Search results for: mean time to failure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19989

Search results for: mean time to failure

19989 A Partially Accelerated Life Test Planning with Competing Risks and Linear Degradation Path under Tampered Failure Rate Model

Authors: Fariba Azizi, Firoozeh Haghighi, Viliam Makis

Abstract:

In this paper, we propose a method to model the relationship between failure time and degradation for a simple step stress test where underlying degradation path is linear and different causes of failure are possible. It is assumed that the intensity function depends only on the degradation value. No assumptions are made about the distribution of the failure times. A simple step-stress test is used to shorten failure time of products and a tampered failure rate (TFR) model is proposed to describe the effect of the changing stress on the intensities. We assume that some of the products that fail during the test have a cause of failure that is only known to belong to a certain subset of all possible failures. This case is known as masking. In the presence of masking, the maximum likelihood estimates (MLEs) of the model parameters are obtained through an expectation-maximization (EM) algorithm by treating the causes of failure as missing values. The effect of incomplete information on the estimation of parameters is studied through a Monte-Carlo simulation. Finally, a real example is analyzed to illustrate the application of the proposed methods.

Keywords: cause of failure, linear degradation path, reliability function, expectation-maximization algorithm, intensity, masked data

Procedia PDF Downloads 333
19988 PVMODREL© Development Based on Reliability Evaluation of a PV Module Using Accelerated Degradation Testing

Authors: Abderafi Charki, David Bigaud

Abstract:

The aim of this oral speach is to present the PVMODREL© (PhotoVoltaic MODule RELiability) new software developed in the University of Angers. This new tool permits us to evaluate the lifetime and reliability of a PV module whatever its geographical location and environmental conditions. The electrical power output of a PV module decreases with time mainly as a result of the effects of corrosion, encapsulation discoloration, and solder bond failure. The failure of a PV module is defined as the point where the electrical power degradation reaches a given threshold value. Accelerated life tests (ALTs) are commonly used to assess the reliability of a PV module. However, ALTs provide limited data on the failure of a module and these tests are expensive to carry out. One possible solution is to conduct accelerated degradation tests. The Wiener process in conjunction with the accelerated failure time model makes it possible to carry out numerous simulations and thus to determine the failure time distribution based on the aforementioned threshold value. By this means, the failure time distribution and the lifetime (mean and uncertainty) can be evaluated. An example using the damp heat test is shown to demonstrate the usefulness PVMODREL.

Keywords: lifetime, reliability, PV Module, accelerated life testing, accelerated degradation testing

Procedia PDF Downloads 574
19987 Performance Comparison of Prim’s and Ant Colony Optimization Algorithm to Select Shortest Path in Case of Link Failure

Authors: Rimmy Yadav, Avtar Singh

Abstract:

—Ant Colony Optimization (ACO) is a promising modern approach to the unused combinatorial optimization. Here ACO is applied to finding the shortest during communication link failure. In this paper, the performances of the prim’s and ACO algorithm are made. By comparing the time complexity and program execution time as set of parameters, we demonstrate the pleasant performance of ACO in finding excellent solution to finding shortest path during communication link failure.

Keywords: ant colony optimization, link failure, prim’s algorithm, shortest path

Procedia PDF Downloads 398
19986 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model

Authors: Soudabeh Shemehsavar

Abstract:

In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.

Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process

Procedia PDF Downloads 317
19985 A Bathtub Curve from Nonparametric Model

Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos

Abstract:

This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.

Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution

Procedia PDF Downloads 446
19984 Statistical Analysis of Failure Cases in Aerospace

Authors: J. H. Lv, W. Z. Wang, S.W. Liu

Abstract:

The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.

Keywords: aerospace, disk, failure analysis, fatigue

Procedia PDF Downloads 332
19983 Failure Localization of Bipolar Integrated Circuits by Implementing Active Voltage Contrast

Authors: Yiqiang Ni, Xuanlong Chen, Enliang Li, Linting Zheng, Shizheng Yang

Abstract:

Bipolar ICs are playing an important role in military applications, mainly used in logic gates, such as inverter and NAND gate. The defect of metal break located on the step is one of the main failure mechanisms of bipolar ICs, resulting in open-circuit or functional failure. In this situation, general failure localization methods like optical beam-induced resistance change (OBIRCH) and photon emission microscopy (PEM) might not be fully effective. However, active voltage contrast (AVC) can be used as a voltage probe, which may pinpoint the incorrect potential and thus locate the failure position. Two case studies will be present in this paper on how to implement AVC for failure localization, and the detailed failure mechanism will be discussed.

