Search results for: mechanical and biodegrade properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10233

Search results for: mechanical and biodegrade properties

10173 Influence of Ball Milling Time on Mechanical Properties of Porous Ti-20Nb-5Ag Alloy

Authors: M. J. Shivaram, Shashi Bhushan Arya, Jagannath Nayak, Bharat Bhooshan Panigrahi

Abstract:

Titanium and its alloys have become more significant implant materials due to their mechanical properties, excellent biocompatibility and high corrosion resistance. Biomaterials can be produce by using the powder metallurgy (PM) methods and required properties can tailored by varying the processing parameters, such as ball milling time, space holder particles, and sintering temperature. The desired properties such as, structural and mechanical properties can be obtained by powder metallurgy method.  In the present study, deals with fabrication of solid and porous Ti-20Nb-5Ag alloy using high energy ball milling for different times (5 and 20 h). The resultant powder particles were used to fabricate solid and porous Ti-20Nb-5Ag alloy by adding space holder particles (NH4HCO3). The resultant powder particles, fabricated solid and porous samples were characterized by scanning electron microscopy (SEM). The compressive strength, elastic modulus and microhardness properties were investigated. Solid and porous Ti-20Nb-5Ag alloy samples showed good mechanical properties for 20 h ball milling time as compare to 5 h ball milling.

Keywords: ball milling, compressive strengths, microstructure, porous titanium alloy

Procedia PDF Downloads 273
10172 Effect of Coupling Agent on the Properties of Durian Skin Fibre Reinforced Polypropylene Composite

Authors: Hazleen Anuar, Nur Aimi Mohd Nasir

Abstract:

Durian skin is a newly explores natural fibre potentially reinforced polyolefin for diverse applications. In this work, investigation on the effect of coupling agent, maleic anhydride polypropylene (MAPP) on the mechanical, morphological and thermal properties of polypropylene (PP) reinforced with durian skin fibre (DSF) was conducted. The presence of 30 wt% DSF significantly reduced the tensile strength of PP-DSF composite. Interestingly, even though the same trend goes to PP-DSF with the presence of MAPP, the reduction is only about 4% relative to unreinforced PP and 18% higher than PP-DSF without MAPP (untreated composite or UTC). The used of MAPP in treated composite (TC) also increased the tensile modulus, flexural properties and degradation temperature. The enhanced mechanical properties are consistent with good interfacial interaction as evidenced under scanning electron microscopy.

Keywords: durian skin fiber, coupling agent, mechanical properties, thermogravimetry analysis

Procedia PDF Downloads 434
10171 Investigation on Mechanical Properties of a Composite Material of Olive Flour Wood with a Polymer Matrix

Authors: Slim Souissi, Mohamed Ben Amar, Nesrine Bouhamed, Pierre Marechal

Abstract:

The bio-composites development from biodegradable materials and natural fibers has a growing interest in the science of composite materials. The present work was conducted as part of a cooperation project between the Sfax University and the Havre University. This work consists in developing and monitoring the properties of a composite material of olive flour wood with a polymer matrix (urea formaldehyde). For this, ultrasonic non-destructive and destructive methods of characterization were used to optimize the mechanical and acoustic properties of the studied material based on the elaboration parameters.

Keywords: bio-composite, olive flour wood, polymer matrix, ultrasonic methods, mechanical properties

Procedia PDF Downloads 464
10170 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 178
10169 Pull-Out Behavior of Mechanical Anchor Bolts by Cyclic Loading

Authors: Yoshinori Kitsutaka, Kusumi Shingo, Matsuzawa Koichi, Kunieda Yoichiro, Yagisawa Yasuei

Abstract:

In this study, the pull-out properties of various mechanical anchor bolts embedded in concrete were investigated. Five kinds of mechanical anchor bolts were selected which were ordinarily used for concrete anchoring. Tensile tests for mechanical anchor bolts embedded in φ300mm x 100mm size concrete were conducted to measure the load - load displacement curves. The loading conditions were a monotonous loading and a repeating loading. The fracture energy for each mechanical anchor bolts was estimated by the analysis of consumed energy calculated by the load - load displacement curve. The effect of the types of mechanical anchor bolts on the pull-out properties of concrete subjected in monotonous loading and a repeating loading was cleared.

