Search results for: mechanochemical activation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 971

Search results for: mechanochemical activation

641 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects

Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher

Abstract:

Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.

Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture

Procedia PDF Downloads 134
640 Long-Term Foam Roll Intervention Study of the Effects on Muscle Performance and Flexibility

Authors: T. Poppendieker

Abstract:

A new innovative tool for self-myofascial release is widely and increasingly used among athletes of various sports. The application of the foam roll is suggested to improve muscle performance and flexibility. Attempts to examine acute and somewhat long term effects of either have been conducted over the past ten years. However, the results of muscle performance have been inconsistent. It is suggested that regular use over a long period of time results in a different, muscle performance improving outcome. This study examines long-term effects of regular foam rolling combined with a short plyometric routine vs. solely the same plyometric routine on muscle performance and flexibility over a period of six weeks. Results of counter movement jump (CMJ), squat jump (SJ), and isometric maximal force (IMF) of a 90° horizontal squat in a leg-press will serve as parameters for muscle performance. Data on the range of motion (ROM) of the sit and reach test will be used as a parameter for the flexibility assessment. Muscle activation will be measured throughout all tests. Twenty male and twenty female members of a Frankfurt area fitness center chain (7.11) with an average age of 25 years will be recruited. Women and men will be randomly assigned to a foam roll (FR) and a control group. All participants will practice their assigned routine three times a week over the period of six weeks. Tests on CMJ, SJ, IMF, and ROM will be taken before and after the intervention period. The statistic software program SPSS 22 will be used to analyze the data of CMJ, SJ, IMF, and ROM under consideration of muscle activation by a 2 x 2 x 2 (time of measurement x gender x group) analysis of variance with repeated measures and dependent t-test analysis of pre- and post-test. The alpha level for statistic significance will be set at p ≤ 0.05. It is hypothesized that a significant difference in outcome based on gender differences in all four tests will be observed. It is further hypothesized that both groups may show significant improvements in their performance in the CMJ and SJ after the six-week period. However, the FR group is hypothesized to achieve a higher improvement in the two jump tests. Moreover, the FR group may increase IMF as well as flexibility, whereas the control group may not show likewise progress. The results of this study are crucial for the understanding of long-term effects of regular foam roll application. The collected information on the matter may help to motivate the incorporation of foam rolling into training routines, in order to improve athletic performances.

Keywords: counter movement jump, foam rolling, isometric maximal force, long term effects, self-myofascial release, squat jump

Procedia PDF Downloads 269
639 Magneto-Electric Behavior a Couple Aluminum / Steel Xc48

Authors: A. Mekroud, A. Khemis, M. S. Mecibah

Abstract:

The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode.

Keywords: structural characterization of the surfaces, oxides and wear debris, X-ray diffraction

Procedia PDF Downloads 391
638 Meso-Scopic Structural Analysis of Chaura Thrust, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Jhakri Thrust (JT) coeval of Sarahan Thrust (ST) was later considered to be part of Chaura Thrust (CT). The Main Central Thrust (MCT) delimits the southern extreme of Higher Himalaya, whereas the northern boundary defines by South Tibetan Detachment System (STDS). STDS is parallel set of north dipping extensional faults. The activation timing of MCT and STDS. MCT activated in two parts (MCT-L during 15- 0.7 Ma, and MCT-U during 25-14 Ma). Similarly, STDS triggered in two parts (STDS-L during 24-12 Ma, and STDS-U during 19-14 Ma). The activation ages for MBT and MFT. Besides, the MBT occurred during 11-9 Ma, and MFT followed as <2.5 Ma. There are two mylonitised zones (zone of S-C fabric) found under the microscope. Dynamic and bulging recrystallization and sub-grain formation was documented under the optical microscope from samples collected from these zones. The varieties of crenulated schistosity are shown in photomicrographs. In a rare and uncommon case, crenulation cleavage and sigmoid Muscovite were found together side-by-side. Recrystallized quartzo-feldspathic grains exist in between crenulation cleavages. These thin-section studies allow three possible hypotheses for such variations in crenulation cleavages. S/SE verging meso- and micro-scale box folds around Chaura might be a manifestation of some structural upliftment. Near Chaura, kink folds are visible. Prominent asymmetric shear sense indicators in augen mylonite are missing in meso-scale but dominantly present under the microscope. The main foliation became steepest (range of dip ~ 65 – 80 º) at this place. The aim of this section is to characterize the box fold and its signature in the regional geology of Himachal Himalaya. Grain Boundary Migration (GBM) associated temperature range (400–750 ºC) from microstructural studies in grain scale along Jhakri-Wangtu transect documented. Oriented samples were collected from the Jhakri-Chaura transect at a regular interval of ~ 1km for strain analysis. The Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh is documented a decade ago. The OOST in other parts of the Himalayas is represented as a line in between MCTL and MCTU. But In Himachal Pradesh area, OOST activated the MCTL as well as in between a zone located south of MCTU. The expectations for strain variation near the OOST are very obvious. But multiple sets of OOSTs may produce a zigzag pattern of strain accumulation for this area and figure out the overprinting structures for multiple sets of OOSTs.