Keywords: bipolar IC, failure localization, metal break, open failure, voltage contrast

Procedia PDF Downloads 291
19982 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 157
19981 Reliability and Probability Weighted Moment Estimation for Three Parameter Mukherjee-Islam Failure Model

Authors: Ariful Islam, Showkat Ahmad Lone

Abstract:

The Mukherjee-Islam Model is commonly used as a simple life time distribution to assess system reliability. The model exhibits a better fit for failure information and provides more appropriate information about hazard rate and other reliability measures as shown by various authors. It is possible to introduce a location parameter at a time (i.e., a time before which failure cannot occur) which makes it a more useful failure distribution than the existing ones. Even after shifting the location of the distribution, it represents a decreasing, constant and increasing failure rate. It has been shown to represent the appropriate lower tail of the distribution of random variables having fixed lower bound. This study presents the reliability computations and probability weighted moment estimation of three parameter model. A comparative analysis is carried out between three parameters finite range model and some existing bathtub shaped curve fitting models. Since probability weighted moment method is used, the results obtained can also be applied on small sample cases. Maximum likelihood estimation method is also applied in this study.

Keywords: comparative analysis, maximum likelihood estimation, Mukherjee-Islam failure model, probability weighted moment estimation, reliability

Procedia PDF Downloads 273
19980 A Regression Model for Residual-State Creep Failure

Authors: Deepak Raj Bhat, Ryuichi Yatabe

Abstract:

In this study, a residual-state creep failure model was developed based on the residual-state creep test results of clayey soils. To develop the proposed model, the regression analyses were done by using the R. The model results of the failure time (tf) and critical displacement (δc) were compared with experimental results and found in close agreements to each others. It is expected that the proposed regression model for residual-state creep failure will be more useful for the prediction of displacement of different clayey soils in the future.

Keywords: regression model, residual-state creep failure, displacement prediction, clayey soils

Procedia PDF Downloads 408
19979 Failure Analysis Using Rtds for a Power System Equipped with Thyristor-Controlled Series Capacitor in Korea

Authors: Chur Hee Lee, Jae in Lee, Minh Chau Diah, Jong Su Yoon, Seung Wan Kim

Abstract:

This paper deals with Real Time Digital Simulator (RTDS) analysis about effects of transmission lines failure in power system equipped with Thyristor Controlled Series Capacitance (TCSC) in Korea. The TCSC is firstly applied in Korea to compensate real power in case of 765 kV line faults. Therefore, It is important to analyze with TCSC replica using RTDS. In this test, all systems in Korea, other than those near TCSC, were abbreviated to Thevenin equivalent. The replica was tested in the case of a line failure near the TCSC, a generator failure, and a 765-kV line failure. The effects of conventional operated STATCOM, SVC and TCSC were also analyzed. The test results will be used for the actual TCSC operational impact analysis.

Keywords: failure analysis, power system, RTDS, TCSC

Procedia PDF Downloads 120
19978 Reliability Analysis of Computer Centre at Yobe State University Using LRU Algorithm

Authors: V. V. Singh, Yusuf Ibrahim Gwanda, Rajesh Prasad

Abstract:

In this paper, we focus on the reliability and performance analysis of Computer Centre (CC) at Yobe State University, Damaturu, Nigeria. The CC consists of three servers: one database mail server, one redundant and one for sharing with the client computers in the CC (called as a local server). Observing the different possibilities of the functioning of the CC, the analysis has been done to evaluate the various popular measures of reliability such as availability, reliability, mean time to failure (MTTF), profit analysis due to the operation of the system. The system can ultimately fail due to the failure of router, redundant server before repairing the mail server and switch failure. The system can also partially fail when a local server fails. The failed devices have restored according to Least Recently Used (LRU) techniques. The system can also fail entirely due to a cooling failure of the server, electricity failure or some natural calamity like earthquake, fire tsunami, etc. All the failure rates are assumed to be constant and follow exponential time distribution, while the repair follows two types of distributions: i.e. general and Gumbel-Hougaard family copula distribution.