Keywords: concrete, cyclic loading, mechanical anchor bolt, pull-out strength

Procedia PDF Downloads 233
10168 Mechanical Characterization of Banana by Inverse Analysis Method Combined with Indentation Test

Authors: Juan F. P. Ramírez, Jésica A. L. Isaza, Benjamín A. Rojano

Abstract:

This study proposes a novel use of a method to determine the mechanical properties of fruits by the use of the indentation tests. The method combines experimental results with a numerical finite elements model. The results presented correspond to a simplified numerical modeling of banana. The banana was assumed as one-layer material with an isotropic linear elastic mechanical behavior, the Young’s modulus found is 0.3Mpa. The method will be extended to multilayer models in further studies.

Keywords: finite element method, fruits, inverse analysis, mechanical properties

Procedia PDF Downloads 323
10167 Degradation of Mechanical Properties of Offshoring Polymer Composite Pipes in Thermal Environment

Authors: Hamza Benyahia, Mostapha Tarfaoui, Ahmed El-Moumen, Djamel Ouinas

Abstract:

Composite pipes are commonly used in the oil industry, and extreme flow of hot and cold gas fluid can cause degradation of their mechanical performance and properties. Therefore, it is necessary to consider thermomechanical behavior as an important parameter in designing these tubular structures. In this paper, an experimental study is conducted on composite glass/epoxy tubes, with a thickness of 6.2 mm and 86 mm internal diameter made by filament winding of (Փ = ± 55°), to investigate the effects of extreme thermal condition on their mechanical properties b over a temperature range from -40 to 80°C. The climatic chamber is used for the thermal aging and then, combine split disk system is used to perform tensile tests on these composite pies. Thermal aging is carried out for 8hr but each specimen was subjected to various temperature ranges and then, uniaxial tensile test is conducted to evaluate their mechanical performance. Experimental results show degradation in the mechanical properties of composite pipes with an increase in temperature. The rigidity of pipes increases progressively with a decrease in thermal load and results in a radical decrease in their elongation before fracture, thus, decreasing their ductility. However, with an increase in the temperature, there is a decrease in the yield strength and an increase in yield strain, which confirmed an increase in the plasticity of composite pipes.

Keywords: composite pipes, thermal-mechanical properties, filament winding, thermal degradation

Procedia PDF Downloads 112
10166 Mechanical Properties of ECAP-Biomedical Titanium Materials: A Review

Authors: Mohsin Talib Mohammed, Zahid A. Khan, Arshad N. Siddiquee

Abstract:

The wide use of titanium (Ti) materials in medicine gives impetus to a search for development new techniques with elevated properties such as strength, corrosion resistance and Young's modulus close to that of bone tissue. This article presents the most recent state of the art on the use of equal channel angular pressing (ECAP) technique in evolving mechanical characteristics of the ultrafine-grained bio-grade Ti materials. Over past few decades, research activities in this area have grown enormously and have produced interesting results, including achieving the combination of conflicting properties that are desirable for biomedical applications by severe plastic deformation (SPD) processing. A comprehensive review of the most recent work in this area is systematically presented. The challenges in processing ultrafine-grained Ti materials are identified and discussed. An overview of the biomedical Ti alloys processed with ECAP technique is given in this review, along with a summary of their effect on the important mechanical properties that can be achieved by SPD processing. The paper also offers insights in the mechanisms underlying SPD.

