Search results for: lower limb bony defects
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6259

Search results for: lower limb bony defects

6229 Analysis of the Internal Mechanical Conditions in the Lower Limb Due to External Loads

Authors: Kent Salomonsson, Xuefang Zhao, Sara Kallin

Abstract:

Human soft tissue is loaded and deformed by any activity, an effect known as a stress-strain relationship, and is often described by a load and tissue elongation curve. Several advances have been made in the fields of biology and mechanics of soft human tissue. However, there is limited information available on in vivo tissue mechanical characteristics and behavior. Confident mechanical properties of human soft tissue cannot be extrapolated from e.g. animal testing. Thus, there is need for non invasive methods to analyze mechanical characteristics of soft human tissue. In the present study, the internal mechanical conditions of the lower limb, which is subject to an external load, is studied by use of the finite element method. A detailed finite element model of the lower limb is made possible by use of MRI scans. Skin, fat, bones, fascia and muscles are represented separately and the material properties for them are obtained from literature. Previous studies have been shown to address macroscopic deformation features, e.g. indentation depth, to a large extent. However, the detail in which the internal anatomical features have been modeled does not reveal the critical internal strains that may induce hypoxia and/or eventual tissue damage. The results of the present study reveals that lumped material models, i.e. averaging of the material properties for the different constituents, does not capture regions of critical strains in contrast to more detailed models.

Keywords: FEM, tissue, indentation, properties

Procedia PDF Downloads 336
6228 Finite Element Modeling of a Lower Limb Based on the East Asian Body Characteristics for Pedestrian Protection

Authors: Xianping Du, Runlu Miao, Guanjun Zhang, Libo Cao, Feng Zhu

Abstract:

Current vehicle safety standards and human body injury criteria were established based on the biomechanical response of Euro-American human body, without considering the difference in the body anthropometry and injury characteristics among different races, particularly the East Asian people with smaller body size. Absence of such race specific design considerations will negatively influence the protective performance of safety products for these populations, and weaken the accuracy of injury thresholds derived. To resolve these issues, in this study, we aim to develop a race specific finite element model to simulate the impact response of the lower extremity of a 50th percentile East Asian (Chinese) male. The model was built based on medical images for the leg of an average size Chinese male and slightly adjusted based on the statistical data. The model includes detailed anatomic features and is able to simulate the muscle active force. Thirteen biomechanical tests available in the literature were used to validate its biofidelity. Using the validated model, a pedestrian-car impact accident taking place in China was re-constructed computationally. The results show that the newly developed lower leg model has a good performance in predicting dynamic response and tibia fracture pattern. An additional comparison on the fracture tolerance of the East Asian and Euro-American lower limb suggests that the current injury criterion underestimates the degree of injury of East Asian human body.

Keywords: lower limb, East Asian body characteristics, traffic accident reconstruction, finite element analysis, injury tolerance

Procedia PDF Downloads 259
6227 Automatic Detection of Defects in Ornamental Limestone Using Wavelets

Authors: Maria C. Proença, Marco Aniceto, Pedro N. Santos, José C. Freitas

Abstract:

A methodology based on wavelets is proposed for the automatic location and delimitation of defects in limestone plates. Natural defects include dark colored spots, crystal zones trapped in the stone, areas of abnormal contrast colors, cracks or fracture lines, and fossil patterns. Although some of these may or may not be considered as defects according to the intended use of the plate, the goal is to pair each stone with a map of defects that can be overlaid on a computer display. These layers of defects constitute a database that will allow the preliminary selection of matching tiles of a particular variety, with specific dimensions, for a requirement of N square meters, to be done on a desktop computer rather than by a two-hour search in the storage park, with human operators manipulating stone plates as large as 3 m x 2 m, weighing about one ton. Accident risks and work times are reduced, with a consequent increase in productivity. The base for the algorithm is wavelet decomposition executed in two instances of the original image, to detect both hypotheses – dark and clear defects. The existence and/or size of these defects are the gauge to classify the quality grade of the stone products. The tuning of parameters that are possible in the framework of the wavelets corresponds to different levels of accuracy in the drawing of the contours and selection of the defects size, which allows for the use of the map of defects to cut a selected stone into tiles with minimum waste, according the dimension of defects allowed.