Keywords: reliability, availability Gumbel-Hougaard family copula, MTTF, internet data centre

Procedia PDF Downloads 530
19977 Optimal Replacement Period for a One-Unit System with Double Repair Cost Limits

Authors: Min-Tsai Lai, Taqwa Hariguna

Abstract:

This paper presents a periodical replacement model for a system, considering the concept of single and cumulative repair cost limits simultaneously. The failures are divided into two types. Minor failure can be corrected by minimal repair and serious failure makes the system breakdown completely. When a minor failure occurs, if the repair cost is less than a single repair cost limit L1 and the accumulated repair cost is less than a cumulative repair cost limit L2, then minimal repair is executed, otherwise, the system is preventively replaced. The system is also replaced at time T or at serious failure. The optimal period T minimizing the long-run expected cost per unit time is verified to be finite and unique under some specific conditions.

Keywords: repair-cost limit, cumulative repair-cost limit, minimal repair, periodical replacement policy

Procedia PDF Downloads 365
19976 A Universal Approach to Categorize Failures in Production

Authors: Konja Knüppel, Gerrit Meyer, Peter Nyhuis

Abstract:

The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems.

Keywords: failure categorization, failure management, logistic performance, production optimization

Procedia PDF Downloads 374
19975 Dissection of the Impact of Diabetes Type on Heart Failure across Age Groups: A Systematic Review of Publication Patterns on PubMed

Authors: Nazanin Ahmadi Daryakenari

Abstract:

Background: Diabetes significantly influences the risk of heart failure. The interplay between distinct types of diabetes, heart failure, and their distribution across various age groups remains an area of active exploration. This study endeavors to scrutinize the age group distribution in publications addressing Type 1 and Type 2 diabetes and heart failure on PubMed while also examining the evolving publication trends. Methods: We leveraged E-utilities and RegEx to search and extract publication data from PubMed using various mesh terms. Subsequently, we conducted descriptive statistics and t-tests to discern the differences between the two diabetes types and the distribution across age groups. Finally, we analyzed the temporal trends of publications concerning both types of diabetes and heart failure. Results: Our findings revealed a divergence in the age group distribution between Type 1 and Type 2 diabetes within heart failure publications. Publications discussing Type 2 diabetes and heart failure were more predominant among older age groups, whereas those addressing Type 1 diabetes and heart failure displayed a more balanced distribution across all age groups. The t-test revealed no significant difference in the means between the two diabetes types. However, the number of publications exploring the relationship between Type 2 diabetes and heart failure has seen a steady increase over time, suggesting an escalating interest in this area. Conclusion: The dissection of publication patterns on PubMed uncovers a pronounced association between Type 2 diabetes and heart failure within older age groups. This highlights the critical need to comprehend the distinct age group differences when examining diabetes and heart failure to inform and refine targeted prevention and treatment strategies.

Keywords: Type 1 diabetes, Type 2 diabetes, heart failure, age groups, publication patterns, PubMed

Procedia PDF Downloads 95
19974 Solution of S3 Problem of Deformation Mechanics for a Definite Condition and Resulting Modifications of Important Failure Theories

Authors: Ranajay Bhowmick

Abstract:

Analysis of stresses for an infinitesimal tetrahedron leads to a situation where we obtain a cubic equation consisting of three stress invariants. This cubic equation, when solved for a definite condition, gives the principal stresses directly without requiring any cumbersome and time-consuming trial and error methods or iterative numerical procedures. Since the failure criterion of different materials are generally expressed as functions of principal stresses, an attempt has been made in this study to incorporate the solutions of the cubic equation in the form of principal stresses, obtained for a definite condition, into some of the established failure theories to determine their modified descriptions. It has been observed that the failure theories can be represented using the quadratic stress invariant and the orientation of the principal plane.