Keywords: mechanical properties, ECAP, titanium, biomedical applications

Procedia PDF Downloads 425
10165 Investigating the Physical Properties of Polycaprolactone/Eucomis autumnalis Nanocellulose Composite

Authors: Dolly Selikane, Thandi Gumede

Abstract:

Among the commonly studied organic fillers for polycaprolactone (PCL), cellulose is the most promising. It is available in various particle sizes and sources, providing numerous options for finding a suitable match for PCL matrices. In this study, cellulose was extracted from the leaves of E. autumnalis to create a PCL/nanocellulose composite through melt blending. The prepared nanocellulose was blended with PCL at a weight ratio of 97/3, and the resulting composite was characterized by its thermal and mechanical properties. The results showed that the addition of nanocellulose to PCL improved its mechanical properties, with a maximum increase of 29% in tensile strength and 31% in Young's modulus. The SEM analysis confirmed the successful blending of PCL and nanocellulose. The findings of this study suggest that the nanocellulose from Eucomis autumnalis plant has the potential to improve the mechanical properties of PCL and could be used in biomedical and packaging applications.

Keywords: polycaprolactone, medicinal plants, Eucomis autumnalis, nanocellulose, composite

Procedia PDF Downloads 75
10164 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity

Procedia PDF Downloads 201
10163 A Novel Geometrical Approach toward the Mechanical Properties of Particle Reinforced Composites

Authors: Hamed Khezrzadeh

Abstract:

Many investigations on the micromechanical structure of materials indicate that there exist fractal patterns at the micro scale in some of the main construction and industrial materials. A recently presented micro-fractal theory brings together the well-known periodic homogenization and the fractal geometry to construct an appropriate model for determination of the mechanical properties of particle reinforced composite materials. The proposed multi-step homogenization scheme considers the mechanical properties of different constituent phases in the composite together with the interaction between these phases throughout a step-by-step homogenization technique. In the proposed model the interaction of different phases is also investigated. By using this method the effect of fibers grading on the mechanical properties also could be studied. The theory outcomes are compared to the experimental data for different types of particle-reinforced composites which very good agreement with the experimental data is observed.

Keywords: fractal geometry, homogenization, micromehcanics, particulate composites

Procedia PDF Downloads 262
10162 Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

Authors: D. Korsacilar, C. Atas

Abstract:

In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance.

Keywords: ballistic, composite, thermoplastic, prepreg

Procedia PDF Downloads 412
10161 Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites

Authors: Tahir Ahmad, M. Kamran, R. Ahmad, M. T. Z. Butt

Abstract:

Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties.

Keywords: aluminum based hybrid composites, mechanical properties, microstructure, microstructure and mechanical properties relationship

Procedia PDF Downloads 380
10160 Mechanical Properties of Fibre Reinforced High Performance Concrete

Authors: Laura Dembovska, Diana Bajare, Vitalijs Lusis, Genadijs Sahmenko, Aleksandrs Korjakins

Abstract:

This study focused on the mechanical properties of the fibre reinforced High Performance Concrete. The most important benefits of addition of fibres to the concrete mix are the hindrance of the development of microcracks, the delay of the propagation of microcracks to macroscopic cracks and the better ductility after microcracks have been occurred. This work presents an extensive comparative experimental study on six different types of fibres (alkali resistant glass, polyvinyl alcohol fibres, polypropylene fibres and carbon fibres) with the same binding High Performance Concrete matrix. The purpose was to assess the influence of the type of fibre on the mechanical properties of Fibre Reinforced High Performance Concrete. Therefore, in this study three main objectives have been chosen: 1) analyze the structure of the bulk cementitious matrix, 2) determine the influence of fibres and distribution in the matrix on the mechanical properties of fibre reinforced High Performance Concrete and 3) characterize the microstructure of the fibre-matrix interface. Acknowledgement: This study was partially funded by European Regional Development Fund project Nr.1.1.1.1/16/A/007 “A New Concept for Sustainable and Nearly Zero-Energy Buildings” and COST Action TU1404 Conference grants project.

Keywords: high performance concrete, fibres, mechanical properties, microstructure

Procedia PDF Downloads 249
10159 The Joint Properties for Friction Stir Welding of Aluminium Tubes

Authors: Ahbdelfattah M. Khourshid, T. Elabeidi

Abstract:

Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical investigation, Optic Microscopy and Scanning Electron Microscopy (SEM) were used for base and weld zones.