Keywords: Chaura Thrust, out-of-sequence thrust, Main Central Thrust, Sarahan Thrust

Procedia PDF Downloads 50
637 Polar Nanoregions in Lead-Free Relaxor Ceramics: Unveiling through Impedance Spectroscopy

Authors: Mohammed Mesrar, Hamza El Malki, Hamza Mesrar

Abstract:

In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.In this study, ceramics of (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3 were synthesized through a conventional calcination process (solid-state method) at 1000°C for 4 hours, with x(%) values ranging from 0.0 to 100. Room temperature XRD patterns confirmed the phase formation of the samples. The Rietveld refinement method was employed to verify the morphotropic phase boundary (MPB) at x(%)=16-20. We investigated the average crystallite size and lattice strain using Scherrer's formula and Williamson-Hall (W-H) analysis. SEM image analyses provided additional evidence of the impact of doping on structural growth under low temperatures. Relaxation time extracted from Z″(f) and M″(f) spectra for x(%) = 0.0, 12, 16, 20, and 30 followed the Arrhenius law, revealing the presence of three distinct relaxation mechanisms with varying activation energies. The shoulder response in M″(f) indirectly indicated the existence of highly polarizable entities in the samples, serving as a signature of polar nanoregions (PNRs) within the grains.

Keywords: (1-x)(Na0.5Bi0.5)TiO3 x(K0.5 Bi0.5)TiO3, Rietveld refinement, Scanning electron microscopy (SEM), Williamson-Hall plots, charge density distribution, dielectric properties

Procedia PDF Downloads 23
636 Low-Temperature Luminescence Spectroscopy of Violet Sr-Al-O:Eu2+ Phosphor Particles

Authors: Keiji Komatsu, Hayato Maruyama, Ariyuki Kato, Atsushi Nakamura, Shigeo Ohshio, Hiroki Akasaka, Hidetoshi Saitoh

Abstract:

Violet Sr–Al–O:Eu2+ phosphor particles were synthesized from a metal–ethylenediaminetetraacetic acid (EDTA) solution of Sr, Al, Eu, and particulate alumina via spray drying and sintering in a reducing atmosphere. The crystal structures and emission properties at 85–300 K were investigated. The composition of the violet Sr–Al–O:Eu2+ phosphor particles was determined from various Sr–Al–O:Eu2+ phosphors by their emission properties’ dependence on temperature. The highly crystalline SrAl12O19:Eu2+ emission phases were confirmed by their crystallite sizes and the activation energies for the 4f5d–8S7/2 transition of the Eu2+ ion. These results showed that the material identification for the violet Sr–Al–O:Eu2+ phosphor was accomplished by the low-temperature luminescence measurements.

Keywords: low temperature luminescence spectroscopy, material identification, strontium aluminates phosphor, emission properties

Procedia PDF Downloads 421
635 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation

Authors: A. H. Meysami

Abstract:

In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.

Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation

Procedia PDF Downloads 251
634 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation

Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah

Abstract:

Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.