Keywords: automatic detection, defects, fracture lines, wavelets

Procedia PDF Downloads 228
6226 Phantom Phenomena in Subjects after Limb Amutation Who Regularly Practice High Intensity Sports

Authors: Jolanta Uszko, Tomasz Wloch, Aneta Pirowska, Roman Nowobilski

Abstract:

Introduction: Phantom phenomena are often reported by subjects who have undergone limb amputation. Mostly, patients feel the amputated part of the limb as if it was still attached to the body. Two types of phantom phenomena: painless (phantom sensation) and painful (phantom pain) were described. Triggers of phantom sensations and phantom pain, as well as fully effective treatment, have not been clearly described yet. Purpose: To assess the influence of psychosocial factors and some clinical conditions on the occurrence of phantom phenomena in amputee athletes. Subjects: 21 men (age: 31 years, SD = 7.5 years) after lower or upper extremity amputation, who regularly performed high-intensity sports (Amp Football Team Players) were included to the study. Method and equipment: In the research, the following method and tools were used: Questionnaire [Pirowska] adapted for athletes with disabilities, Numerical Rating Scale (NRS) - for phantom pain assessment, McGill Pain Assessment Questionnaire (short version), Beck's Depression Inventory (BDI), State Trait Anxiety Inventory (STAI): X-1 and X-2, shortened version of The World Health Organization Quality of Life (WHOQOLBREFF). Results: In the study group, the lower leg amputations with traumatic etiology were predominant. Phantom sensations were present in all subjects. Half of the respondents claimed to experience phantom sensations at least once a day, paroxysmally. There was a prevalence of phantom sensations characterized as incomplete, immobile limb. Phantom pain was reported by over 85% of respondents. The nature of phantom pain was frequently described as stabbing, squeezing, shooting, pulsing, tiring. There was a significant correlation between phantom pain intensity and anxiety, quality of life, depressive tendencies, perception of phantom pain as the obstacle in daily functioning and intensity of the limb pain before amputation. Conclusions: The etiology of phantom phenomena is complex. Psychological factors seem to have a significant influence on the intensity of the phantom pain. Particular attention should be paid to patients who complain about persistent limb pain before the amputation. These are patients with an increased risk of the phantom pain of relatively high intensity.

Keywords: amputation, phantom pain, phantom sensations, adaptive sports

Procedia PDF Downloads 132
6225 The Influence of Plyometric Exercises on Biomechanical Factor Front Crawl and Back Crawl Speed in Elite Swimmers

Authors: Gheimati Salar

Abstract:

The objective of conducting this research was to study the influence of plyometric exercises on the biomechanical selected factor of elite teen swimmers and compare the influence of plyometric exercises on the speed of front crawl and back crawl in empirical and control groups of teens. In order to conduct these study 30 swimmers with minimum of 3 years' experience who were 11 or 12 were randomly chosen and divided into 2 groups of 15. The first group was empirical and the second was control group. The speed of the swimmer was analyzed after 25 meters of swimming and their speed were recorded in the last. The researcher was standing stable at the beginning and then started the chronometer and stopped it at the end of the swimming. He repeated the record taking two times and then the average was taken. Before conducting plyometric exercises, a speed test was taken from both groups in both types of swimming. The duration of plyometric exercises was 8 weeks, every week 3 sessions and 24 sessions in total. The exercises in this study were focused on 3 parts of the body. Upper limb part, the lower part of the body and trunk area. Upper limb exercises consisted of four parts. The lower limb exercises consisted of 5 parts, and the trunk exercises consisted of four sections. A Medicine ball, cone and different weights were used in these exercises.

Keywords: plyometric, exercises, front crawl and back crawl, speed

Procedia PDF Downloads 84
6224 Exercise in Extreme Conditions: Leg Cooling and Fat/Carbohydrate Utilization

Authors: Anastasios Rodis

Abstract:

Background: Case studies of walkers, climbers, and campers exposed to cold and wet conditions without limb water/windproof protection revealed experiences of muscle weakness and fatigue. It is reasonable to assume that a part of the fatigue could occur due to an alteration in substrate utilization, since reduction of performance in extreme cold conditions, may partially be explained by higher anaerobic glycolysis, reflecting higher carbohydrate oxidation and an increase accumulation rate of blood lactate. The aim of this study was to assess the effects of pre-exercise lower limb cooling on substrate utilization rate during sub-maximal exercise. Method: Six male university students (mean (SD): age, 21.3 (1.0) yr; maximal oxygen uptake (V0₂ max), 49.6 (3.6) ml.min⁻¹; and percentage of body fat, 13.6 (2.5) % were examined in random order after either 30min cold water (12°C) immersion utilized as the cooling strategy up to the gluteal fold, or under control conditions (no precooling), with tests separated by minimum of 7 days. Exercise consisted of 60min cycling at 50% V0₂ max, in a thermoneutral environment of 20°C. Subjects were also required to record a diet diary over the 24hrs prior to the each trial. Means (SD) for the three macronutrients during the 1 day prior to each trial (expressed as a percentage of total energy) 52 (3) % carbohydrate, 31 (4) % fat, and 17 (± 2) % protein. Results: The following responses to lower limb cooling relative to control trial during exercise were: 1) Carbohydrate (CHO) oxidation, and blood lactate (Bₗₐc) concentration were significantly higher (P < 0.05); 2) rectal temperature (Tᵣₑc) was significantly higher (P < 0.05), but skin temperature was significantly lower (P < 0.05); no significant differences were found in blood glucose (Bg), heart rate (HR) and oxygen consumption (V0₂). Discussion: These data suggested that lower limb cooling prior to submaximal exercise will shift metabolic processes from Fat oxidation to CHO oxidation. This shift from Fat to CHO oxidation will probably have important implications in the surviving scenario, since people facing accidental localized cooling of their limbs either through wading/falling in cold water or snow even if they do not perform high intensity activity, they have to rely on CHO availability.

Keywords: exercise in wet conditions, leg cooling, outdoors exercise, substrate utilization

Procedia PDF Downloads 411
6223 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate, RPE

Procedia PDF Downloads 213
6222 A Comparison of the Microbiology Profile for Periprosthetic Joint Infection (PJI) of Knee Arthroplasty and Lower Limb Endoprostheses in Tumour Surgery

Authors: Amirul Adlan, Robert A McCulloch, Neil Jenkins, MIchael Parry, Jonathan Stevenson, Lee Jeys

Abstract:

Background and Objectives: The current antibiotic prophylaxis for oncological patients is based upon evidence from primary arthroplasty despite significant differences in both patient group and procedure. The aim of this study was to compare the microbiology organisms responsible for PJI in patients who underwent two-stage revision for infected primary knee replacement with those of infected oncological endoprostheses of the lower limb in a single institution. This will subsequently guide decision making regarding antibiotic prophylaxis at primary implantation for oncological procedures and empirical antibiotics for infected revision procedures (where the infecting organism(s) are unknown). Patient and Methods: 118 patients were treated with two-stage revision surgery for infected knee arthroplasty and lower limb endoprostheses between 1999 and 2019. 74 patients had two-stage revision for PJI of knee arthroplasty, and 44 had two-stage revision of lower limb endoprostheses. There were 68 males and 50 females. The mean age for the knee arthroplasty cohort and lower limb endoprostheses cohort were 70.2 years (50-89) and 36.1 years (12-78), respectively (p<0.01). Patient host and extremity criteria were categorised according to the MSIS Host and Extremity Staging System. Patient microbiological culture, the incidence of polymicrobial infection and multi-drug resistance (MDR) were analysed and recorded. Results: Polymicrobial infection was reported in 16% (12 patients) from knee arthroplasty PJI and 14.5% (8 patients) in endoprostheses PJI (p=0.783). There was a significantly higher incidence of MDR in endoprostheses PJI, isolated in 36.4% of cultures, compared to knee arthroplasty PJI (17.2%) (p=0.01). Gram-positive organisms were isolated in more than 80% of cultures from both cohorts. Coagulase-negative Staphylococcus (CoNS) was the commonest gram-positive organism, and Escherichia coli was the commonest Gram-negative organism in both groups. According to the MSIS staging system, the host and extremity grade of knee arthroplasty PJI cohort were significantly better than endoprostheses PJI(p<0.05). Conclusion: Empirical antibiotic management of PJI in orthopaedic oncology is based upon PJI in arthroplasty despite differences in both host and microbiology. Our results show a significant increase in MDR pathogens within the oncological group despite CoNS being the most common infective organism in both groups. Endoprosthetic patients presented with poorer host and extremity criteria. These factors should be considered when managing this complex patient group, emphasising the importance of broad-spectrum antibiotic prophylaxis and preoperative sampling to ensure appropriate perioperative antibiotic cover.