Keywords: cubic equation, stress invariant, trigonometric, explicit solution, principal stress, failure criterion

Procedia PDF Downloads 137
19973 The Influence of Winding Angle on Functional Failure of FRP Pipes

Authors: Roham Rafiee, Hadi Hesamsadat

Abstract:

In this study, a parametric finite element modeling is developed to analyze failure modes of FRP pipes subjected to internal pressure. First-ply failure pressure and functional failure pressure was determined by a progressive damage modeling and then it is validated using experimental observations. The influence of both winding angle and fiber volume fraction is studied on the functional failure of FRP pipes and it corresponding pressure. It is observed that despite the fact that increasing fiber volume fraction will enhance the mechanical properties, it will be resulted in lower values for functional failure pressure. This shortcoming can be compensated by modifying the winding angle in angle plies of pipe wall structure.

Keywords: composite pipe, functional failure, progressive modeling, winding angle

Procedia PDF Downloads 546
19972 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm

Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei

Abstract:

This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.

Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network

Procedia PDF Downloads 668
19971 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans

Authors: Jelena Vucicevic

Abstract:

Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.

Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure

Procedia PDF Downloads 327
19970 Failure Cases Analysis in Petrochemical Industry

Authors: S. W. Liu, J. H. Lv, W. Z. Wang

Abstract:

In recent years, the failure accidents in petrochemical industry have been frequent, and have posed great security problems in personnel and property. The improvement of petrochemical safety is highly requested in order to prevent re-occurrence of severe accident. This study focuses on surveying the failure cases occurred in petrochemical field, which were extracted from journals of engineering failure, including engineering failure analysis and case studies in engineering failure analysis. The relation of failure mode, failure mechanism, type of components, and type of materials was analyzed in this study. And the analytical results showed that failures occurred more frequently in vessels and piping among the petrochemical equipment. Moreover, equipment made of carbon steel and stainless steel accounts for the majority of failures compared to other materials. This may be related to the application of the equipment and the performance of the material. In addition, corrosion failures were the largest in number of occurrence in the failure of petrochemical equipment, in which stress corrosion cracking accounts for a large proportion. This may have a lot to do with the service environment of the petrochemical equipment. Therefore, it can be concluded that the corrosion prevention of petrochemical equipment is particularly important.

Keywords: cases analysis, corrosion, failure, petrochemical industry

Procedia PDF Downloads 307
19969 Performance Assessment of Three Unit Redundant System with Environmental and Human Failure Using Copula Approach

Authors: V. V. Singh

Abstract:

We have studied the reliability measures of a system, which consists of two subsystems i.e. subsystem-1 and subsystem-2 in series configuration under different types of failure. The subsystem-1 has three identical units in parallel configuration and operating under 2-out-of-3: G policy and connected to subsystem-2 in series configuration. Each subsystem has different types of failure and repair rates. An important cause for failure of system is unsuitability of the environmental conditions, like overheating, weather conditions, heavy rainfall, storm etc. The environmental failure is taken into account in the proposed repairable system. Supplementary variable technique is used to study of system and some traditional measures such as; availability, reliability, MTTF and profit function are obtained for different values of parameters. In the proposed model, some particular cases of failure rates are explicitly studied.

Keywords: environmental failure, human failure, availability, MTTF, reliability, profit analysis, Gumbel-Hougaard family copula

Procedia PDF Downloads 353
19968 A Failure Investigations of High-Temperature Hydrogen Attack at Plat Forming Unit Furnace Elbow

Authors: Altoumi Alndalusi

Abstract:

High-temperature hydrogen attack (HTHA) failure is the common phenomena at elevated temperature in hydrogen environment in oil and gas field. The failure occurred once after four years at the internal surface of Platforming elbow. Both visual and microscopic examinations revealed that the failure was initiated due to blistering forming followed by large cracking at the inner surface. Crack morphology showed that the crack depth was about 50% of material wall thickness and its behavior generally was intergranular. This study concluded that the main reason led to failure due to incorrect material selection comparing to the platforming conditions.