Keywords: friction stir welding (FSW), Al alloys, mechanical properties, microstructure

Procedia PDF Downloads 505
10158 Chemical Functionalization of Graphene Oxide for Improving Mechanical and Thermal Properties of Polyurethane Composites

Authors: Qifei Jing, Vadim V. Silberschmidt, Lin Li, ZhiLi Dong

Abstract:

Graphene oxide (GO) was chemically functionalized to prepare polyurethane (PU) composites with improved mechanical and thermal properties. In order to achieve a well exfoliated and stable GO suspension in an organic solvent (dimethylformamide, DMF), 4, 4′- methylenebis(phenyl isocyanate) and polycaprolactone diol, which were the two monomers for synthesizing PU, were selectively used to functionalize GO. The obtained functionalized GO (FGO) could form homogeneous dispersions in DMF solvent and the PU matrix, as well as provide a good compatibility with the PU matrix. The most efficient improvement of mechanical properties was achieved when 0.4 wt% FGO was added into the PU matrix, showing increases in the tensile stress, elongation at break and toughness by 34.2%, 27.6% and 64.5%, respectively, compared with those of PU. Regarding the thermal stability, PU filled with 1 wt% FGO showed the largest extent of improvement with T2% and T50% (the temperatures at which 2% and 50% weight-loss happened) 16 °C and 21 °C higher than those of PU, respectively. The significant improvement in both mechanical properties and thermal stability of FGO/PU composites should be attributed to the homogeneous dispersion of FGO in the PU matrix and strong interfacial interaction between them.

Keywords: composite, dispersion, graphene oxide, polyurethane

Procedia PDF Downloads 227
10157 Flammability of Banana Fibre Reinforced Epoxy/Sodium Bromate Blend: Investigation of Variation in Mechanical Properties

Authors: S. Badrinarayanan, R. Vimal, H. Sivaraman, P. Deepak, R. Vignesh Kumar, A. Ponshanmugakumar

Abstract:

In the present study, the flammability properties of banana fibre reinforced epoxy/ sodium bromate blended composites are studied. Two sets of composite material were prepared, one formed by blending sodium bromate with epoxy matrix and other with neat epoxy matrix. Epoxy resin was blended with various weight fractions of sodium bromate, 4%, 8% and 12%. The composite made with plain epoxy matrix was used as the standard reference material. The mechanical tests, heat deflection tests and flammability tests were carried out on all the composite samples. Flammability test shows the improved flammability properties of the sodium bromated banana-epoxy composite. The modification in flammability properties of the composites by the addition of sodium bromate results in the reduced mechanical properties. The fractured surfaces under various mechanical testing were analysed using morphological analysis done using scanning electron microscope.

Keywords: banana fibres, epoxy resin, sodium bromate, flammability test, heat deflection

Procedia PDF Downloads 269
10156 Experimental Research on the Properties Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen, M. A. Yazdi, J. Yang

Abstract:

This study investigates the influence of water-binder ratio, mineral admixtures (silica fume and ground granulated blast furnace slag), and copper coated steel fiber on fluidity diameter, compressive and flexural strengths of reactive powder concrete (RPC). The test results show that the binary combination of silica fume and blast-furnace slag provided a positive influence on the mechanical properties of RPC. Although the addition of fibers reduced the workability, results indicated a higher mechanical strength in the inclusion of fibers.

Keywords: RPC, steel fiber, fluidity, mechanical properties

Procedia PDF Downloads 273
10155 Effect of Printing Process on Mechanical Properties of Interface between 3D Printed Concrete Strips

Authors: Wei Chen, Jinlong Pan

Abstract:

3D concrete printing technology is a novel and highly efficient construction method that holds significant promise for advancing low-carbon initiatives within the construction industry. In contrast to traditional construction practices, 3D printing offers a manual and formwork-free approach, resulting in a transformative shift in labor requirements and fabrication techniques. This transition yields substantial reductions in carbon emissions during the construction phase, as well as decreased on-site waste generation. Furthermore, when compared to conventionally printed concrete, 3D concrete exhibits mechanical anisotropy due to its layer-by-layer construction methodology. Therefore, it becomes imperative to investigate the influence of the printing process on the mechanical properties of 3D printed strips and to optimize the mechanical characteristics of these coagulated strips. In this study, we conducted three-dimensional reconstructions of printed blocks using both circular and directional print heads, incorporating various overlap distances between strips, and employed CT scanning for comprehensive analysis. Our research focused on assessing mechanical properties and micro-pore characteristics under different loading orientations. Our findings reveal that increasing the overlap degree between strips leads to enhanced mechanical properties of the strips. However, it's noteworthy that once full overlap is achieved, further increases in the degree of coincidence do not lead to a decrease in porosity between strips. Additionally, due to its superior printing cross-sectional area, the square printing head exhibited the most favorable impact on mechanical properties.