Keywords: bricks, mill waste, tyre crumbs, waste recycling

Procedia PDF Downloads 97
633 Amniotic Fluid Stem Cells Ameliorate Cisplatin-Induced Acute Renal Failure through Autophagy Induction and Inhibition of Apoptosis

Authors: Soniya Nityanand, Ekta Minocha, Manali Jain, Rohit Anthony Sinha, Chandra Prakash Chaturvedi

Abstract:

Amniotic fluid stem cells (AFSC) have been shown to contribute towards the amelioration of Acute Renal Failure (ARF), but the mechanisms underlying the renoprotective effect are largely unknown. Therefore, the main goal of the current study was to evaluate the therapeutic efficacy of AFSC in a cisplatin-induced rat model of ARF and to investigate the underlying mechanisms responsible for its renoprotective effect. To study the therapeutic efficacy of AFSC, ARF was induced in Wistar rats by an intra-peritoneal injection of cisplatin, and five days after administration, the rats were randomized into two groups and injected with either AFSC or normal saline intravenously. On day 8 and 12 after cisplatin injection, i.e., day 3 and day7 post-therapy respectively, the blood biochemical parameters, histopathological changes, apoptosis and expression of pro-apoptotic, anti-apoptotic and autophagy-related proteins in renal tissues were studied in both groups of rats. Administration of AFSC in ARF rats resulted in improvement of renal function and attenuation of renal damage as reflected by significant decrease in blood urea nitrogen, serum creatinine levels, tubular cell apoptosis as assessed by Bax/Bcl2 ratio, and expression of the pro-apoptotic proteins viz. PUMA, Bax, cleaved caspase-3 and cleaved caspase-9 as compared to saline-treated group. Furthermore, in the AFSC-treated group as compared to saline-treated group, there was a significant increase in the activation of autophagy as evident by increased expression of LC3-II, ATG5, ATG7, Beclin1 and phospho-AMPK levels with a concomitant decrease in phospho-p70S6K and p62 expression levels. To further confirm whether the protective effects of AFSC on cisplatin-induced apoptosis were dependent on autophagy, chloroquine, an autophagy inhibitor was administered by the intra-peritoneal route. Chloroquine administration led to significant reduction in the anti-apoptotic effects of the AFSC therapy and further deterioration in the renal structure and function caused by cisplatin. Collectively, our results put forth that AFSC ameliorates cisplatin-induced ARF through induction of autophagy and inhibition of apoptosis. Furthermore, the protective effects of AFSC were blunted by chloroquine, highlighting that activation of autophagy is an important mechanism of action for the protective role of AFSC in cisplatin-induced renal injury.

Keywords: amniotic fluid stem cells, acute renal failure, autophagy, cisplatin

Procedia PDF Downloads 78
632 Vertical Distribution of Heavy Metals and Enrichment in Core Marine Sediments of East Malaysia by INAA and ICP-MS

Authors: Ahmadreza Ashraf, Elias Saion, Elham Gharib Shahi, Chee Kong Yap, Mohd Suhaimi Hamzah

Abstract:

Fifty-five core marine sediments from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea of coastal East Malaysia was analyzed for heavy metals using Instrumental Neutron Activation Analysis and Inductively Coupled Plasma Mass Spectroscopy. The enrichment factor of As, Cd, Cr, Cu, Ni, Pb, and Zn varied from 0.42 to 4.26, 0.50 to 2.34, 0.31 to 0.82, 0.20 to 0.61, 0.91 to 1.92, 0.23 to 1.52, and 0.90 to 1.28 respectively, with the modified degree of contamination values below 0.6. Comparative data show that coastal East Malaysia is of low levels of contamination.

Keywords: coastal East Malaysia, core marine sediments, enrichment factor, heavy metals, INAA and ICP method, modified degree of contamination

Procedia PDF Downloads 300
631 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 688
630 Modeling of Sand Boil near the Danube River

Authors: Edina Koch, Károly Gombás, Márton Maller

Abstract:

The Little Plain is located along the Danube river, and this area is a “hotbed” of sand boil formation. This is due to the combination of a 100-250 m thick gravel layer beneath the Little Plain with a relatively thin blanket of poor soil spreading the gravel with variable thickness. Sand boils have a tradition and history in this area. It was possible to know which sand boil started and stopped working at what water level, and some of them even have names. The authors present a 2D finite element model of groundwater flow through a selected cross-section of the Danube river, which observed activation of piping phenomena during the 2013 flood event. Soil parametrization is based on a complex site investigation program conducted along the Danube River in the Little Plain.