Keywords: decarburization, failure, heat affected zone, morphology, partial pressure, plate form

Procedia PDF Downloads 156
19967 Failure Analysis of Electrode, Nozzle Plate, and Powder Injector during Air Plasma Spray Coating

Authors: Nemes Alexandra

Abstract:

The aim of the research is to develop an optimum microstructure of steel coatings on aluminum surfaces for application on the crankcase cylinder bores. For the proper design of the microstructure of the coat, it is important to control the plasma gun unit properly. The maximum operating time was determined while the plasma gun could optimally work before its destruction. Objectives: The aim of the research is to determine the optimal operating time of the plasma gun between renovations (the renovation shall involve the replacement of the test components of the plasma gun: electrode, nozzle plate, powder injector. Methodology: Plasma jet and particle flux analysis with PFI (PFI is a diagnostic tool for all kinds of thermal spraying processes), CT reconstruction and analysis on the new and the used plasma guns, failure analysis of electrodes, nozzle plates, and powder injectors, microscopic examination of the microstructure of the coating. Contributions: As the result of the failure analysis detailed above, the use of the plasma gun was maximized at 100 operating hours in order to get optimal microstructure for the coat.

Keywords: APS, air plasma spray, failure analysis, electrode, nozzle plate, powder injector

Procedia PDF Downloads 119
19966 Overview on the Failure in the Multiphase Mechanical Seal in Centrifugal Pumps

Authors: Aydin Azizi, Ahmed Al. Azizi

Abstract:

Mechanical seals are essential components in centrifugal pumps since they help in controlling leaking out of the liquid that is pumped under pressure. Unlike the common types of packaging, mechanical seals are highly efficient and they reduce leakage by a great extent. However, all multiphase mechanical seals leak and they are subject to failure. Some of the factors that have been recognized to their failure include excessive heating, open seal faces, as well as environment related factors that trigger failure of the materials used to manufacture seals. The proposed research study will explore the failure of multiphase mechanical seal in centrifugal pumps. The objective of the study includes how to reduce the failure in multiphase mechanical seals and to make them more efficient.

Keywords: mechanical seals, centrifugal pumps, multi phase failure, excessive heating

Procedia PDF Downloads 363
19965 Performance Analysis of LINUX Operating System Connected in LAN Using Gumbel-Hougaard Family Copula Distribution

Authors: V. V. Singh

Abstract:

In this paper we have focused on the study of a Linux operating system connected in a LAN (local area network). We have considered two different topologies STAR topology (subsystem-1) and BUS topology (subsystem-2) which are placed at two different places and connected to a server through a hub. In both topologies BUS topology and STAR topology, we have assumed 'n' clients. The system has two types of failure partial failure and complete failure. Further the partial failure has been categorized as minor partial failure and major partial failure. It is assumed that minor partial failure degrades the subsystem and the major partial failure brings the subsystem to break down mode. The system can completely failed due to failure of server hacking and blocking etc. The system is studied by supplementary variable technique and Laplace transform by taking different types of failure and two types of repairs. The various measures of reliability like availability of system, MTTF, profit function for different parametric values has been discussed.

Keywords: star topology, bus topology, hacking, blocking, linux operating system, Gumbel-Hougaard family copula, supplementary variable

Procedia PDF Downloads 577
19964 Additive Weibull Model Using Warranty Claim and Finite Element Analysis Fatigue Analysis

Authors: Kanchan Mondal, Dasharath Koulage, Dattatray Manerikar, Asmita Ghate

Abstract:

This paper presents an additive reliability model using warranty data and Finite Element Analysis (FEA) data. Warranty data for any product gives insight to its underlying issues. This is often used by Reliability Engineers to build prediction model to forecast failure rate of parts. But there is one major limitation in using warranty data for prediction. Warranty periods constitute only a small fraction of total lifetime of a product, most of the time it covers only the infant mortality and useful life zone of a bathtub curve. Predicting with warranty data alone in these cases is not generally provide results with desired accuracy. Failure rate of a mechanical part is driven by random issues initially and wear-out or usage related issues at later stages of the lifetime. For better predictability of failure rate, one need to explore the failure rate behavior at wear out zone of a bathtub curve. Due to cost and time constraints, it is not always possible to test samples till failure, but FEA-Fatigue analysis can provide the failure rate behavior of a part much beyond warranty period in a quicker time and at lesser cost. In this work, the authors proposed an Additive Weibull Model, which make use of both warranty and FEA fatigue analysis data for predicting failure rates. It involves modeling of two data sets of a part, one with existing warranty claims and other with fatigue life data. Hazard rate base Weibull estimation has been used for the modeling the warranty data whereas S-N curved based Weibull parameter estimation is used for FEA data. Two separate Weibull models’ parameters are estimated and combined to form the proposed Additive Weibull Model for prediction.

Keywords: bathtub curve, fatigue, FEA, reliability, warranty, Weibull

Procedia PDF Downloads 73
19963 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake

Authors: Luthfi Assholam Solamat

Abstract:

Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.

Keywords: soil failure pattern, earthquake, under structure, sand soil testing method

Procedia PDF Downloads 358
19962 Replacement Time and Number of Preventive Maintenance Actions for Second-Hand Device

Authors: Wen Liang Chang

Abstract:

In this study, the optimal replacement time and number of preventive maintenance (PM) actions were investigated for a second-hand device. Suppose that a user intends to use a second-hand device for manufacturing products, and that the device is replaced with a new one. Any device failure is rectified through minimal repair, thereby incurring a fixed repair cost to the user. If the new device fails within the FRW period, minimal repair is performed at no cost to the user. After the FRW expires, a failed device is repaired and the cost of repair is incurred by the user. In this study, two profit models were developed, and the optimal replacement time and number of PM actions were determined to maximize profits. Finally, the influence of the optimal replacement time and number of PM actions were elaborated on, using numerical examples.

Keywords: second-hand device, preventive maintenance, replacement time, device failure

Procedia PDF Downloads 468
19961 Software Reliability Prediction Model Analysis

Authors: Lela Mirtskhulava, Mariam Khunjgurua, Nino Lomineishvili, Koba Bakuria

Abstract:

Software reliability prediction gives a great opportunity to measure the software failure rate at any point throughout system test. A software reliability prediction model provides with the technique for improving reliability. Software reliability is very important factor for estimating overall system reliability, which depends on the individual component reliabilities. It differs from hardware reliability in that it reflects the design perfection. Main reason of software reliability problems is high complexity of software. Various approaches can be used to improve the reliability of software. We focus on software reliability model in this article, assuming that there is a time redundancy, the value of which (the number of repeated transmission of basic blocks) can be an optimization parameter. We consider given mathematical model in the assumption that in the system may occur not only irreversible failures, but also a failure that can be taken as self-repairing failures that significantly affect the reliability and accuracy of information transfer. Main task of the given paper is to find a time distribution function (DF) of instructions sequence transmission, which consists of random number of basic blocks. We consider the system software unreliable; the time between adjacent failures has exponential distribution.

Keywords: exponential distribution, conditional mean time to failure, distribution function, mathematical model, software reliability

Procedia PDF Downloads 464
19960 Implantology Failure: Epidemiological Survey among Tunisian Dentists

Authors: Faten Khanfir, Mohamed Tlili, Ali Medeb Hamrouni, Raki Selmi, M. S. Khalfi, Faten Ben Amor

Abstract:

Introduction: dental implant failure is a major concern for the clinician and the patient. Objectives: The aim of our study is to investigate the way in which 100 Tunisian dentists carried implant treatment for their patients from the early phase of planning and selection of patients to the placement of the implant in order to look for the implant failure factors. Results: significant correlations were found between failure rates > 5 and their corresponding factors as the number of implants placed (p = 0.001<0, 05), smoking (0.046 <0.05), unbalanced diabetes (0.03<0.05), aseptic protocol (= 0.004< 0.05) and the drilling speed (0,002<0.05) Conclusion: It seems that the number of implant placed, smoking, diabetes, aseptic protocol, and the drilling speed may contribute to dental implant failure.

Keywords: failure, implants, survey, risk, osseointegration

Procedia PDF Downloads 183