmacokinetic behavior is highly problematic. of MTX within tumor cells, we propose encapsulation of antitumor drugs in nanoparticulated systems. Chitosan (CS) is a naturally occurring polymer that is biocompatibe, biodegradable, non-toxic, cationic and bioadhesive. CS nanoparticles (CS-NPs) have been used as drug carrier for targeted delivery. Titanium dioxide (TiO2), a natural mineral oxide, which is used in biomaterials due to its high stability and antimicrobial and anticorrosive properties. TiO2 showed a potential as a tumor suppressor. In this study a new formulation of MTX loaded in CS NPs (CS-MTX NPs) and coated with Titanium oxide (TiO2) was prepared. The mean particle size, zeta potential, polydispersity index were measured. The interaction between CS NPs and TiO2 NPs was confirmed using FTIR and XRD. CS-MTX NPs was studied in vitro using the tumor cell line MCF-7 (human breast cancer). The results showed that CS-MTX has a size around 169 nm and as they were coated with TiO2, the size ranged between and depending on the ratio of CS-MTX to TiO2 ratio used in the preparation. All NPs (uncoated and coated carried positive charges and were monodispersed. The entrapment efficacy was around 65%. Both FTIR and XRD proved that TiO2 interacted with CS-MTX NPs. The drug invitro release was controlled and sustained over days. Finally, the studied in vitro using the tumor cell line MCF-7 suggested that combining nanomaterials with anticancer drugs CS-MTX NPs may be more effective than free MTX for cancer treatment. In conclusion, the combination of CS-MTX NPs and TiO2 NPs showed excellent time-dependent in vitro antitumor behavior, therefore, can be employed as a promising anticancer agent to attain efficient results towards MCF-7 cells.

Keywords: Methotrexate, Titanium dioxide, Chitosan nanoparticles, cancer

Procedia PDF Downloads 69
476 Polymersomes in Drug Delivery: A Comparative Review with Liposomes and Micelles

Authors: Salma E. Ahmed

Abstract:

Since the mid 50’s, enormous attention has been paid towards nanocarriers and their applications in drug and gene delivery. Among these vesicles, liposomes and micelles have been heavily investigated due to their many advantages over other types. Liposomes, for instance, are mostly distinguished by their ability to encapsulate hydrophobic, hydrophilic and amphiphilic drugs. Micelles, on the other hand, are self-assembled shells of lipids, amphiphilic or oppositely charged block copolymers that, once exposed to aqueous media, can entrap hydrophobic agents, and possess prolonged circulation in the bloodstream. Both carriers are considered compatible and biodegradable. Nevertheless, they have limited stabilities, chemical versatilities, and drug encapsulation efficiencies. In order to overcome these downsides, strategies for optimizing a novel drug delivery system that has the architecture of liposomes and polymeric characteristics of micelles have been evolved. Polymersomes are vehicles with fluidic cores and hydrophobic shells that are protected and isolated from the aqueous media by the hydrated hydrophilic brushes which give the carrier its distinctive polymeric bilayer shape. Similar to liposomes, this merit enables the carrier to encapsulate a wide range of agents, despite their affinities and solubilities in water. Adding to this, the high molecular weight of the amphiphiles that build the body of the polymersomes increases their colloidal and chemical stabilities and reduces the permeability of the polymeric membranes, which makes the vesicles more protective to the encapsulated drug. These carriers can also be modified in ways that make them responsive when targeted or triggered, by manipulating their composition and attaching moieties and conjugates to the body of the carriers. These appealing characteristics, in addition to the ease of synthesis, gave the polymersomes greater potentials in the area of drug delivery. Thus, their design and characterization, in comparison with liposomes and micelles, are briefly reviewed in this work.

Keywords: controlled release, liposomes, micelles, polymersomes, targeting

Procedia PDF Downloads 168
475 Development of Immuno-Modulators: Application of Molecular Dynamics Simulation

Authors: Ruqaiya Khalil, Saman Usmani, Zaheer Ul-Haq

Abstract:

The accurate characterization of ligand binding affinity is indispensable for designing molecules with optimized binding affinity. Computational tools help in many directions to predict quantitative correlations between protein-ligand structure and their binding affinities. Molecular dynamics (MD) simulation is a modern state-of-the-art technique to evaluate the underlying basis of ligand-protein interactions by characterizing dynamic and energetic properties during the event. Autoimmune diseases arise from an abnormal immune response of the body against own tissues. The current regimen for the described condition is limited to immune-modulators having compromised pharmacodynamics and pharmacokinetics profiles. One of the key player mediating immunity and tolerance, thus invoking autoimmunity is Interleukin-2; a cytokine influencing the growth of T cells. Molecular dynamics simulation techniques are applied to seek insight into the inhibitory mechanisms of newly synthesized compounds that manifested immunosuppressant potentials during in silico pipeline. In addition to estimation of free energies associated with ligand binding, MD simulation yielded us a great deal of information about ligand-macromolecule interactions to evaluate the pattern of interactions and the molecular basis of inhibition. The present study is a continuum of our efforts to identify interleukin-2 inhibitors of both natural and synthetic origin. Herein, we report molecular dynamics simulation studies of Interluekin-2 complexed with different antagonists previously reported by our group. The study of protein-ligand dynamics enabled us to gain a better understanding of the contribution of different active site residues in ligand binding. The results of the study will be used as the guide to rationalize the fragment based synthesis of drug-like interleukin-2 inhibitors as immune-modulators.