Keywords: 3D printing concrete, mechanical anisotropy, micro-pore structure, printing technology

Procedia PDF Downloads 48
10154 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 287
10153 Statistical Correlation between Ply Mechanical Properties of Composite and Its Effect on Structure Reliability

Authors: S. Zhang, L. Zhang, X. Chen

Abstract:

Due to the large uncertainty on the mechanical properties of FRP (fibre reinforced plastic), the reliability evaluation of FRP structures are currently receiving much attention in industry. However, possible statistical correlation between ply mechanical properties has been so far overlooked, and they are mostly assumed to be independent random variables. In this study, the statistical correlation between ply mechanical properties of uni-directional and plain weave composite is firstly analyzed by a combination of Monte-Carlo simulation and finite element modeling of the FRP unit cell. Large linear correlation coefficients between the in-plane mechanical properties are observed, and the correlation coefficients are heavily dependent on the uncertainty of the fibre volume ratio. It is also observed that the correlation coefficients related to Poisson’s ratio are negative while others are positive. To experimentally achieve the statistical correlation coefficients between in-plane mechanical properties of FRP, all concerned in-plane mechanical properties of the same specimen needs to be known. In-plane shear modulus of FRP is experimentally derived by the approach suggested in the ASTM standard D5379M. Tensile tests are conducted using the same specimens used for the shear test, and due to non-uniform tensile deformation a modification factor is derived by a finite element modeling. Digital image correlation is adopted to characterize the specimen non-uniform deformation. The preliminary experimental results show a good agreement with the numerical analysis on the statistical correlation. Then, failure probability of laminate plates is calculated in cases considering and not considering the statistical correlation, using the Monte-Carlo and Markov Chain Monte-Carlo methods, respectively. The results highlight the importance of accounting for the statistical correlation between ply mechanical properties to achieve accurate failure probability of laminate plates. Furthermore, it is found that for the multi-layer laminate plate, the statistical correlation between the ply elastic properties significantly affects the laminate reliability while the effect of statistical correlation between the ply strength is minimal.

Keywords: failure probability, FRP, reliability, statistical correlation

Procedia PDF Downloads 127
10152 Design and Fabrication of a Scaffold with Appropriate Features for Cartilage Tissue Engineering

Authors: S. S. Salehi, A. Shamloo

Abstract:

Poor ability of cartilage tissue when experiencing a damage leads scientists to use tissue engineering as a reliable and effective method for regenerating or replacing damaged tissues. An artificial tissue should have some features such as biocompatibility, biodegradation and, enough mechanical properties like the original tissue. In this work, a composite hydrogel is prepared by using natural and synthetic materials that has high porosity. Mechanical properties of different combinations of polymers such as modulus of elasticity were tested, and a hydrogel with good mechanical properties was selected. Bone marrow derived mesenchymal stem cells were also seeded into the pores of the sponge, and the results showed the adhesion and proliferation of cells within the hydrogel after one month. In comparison with previous works, this study offers a new and efficient procedure for the fabrication of cartilage like tissue and further cartilage repair.

Keywords: cartilage tissue engineering, hydrogel, mechanical strength, mesenchymal stem cell

Procedia PDF Downloads 266
10151 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator

Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí

Abstract:

This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.

Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering

Procedia PDF Downloads 270
10150 Investigation of the Addition of Macro and Micro Polypropylene Fibers on Mechanical Properties of Concrete Pavement

Authors: Seyed Javad Vaziri Kang Olyaei, Asma Sadat Dabiri, Hassan Fazaeli, Amir Ali Amini

Abstract:

Cracks in concrete pavements are places for the entrance of water and corrosive substances to the pavement, which can reduce the durability of concrete in the long term as well as the serviceability of road. The use of fibers in concrete pavement is one of the effective methods to control and mitigate cracking. This study investigates the effect of the addition of micro and macro polypropylene fibers in different types and volumes and also in combination with the mechanical properties of concrete used in concrete pavements, including compressive strength, splitting tensile strength, modulus of rupture, and average residual strength. The fibers included micro-polypropylene, macro-polypropylene, and hybrid micro and micro polypropylene in different percentages. The results showed that macro polypropylene has the most significant effect on improving the mechanical properties of concrete. Also, the hybrid micro and macro polypropylene fibers increase the mechanical properties of concrete more. It was observed that according to the results of the average residual strength, macro polypropylene fibers alone and together with micro polypropylene fibers could have excellent performance in controlling the sudden formation of cracks and their growth after the formation of cracking which is an essential property in concrete pavements.

Keywords: concrete pavement, mechanical properties, macro polypropylene fibers, micro polypropylene fibers

Procedia PDF Downloads 125
10149 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: blast furnace iron slag, compressive strength, HMA, indirect tensile strength, marshall/stiffness, mechanical performance, mechanical properties

Procedia PDF Downloads 407
10148 Correlations Between Electrical Resistivity and Some Properties of Clayey Soils

Authors: F. A. Hassona, M. M. Abu-Heleika, M. A. Hassan, A. E. Sidhom

Abstract:

Application of electrical measurements to evaluate engineering properties of soils has gained a wide, promising field of research in recent years. So, understanding of the relation between in-situ electrical resistivity of clay soil, and their mechanical and physical properties consider a promising field of research. This would assist in introducing a new technique for the determination of soil properties based on electrical resistivity. In this work soil physical and mechanical properties of clayey soil have been determined by experimental tests and correlated with the in-situ electrical resistivity. The research program was conducted through measuring fifteen vertical electrical sounding stations along with fifteen selected boreholes. These samples were analyzed and subjected to experimental tests such as physical tests namely bulk density, water content, specific gravity, and grain size distribution, and Attereberg limits tests. Mechanical test was also conducted such as direct shear test. The electrical resistivity data were interpreted and correlated with each one of the measured experimental parameters. Based on this study mathematical relations were extracted and discussed. These results exhibit an excellent match with the results reported in the literature. This study demonstrates the utility of the developed methodology for determining the mechanical properties of soils easily and rapidly depending on their electrical resistivity measurements.

Keywords: electrical resistivity, clayey soil, physical properties, shear properties

Procedia PDF Downloads 248
10147 Physico-Mechanical Properties of Wood-Plastic Composites Produced from Polyethylene Terephthalate Plastic Bottle Wastes and Sawdust of Three Tropical Hardwood Species

Authors: Amos Olajide Oluyege, Akpanobong Akpan Ekong, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape, Olawale John Olukunle

Abstract:

This study was carried out to evaluate the influence of wood species and wood plastic ratio on the physical and mechanical properties of wood plastic composites (WPCs) produced from polyethylene terephthalate (PET) plastic bottle wastes and sawdust from three hardwood species, namely, Terminalia superba, Gmelina arborea, and Ceiba pentandra. The experimental WPCs were prepared from sawdust particle size classes of ≤ 0.5, 0.5 – 1.0, and 1.0 – 2.0 mm at wood/plastic ratios of 40:60, 50:50 and 60:40 (percentage by weight). The WPCs for each study variable combination were prepared in 3 replicates and laid out in a randomized complete block design (RCBD). The physical properties investigated water absorption (WA), linear expansion (LE) and thickness swelling (TS) while the mechanical properties evaluated were Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). The mean values for WA, LE and TS ranged from 1.07 to 34.04, 0.11 to 1.76 and 0.11 to 4.05 %, respectively. The mean values of the three physical properties increased with decrease in wood plastic ratio. Wood plastic ratio of 40:60 at each particle size class generally resulted in the lowest values while wood plastic ratio of 60:40 had the highest values for each of the three species. For each of the physical properties, T. superba had the least mean values followed by G. arborea, while the highest values were observed C. pentandra. The mean values for MOE and MOR ranged from 458.17 to 1875.67 and 2.64 to 18.39 N/mm2, respectively. The mean values of the two mechanical properties decreased with increase in wood plastic ratio. Wood plastic ratio of 40:60 at each wood particle size class generally had the highest values while wood plastic ratio of 60:40 had the least values for each of the three species. For each of the mechanical properties, C. pentandra had the highest mean values followed by G. arborea, while the least values were observed T. superba. There were improvements in both the physical and mechanical properties due to decrease in sawdust particle size class with the particle size class of ≤ 0.5 mm giving the best result. The results of the Analysis of variance revealed significant (P < 0.05) effects of the three study variables – wood species, sawdust particle size class and wood/plastic ratio on all the physical and mechanical properties of the WPCs. It can be concluded from the results of this study that wood plastic composites from sawdust particle size ≤ 0.5 and PET plastic bottle wastes with acceptable physical and mechanical properties are better produced using 40:60 wood/plastic ratio, and that at this ratio, all the three species are suitable for the production of wood plastic composites.

Keywords: polyethylene terephthalate plastic bottle wastes, wood plastic composite, physical properties, mechanical properties

Procedia PDF Downloads 166
10146 Mechanical Properties of Biological Tissues

Authors: Young June Yoon

Abstract:

We will present four different topics in estimating the mechanical properties of biological tissues. First we elucidate the viscoelastic behavior of collagen molecules whose diameter is a couple of nanometers. By using the molecular dynamics simulation, we observed the viscoelastic behavior in different pulling velocity. Second, the protein layer, so called ‘sheath’ in enamel microstructure reduces the stress concentration in enamel minerals. We examined the result by using the finite element methods. Third, the anisotropic elastic constants of dentin are estimated by micromechanical analysis and estimated results are close to the experimentally measured data. Last, new formulation between the fabric tensor and the wave velocity is established for calcaneus by employing the poroelasticity. This formulation can be simply used for future experiments.

Keywords: tissues, mechanics, mechanical properties, wave propagation

Procedia PDF Downloads 344
10145 A Study on Low Stress Mechanical Properties of Denim Fabric for Hand Evaluation

Authors: S. P. Raut, S. K. Soni, A. W. Kolhatkar

Abstract:

Denim is widely used by every age of people all over the world. As the use of denim is increasing progressively, till now the handle properties of denim fabric not reported at significant level. In the present study, five commercial denim fabric samples were used. Denim samples, weighing from 8.5oz/sq yds to 14.5 oz/sq yds, were processed as per standard commercial procedure for denim finishing. These finished denim samples were tested on Kawabata Evaluation System(KES) for low stress mechanical properties. The results of KES values are used for calculation of Total Hand value(THV) using equation for summer suit. The obtained result for THV using equation for summer suit for denim samples is in the range from 1.62 to 3.30. These values of low stress mechanical properties values given by KES, can be used to engineer the denim fabric for bottom wear.

Keywords: denim, handle value, Kawabata evaluation system, objective evaluation

Procedia PDF Downloads 249
10144 Ni-B Coating Production on Magnesium Alloy by Electroless Deposition

Authors: Ferhat Bülbül

Abstract:

The use of magnesium alloys is limited due to their susceptibility to corrosion although they have many attractive physical and mechanical properties. To increase mechanical and corrosion properties of these alloys, many deposition method and coating types are used. Electroless Ni–B coatings have received considerable interest recently due to its unique properties such as cost-effectiveness, thickness uniformity, good wear resistance, lubricity, good ductility and corrosion resistance, excellent solderability and electrical properties and antibacterial property. In this study, electroless Ni-B coating could been deposited on AZ91 magnesium alloy. The obtained coating exhibited an amorphous and rougher structure.

Keywords: magnesium, electroless Ni–B, X-ray diffraction, amorphous

Procedia PDF Downloads 305