Keywords: site characterization, groundwater flow, numerical modeling, sand boil

Procedia PDF Downloads 64
629 Experimental Investigation of Hull Form for Electric Driven Ferry

Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva

Abstract:

In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.

Keywords: electrical ferry, model tests, open flow channel, pitching, resistance

Procedia PDF Downloads 64
628 Study on the Relationship between the Emission Property of Barium-Tungsten Cathode and Micro-Area Activity

Authors: Zhen Qin, Yufei Peng, Jianbei Li, Jidong Long

Abstract:

In order to study the activity of the coated aluminate barium-tungsten cathodes during activation, aging, poisoning and long-term use. Through a set of hot-cathode micro-area emission uniformity study device, we tested the micro-area emission performance of the cathode under different conditions. The change of activity of cathode micro-area was obtained. The influence of micro-area activity on the performance of the cathode was explained by the ageing model of barium-tungsten cathode. This helps to improve the design and process of the cathode and can point the way in finding the factors that affect life in the cathode operation.

Keywords: barium-tungsten cathode, ageing model, micro-area emission, emission uniformity

Procedia PDF Downloads 383
627 Characteristic on Compressive Strength of Blast Slag and Fly Ash Hybrid Geopolymer Mortar

Authors: G. S. Ryu, K. T. Koh, H. Y. Kim, G. H. An, D. W. Seo

Abstract:

Geopolymer mortar is produced by alkaline activation of pozzolanic materials such as fly ground granulated blast-furnace slag (GGBFS) and fly ash (FA). Its unique reaction pathway facilitates rapid strength development in comparison with hydration of ordinary Portland cement (OPC). Geopolymer can be fabricated using various types and dosages of alkali-activator, which effectively gives a wider control over the performance of the final product. The present study investigates the effect of types of precursors and curing conditions on the fresh state and strength development characteristics of geopolymers, thereby comparatively exploring the effect of precursors from various sources of origin. The obtained result showed that the setting time and strength development of the specimens with the identical mix proportion but different precursors displayed significant variations.

Keywords: alkali-activated material, blast furnace slag, fly ash, flowability, strength development

Procedia PDF Downloads 217
626 A Text in Movement in the Totonac Flyers’ Dance: A Performance-Linguistic Theory

Authors: Luisa Villani

Abstract:

The proposal aims to express concerns about the connection between mind, body, society, and environment in the Flyers’ dance, a very well-known rotatory dance in Mexico, to create meanings and to make the apprehension of the world possible. The interaction among the brain, mind, body, and environment, and the intersubjective relation among them, means the world creates and recreates a social interaction. The purpose of this methodology, based on the embodied cognition theory, which was named “A Performance-Embodied Theory” is to find the principles and patterns that organize the culture and the rules of the apprehension of the environment by Totonac people while the dance is being performed. The analysis started by questioning how anthropologists can interpret how Totonacs transform their unconscious knowledge into conscious knowledge and how the scheme formation of imagination and their collective imagery is understood in the context of public-facing rituals, such as Flyers’ dance. The problem is that most of the time, researchers interpret elements in a separate way and not as a complex ritual dancing whole, which is the original contribution of this study. This theory, which accepts the fact that people are body-mind agents, wants to interpret the dance as a whole, where the different elements are joined to an integral interpretation. To understand incorporation, data was recollected in prolonged periods of fieldwork, with participant observation and linguistic and extralinguistic data analysis. Laban’s notation for the description and analysis of gestures and movements in the space was first used, but it was later transformed and gone beyond this method, which is still a linear and compositional one. Performance in a ritual is the actualization of a potential complex of meanings or cognitive domains among many others in a culture: one potential dimension becomes probable and then real because of the activation of specific meanings in a context. It can only be thought what language permits thinking, and the lexicon that is used depends on the individual culture. Only some parts of this knowledge can be activated at once, and these parts of knowledge are connected. Only in this way, the world can be understood. It can be recognized that as languages geometrize the physical world thanks to the body, also ritual does. In conclusion, the ritual behaves as an embodied grammar or a text in movement, which, depending on the ritual phases and the words and sentences pronounced in the ritual, activates bits of encyclopedic knowledge that people have about the world. Gestures are not given by the performer but emerge from the intentional perception in which gestures are “understood” by the audio-spectator in an inter-corporeal way. The impact of this study regards the possibility not only to disseminate knowledge effectively but also to generate a balance between different parts of the world where knowledge is shared, rather than being received by academic institutions alone. This knowledge can be exchanged, so indigenous communities and academies could be together as part of the activation and the sharing of this knowledge with the world.