Keywords: immuno-modulators, MD simulation, protein-ligand interaction, structure-based drug design

Procedia PDF Downloads 229
474 Estimation of Microbial-N Supply to Small Intestine in Angora Goats Fed by Different Roughage Sources

Authors: Nurcan Cetinkaya

Abstract:

The aim of the study was to estimate the microbial-N flow to small intestine based on daily urinary purine derivatives(PD) mainly xanthine, hypoxanthine, uric acid and allantoin excretion in Angora goats fed by grass hay and concentrate (Period I); barley straw and concentrate (Period II). Daily urine samples were collected during last 3 days of each period from 10 individually penned Angora bucks( LW 30-35 Kg, 2-3 years old) receiving ad libitum grass hay or barley straw and 300 g/d concentrate. Fresh water was always available. 4N H2SO4 was added to collected daily urine .samples to keep pH under 3 to avoid of uric acid precipitation. Diluted urine samples were stored at -20°C until analysis. Urine samples were analyzed for xanthine, hypoxanthine, uric acid, allantoin and creatinine by High-Performance Liquid Chromatographic Method (HPLC). Urine was diluted 1:15 in ratio with water and duplicate samples were prepared for HPLC analysis. Calculated mean levels (n=60) for urinary xanthine, hypoxanthine, uric acid, allantoin, total PD and creatinine excretion were 0.39±0.02 , 0.26±0.03, 0.59±0.06, 5.91±0.50, 7.15±0.57 and 3.75±0.40 mmol/L for Period I respectively; 0.35±0.03, 0.21±0.02, 0.55±0.05, 5.60±0.47, 6.71±0.46 and 3.73±0.41 mmol/L for Period II respectively.Mean values of Period I and II were significantly different (P< 0.05) except creatinine excretion. Estimated mean microbial-N supply to the small intestine for Period I and II in Angora goats were 5.72±0.46 and 5.41±0.61 g N/d respectively. The effects of grass hay and barley straw feeding on microbial-N supply to small intestine were found significantly different (P< 0.05). In conclusion, grass hay showed a better effect on the ruminal microbial protein synthesis compared to barley straw, therefore; grass hay is suggested as roughage source in Angora goat feeding.

Keywords: angora goat, HPLC method, microbial-N supply to small intestine, urinary purine derivatives

Procedia PDF Downloads 195
473 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia

Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli

Abstract:

In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.

Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing

Procedia PDF Downloads 272
472 Monodisperse Quaternary Cobalt Chromium Ferrite Nanoparticles Synthesised from a Single Source Precursor

Authors: Khadijat O. Abdulwahab, Mohammad A. Malik, Paul O’Brien, Grigore A. Timco, Floriana Tuna

Abstract:

The synthesis of spinel ferrite nanoparticles with a narrow size distribution is very crucial in their numerous applications including information storage, hyperthermia treatment, drug delivery, contrast agent in magnetic resonance imaging, catalysis, sensors, and environmental remediation. Ferrites have the general formula MFe2O4 (M = Fe, Co, Mn, Ni, Zn etc.) and possess remarkable electrical and magnetic properties which depend on the cations, method of preparation, size and their site occupancies. To the best of our knowledge, there are no reports on the use of a single source precursor to synthesise quaternary ferrite nanoparticles. Herein, we demonstrated the use of trimetallic iron pivalate cluster [CrCoFeO(O2CtBu)6(HO2CtBu)3] as a single source precursor to synthesise monodisperse cobalt chromium ferrite (FeCoCrO4) nanoparticles by the hot injection thermolysis method. The precursor was thermolysed in oleylamine, oleic acid, with diphenyl ether as solvent at its boiling point (260°C). The effect of concentration on the stoichiometry, phases or morphology of the nanoparticles was studied. The p-XRD patterns of the nanoparticles obtained at both concentrations were matched with cubic iron cobalt chromium ferrite (FeCoCrO4). TEM showed that a more monodispersed spherical ferrite nanoparticles of average diameter 4.0 ± 0.4 nm were obtained at higher precursor concentration. Magnetic measurements revealed that all the ferrite particles are superparamagnetic at room temperature. The nanoparticles were characterised by Powder X-ray Diffraction (p-XRD), Transmission Electron Microscopy (TEM), Inductively Coupled Plasma (ICP), Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy (EDS) and Super Conducting Quantum Interference Device (SQUID).

Keywords: quaternary ferrite nanoparticles, single source precursor, monodisperse, cobalt chromium ferrite, colloidal, hot injection thermolysis

Procedia PDF Downloads 243