Keywords: dance, flyers, performance, embodied, cognition

Procedia PDF Downloads 23
625 Generating a Multiplex Sensing Platform for the Accurate Diagnosis of Sepsis

Authors: N. Demertzis, J. L. Bowen

Abstract:

Sepsis is a complex and rapidly evolving condition, resulting from uncontrolled prolonged activation of host immune system due to pathogenic insult. The aim of this study is the development of a multiplex electrochemical sensing platform, capable of detecting both pathogen associated and host immune markers to enable the rapid and definitive diagnosis of sepsis. A combination of aptamers and molecular imprinting approaches have been employed to generate sensing systems for lipopolysaccharide (LPS), c-reactive protein (CRP) and procalcitonin (PCT). Gold working electrodes were mechanically polished and electrochemically cleaned with 0.1 M sulphuric acid using cyclic voltammetry (CV). Following activation, a self-assembled monolayer (SAM) was generated, by incubating the electrodes with a thiolated anti-LPS aptamer / dithiodibutiric acid (DTBA) mixture (1:20). 3-aminophenylboronic acid (3-APBA) in combination with the anti-LPS aptamer was used for the development of the hybrid molecularly imprinted sensor (apta-MIP). Aptasensors, targeting PCT and CRP were also fabricated, following the same approach as in the case of LPS, with mercaptohexanol (MCH) replacing DTBA. In the case of the CRP aptasensor, the SAM was formed following incubation of a 1:1 aptamer: MCH mixture. However, in the case of PCT, the SAM was formed with the aptamer itself, with subsequent backfilling with 1 μM MCH. The binding performance of all systems has been evaluated using electrochemical impedance spectroscopy. The apta-MIP’s polymer thickness is controlled by varying the number of electropolymerisation cycles. In the ideal number of polymerisation cycles, the polymer must cover the electrode surface and create a binding pocket around LPS and its aptamer binding site. Less polymerisation cycles will create a hybrid system which resembles an aptasensor, while more cycles will be able to cover the complex and demonstrate a bulk polymer-like behaviour. Both aptasensor and apta-MIP were challenged with LPS and compared to conventional imprinted (absence of aptamer from the binding site, polymer formed in presence of LPS) and non-imprinted polymers (NIPS, absence of LPS whilst hybrid polymer is formed). A stable LPS aptasensor, capable of detecting down to 5 pg/ml of LPS was generated. The apparent Kd of the system was estimated at 17 pM, with a Bmax of approximately 50 pM. The aptasensor demonstrated high specificity to LPS. The apta-MIP demonstrated superior recognition properties with a limit of detection of 1 fg/ml and a Bmax of 100 pg/ml. The CRP and PCT aptasensors were both able to detect down to 5 pg/ml. Whilst full binding performance is currently being evaluated, there is none of the sensors demonstrate cross-reactivity towards LPS, CRP or PCT. In conclusion, stable aptasensors capable of detecting LPS, PCT and CRP at low concentrations have been generated. The realisation of a multiplex panel such as described herein, will effectively contribute to the rapid, personalised diagnosis of sepsis.

Keywords: aptamer, electrochemical impedance spectroscopy, molecularly imprinted polymers, sepsis

Procedia PDF Downloads 103
624 A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5

Authors: Y. J. Song, Q. S. Xu, X. C. Wang, H. Wang, C. Q. Li

Abstract:

The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively.

Keywords: catalytic decomposition, CuO/HZSM-5, kinetic, nitrous oxide

Procedia PDF Downloads 146
623 TNF-Kinoid® in Autoimmune Diseases

Authors: Yahia Massinissa, Melakhessou Med Akram, Mezahdia Mehdi, Marref Salah Eddine

Abstract:

Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system.

Keywords: cytokines, Kinoid tech, auto-immune diseases, vaccination

Procedia PDF Downloads 308
622 Studies on Plasma Spray Deposited La2O3 - YSZ (Yttria-Stabilized Zirconia) Composite Thermal Barrier Coating

Authors: Prashant Sharma, Jyotsna Dutta Majumdar

Abstract:

The present study concerns development of a composite thermal barrier coating consisting of a mixture of La2O3 and YSZ (with 8 wt.%, 32 wt.% and 50 wt.% 50% La2O3) by plasma spray deposition technique on a CoNiCrAlY based bond coat deposited on Inconel 718 substrate by high velocity oxy-fuel deposition (HVOF) technique. The addition of La2O3 in YSZ causes the formation of pyrochlore (La2Zr2O7) phase in the inter splats boundary along with the presence of LaYO3 phase. The coefficient of thermal expansion is significantly reduced from due to the evolution of different phases and structural defects in the sprayed coating. The activation energy for TGO growth under isothermal and cyclic oxidation was increased in the composite coating as compared to YSZ coating.

Keywords: plasma spraying, oxidation resistance, thermal barrier coating, microstructure, X-ray method

Procedia PDF Downloads 321
621 Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method

Authors: Shahbaa F. Bdewi, Bakhtyar K. Aziz, Ayad A. R. Mutar

Abstract:

Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process.

Keywords: adsorption, congo red, magnesium oxide, nanoparticles

Procedia PDF Downloads 186
620 Modulation of Receptor-Activation Due to Hydrogen Bond Formation

Authors: Sourav Ray, Christoph Stein, Marcus Weber

Abstract:

A new class of drug candidates, initially derived from mathematical modeling of ligand-receptor interactions, activate the μ-opioid receptor (MOR) preferentially at acidic extracellular pH-levels, as present in injured tissues. This is of commercial interest because it may preclude the adverse effects of conventional MOR agonists like fentanyl, which include but are not limited to addiction, constipation, sedation, and apnea. Animal studies indicate the importance of taking the pH value of the chemical environment of MOR into account when designing new drugs. Hydrogen bonds (HBs) play a crucial role in stabilizing protein secondary structure and molecular interaction, such as ligand-protein interaction. These bonds may depend on the pH value of the chemical environment. For the MOR, antagonist naloxone and agonist [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) form HBs with ionizable residue HIS 297 at physiological pH to modulate signaling. However, such interactions were markedly reduced at acidic pH. Although fentanyl-induced signaling is also diminished at acidic pH, HBs with HIS 297 residue are not observed at either acidic or physiological pH for this strong agonist of the MOR. Molecular dynamics (MD) simulations can provide greater insight into the interaction between the ligand of interest and the HIS 297 residue. Amino acid protonation states are adjusted to the model difference in system acidity. Unbiased and unrestrained MD simulations were performed, with the ligand in the proximity of the HIS 297 residue. Ligand-receptor complexes were embedded in 1-palmitoyl-2-oleoyl-sn glycero-3-phosphatidylcholine (POPC) bilayer to mimic the membrane environment. The occurrence of HBs between the different ligands and the HIS 297 residue of MOR at acidic and physiological pH values were tracked across the various simulation trajectories. No HB formation was observed between fentanyl and HIS 297 residue at either acidic or physiological pH. Naloxone formed some HBs with HIS 297 at pH 5, but no such HBs were noted at pH 7. Interestingly, DAMGO displayed an opposite yet more pronounced HB formation trend compared to naloxone. Whereas a marginal number of HBs could be observed at even pH 5, HBs with HIS 297 were more stable and widely present at pH 7. The HB formation plays no and marginal role in the interaction of fentanyl and naloxone, respectively, with the HIS 297 residue of MOR. However, HBs play a significant role in the DAMGO and HIS 297 interaction. Post DAMGO administration, these HBs might be crucial for the remediation of opioid tolerance and restoration of opioid sensitivity. Although experimental studies concur with our observations regarding the influence of HB formation on the fentanyl and DAMGO interaction with HIS 297, the same could not be conclusively stated for naloxone. Therefore, some other supplementary interactions might be responsible for the modulation of the MOR activity by naloxone binding at pH 7 but not at pH 5. Further elucidation of the mechanism of naloxone action on the MOR could assist in the formulation of cost-effective naloxone-based treatment of opioid overdose or opioid-induced side effects.

Keywords: effect of system acidity, hydrogen bond formation, opioid action, receptor activation

Procedia PDF Downloads 152
619 Design and Development of Small Peptides as Anti-inflammatory Agents

Authors: Palwinder Singh

Abstract:

Beyond the conventional mode of working with anti-inflammatory agents through enzyme inhibition, herein, an alternate substrate of cyclooxygenase-2 was developed. Proline centered pentapeptide iso-conformational to arachidonic acid exhibited appreciable selectivity for COX-2 overcoming acetic acid and formalin induced pain in rats to almost 80% and was treated as a substrate by the enzyme. Remarkably, COX-2 metabolized the pentapeptide into small fragments consisting mainly of di- and tri-peptides that ensured the safe breakdown of the peptide under in-vivo conditions. The kinetic parameter Kcat/Km for COX-2 mediated metabolism of peptide 6.3 x 105 M-1 s-1 was quite similar to 9.5 x 105 M-1 s-1 for arachidonic acid. Evidenced by the dynamic molecular studies and the use of Y385F COX-2, it was observed that the breakage of the pentapeptide has probably taken place through H-bond activation of the peptide bond by the side chains of Y385 and S530.

Keywords: small peptides, anti-inflammatory agents, cyclooxygenase-2, unnatural substrates

Procedia PDF Downloads 46
618 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction

Authors: Xiaoling Ren, Guidong Yang

Abstract:

As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.

Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility

Procedia PDF Downloads 129
617 UVA or UVC Activation of H₂O₂ and S₂O₈²⁻ for Estrogen Degradation towards an Application in Rural Wastewater Treatment Plant

Authors: Anaelle Gabet, Helene Metivier, Christine De Brauer, Gilles Mailhot, Marcello Brigante

Abstract:

The presence of micropollutants in surface waters has been widely reported around the world, particularly downstream from wastewater treatment plants (WWTPs). Rural WWTPs constitute more than 90 % of the total WWTPs in France. Like conventional ones, they are not able to fully remove micropollutants. Estrogens are excreted by human beings every day and several studies have highlighted their endocrine disruption properties on river wildlife. They are mainly estrone (E1), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2). Rural WWTPs require cheap and robust tertiary processes. UVC activation of H₂O₂ for HO· generation, a very reactive molecule, has demonstrated its effectiveness. However, UVC rays are dangerous to manipulate and energy-consuming. This is why the ability of UVA rays was investigated in this study. Moreover, the use of S₂O₈²⁻ for SO₄·- generation as an alternative to HO· has emerged in the last few years. Such processes have been widely studied on a lab scale. However, pilot-scale works constitute fewer studies. This study was carried out on a 20-L pilot composed of a 1.12-L UV reactor equipped with a polychromatic UVA lamp or a monochromatic (254 nm) UVC lamp fed in recirculation. Degradation rates of a mixture of spiked E1, E2 and EE2 (5 µM each) were followed by HPLC-UV. Results are expressed in UV dose (mJ.cm-2) received by the compounds of interest to compare UVC and UVA. In every system, estrogen degradation rates followed pseudo-first-order rates. First, experiments were carried out in tap water. All estrogens underwent photolysis under UVC rays, although E1 photolysis is higher. However, only very weak photolysis was observed under UVA rays. Preliminary studies on both oxidants have shown that S₂O₈²⁻ photolysis constants are higher than H₂O₂ under both UVA and UVC rays. Therefore, estrogen degradation rates are about ten times higher in the presence of 1 mM of S₂O₈²⁻ than with one mM of H₂O₂ under both radiations. In the same conditions, the mixture of interest required about 40 times higher UV dose when using UVA rays compared to UVC. However, the UVA/S₂O₈²⁻ system only requires four times more UV dose than the conventional UVC/H₂O₂ system. Further studies were carried out in WWTP effluent with the UVC lamp. When comparing these results to the tap water ones, estrogen degradation rates were more inhibited in the S₂O₈²⁻ system than with H₂O₂. It seems that SO₄·- undergo higher quenching by a real effluent than HO·. Preliminary experiments have shown that natural organic matter is mainly responsible for the radical quenching and that HO and SO₄ both had similar second-order reaction rate constants with dissolved organic matter. However, E1, E2 and EE2 second-order reaction rate constants are about ten times lower with SO₄ than with HO. In conclusion, the UVA/S₂O₈²⁻ system showed encouraging results for the use of UVA rays but further studies in WWTP effluent have to be carried out to confirm this interest. The efficiency of other pollutants in the real matrix also needs to be investigated.

Keywords: AOPs, decontamination, estrogens, radicals, wastewater

Procedia PDF Downloads 161
616 Phase Stability and Grain Growth Kinetics of Oxide Dispersed CoCrFeMnNi

Authors: Prangya P. Sahoo, B. S. Murty

Abstract:

The present study deals with phase evolution of oxide dispersed CoCrFeMnNi high entropy alloy as a function of amount of added Y2O3 during mechanical alloying and analysis of grain growth kinetics of CoCrFeMnNi high entropy alloy without and with oxide dispersion. Mechanical alloying of CoCrFeMnNi resulted in a single FCC phase. However, evolution of chromium carbide was observed after heat treatment between 1073 and 1473 K. Comparison of grain growth time exponents and activation energy barrier is also reported. Micro structural investigations, using electron microscopy and EBSD techniques, were carried out to confirm the enhanced grain growth resistance which is attributed to the presence oxide dispersoids.

Keywords: grain growth kinetics, mechanical alloying, oxide dispersion, phase evolution

Procedia PDF Downloads 401
615 Computational Modeling of Combustion Wave in Nanoscale Thermite Reaction

Authors: Kyoungjin Kim

Abstract:

Nanoscale thermites such as the composite mixture of nano-sized aluminum and molybdenum trioxide powders possess several technical advantages such as much higher reaction rate and shorter ignition delay, when compared to the conventional energetic formulations made of micron-sized metal and oxidizer particles. In this study, the self-propagation of combustion wave in compacted pellets of nanoscale thermite composites is modeled and computationally investigated by utilizing the activation energy reduction of aluminum particles due to nanoscale particle sizes. The present computational model predicts the speed of combustion wave propagation which is good agreement with the corresponding experiments of thermite reaction. Also, several characteristics of thermite reaction in nanoscale composites are discussed including the ignition delay and combustion wave structures.

Keywords: nanoparticles, thermite reaction, combustion wave, numerical modeling

Procedia PDF Downloads 354
614 Toxicity of the Chlorfenapyr: Growth Inhibition and Induction of Oxidative Stress on a Freshwater Protozoan, Paramecium Sp.

Authors: Houneïda Benbouzid, Houria Berrebbah, Mohammed-Réda Djebar

Abstract:

The toxicological impacts of the increasing number of synthetic compounds present in the aquatic environment are assessed predominantly in laboratory studies where test organisms are exposed to a range of concentrations of single compounds. The bio-indicator Paramecium sp., characterized by a short life cycle, rapid multiplication and normal behavior that may be affected by the presence of pollutants. We therefore investigated the inhibitory effect of a newly synthesized acaricide: the chlorfenapyr tested at concentrations of 250, 300, and 350 µM on a pure culture of Paramecium sp. during 6 day. Paramecia treated with different concentrations of Chlorfenapyr illustrate strong inhibition of cell growth from the second day of treatment. Low levels of glutathione, increased glutathione S-transferase and the decrease in respiratory metabolism, recorded in the presence of different concentrations of Chlorfenapyr, involve the activation of detoxification system.

Keywords: Paramecium sp., chlorfenapyr, oxidative enzymes, detoxification

Procedia PDF Downloads 337
613 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent

Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú

Abstract:

In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.

Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial

Procedia PDF Downloads 45
612 Dissolution Leaching Kinetics of Ulexite in Disodium Hydrogen Phosphate Solutions

Authors: Betül Özgenç, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of this study was investigate the leaching kinetics of ulexite in disodium hydrogen phosphate solutions in a mechanical agitation system. Reaction temperature, concentration of disodium hydrogen phosphate solutions, stirring speed, solid/liquid ratio and ulexite particle size were selected as parameters. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase the dissolution rate of ulexite. The activation energy was found to be 63.4 kJ/mol. The leaching of ulexite was controlled by chemical reaction.

Keywords: ulexite, disodium hydrogen phosphate, leaching kinetics

Procedia PDF Downloads 381