Keywords: microbiology, periprosthetic Joint infection, knee arthroplasty, endoprostheses

Procedia PDF Downloads 89
6221 Reduction of Defects Using Seven Quality Control Tools for Productivity Improvement at Automobile Company

Authors: Abdul Sattar Jamali, Imdad Ali Memon, Maqsood Ahmed Memon

Abstract:

Quality of production near to zero defects is an objective of every manufacturing and service organization. In order to maintain and improve the quality by reduction in defects, Statistical tools are being used by any organizations. There are many statistical tools are available to assess the quality. Keeping in view the importance of many statistical tools, traditional 7QC tools has been used in any manufacturing and automobile Industry. Therefore, the 7QC tools have been successfully applied at one of the Automobile Company Pakistan. Preliminary survey has been done for the implementation of 7QC tool in the assembly line of Automobile Industry. During preliminary survey two inspection points were decided to collect the data, which are Chassis line and trim line. The data for defects at Chassis line and trim line were collected for reduction in defects which ultimately improve productivity. Every 7QC tools has its benefits observed from the results. The flow charts developed for better understanding about inspection point for data collection. The check sheets developed for helps for defects data collection. Histogram represents the severity level of defects. Pareto charts show the cumulative effect of defects. The Cause and Effect diagrams developed for finding the root causes of each defects. Scatter diagram developed the relation of defects increasing or decreasing. The P-Control charts developed for showing out of control points beyond the limits for corrective actions. The successful implementation of 7QC tools at the inspection points at Automobile Industry concluded that the considerable amount of reduction on defects level, as in Chassis line from 132 defects to 13 defects. The total 90% defects were reduced in Chassis Line. In Trim line defects were reduced from 157 defects to 28 defects. The total 82% defects were reduced in Trim Line. As the Automobile Company exercised only few of the 7 QC tools, not fully getting the fruits by the application of 7 QC tools. Therefore, it is suggested the company may need to manage a mechanism for the application of 7 QC tools at every section.

Keywords: check sheet, cause and effect diagram, control chart, histogram

Procedia PDF Downloads 295
6220 Determination of Poisson’s Ratio and Elastic Modulus of Compression Textile Materials

Authors: Chongyang Ye, Rong Liu

Abstract:

Compression textiles such as compression stockings (CSs) have been extensively applied for the prevention and treatment of chronic venous insufficiency of lower extremities. The involvement of multiple mechanical factors such as interface pressure, frictional force, and elastic materials make the interactions between lower limb and CSs to be complex. Determination of Poisson’s ratio and elastic moduli of CS materials are critical for constructing finite element (FE) modeling to numerically simulate a complex interactive system of CS and lower limb. In this study, a mixed approach, including an analytic model based on the orthotropic Hooke’s Law and experimental study (uniaxial tension testing and pure shear testing), has been proposed to determine Young’s modulus, Poisson’s ratio, and shear modulus of CS fabrics. The results indicated a linear relationship existing between the stress and strain properties of the studied CS samples under controlled stretch ratios (< 100%). The newly proposed method and the determined key mechanical properties of elastic orthotropic CS fabrics facilitate FE modeling for analyzing in-depth the effects of compression material design on their resultant biomechanical function in compression therapy.

Keywords: elastic compression stockings, Young’s modulus, Poisson’s ratio, shear modulus, mechanical analysis

Procedia PDF Downloads 92
6219 Taguchi Approach for the Optimization of the Stitching Defects of Knitted Garments

Authors: Adel El-Hadidy

Abstract:

For any industry, the production and quality management or wastages reductions have major impingement on overall factory economy. This work discusses the quality improvement of garment industry by applying Pareto analysis, cause and effect diagram and Taguchi experimental design. The main purpose of the work is to reduce the stitching defects, which will also minimize the rejection and reworks rate. Application of Pareto chart, fish bone diagram and Process Sigma Level/and or Performance Level tools helps solving those problems on priority basis. Among all, only sewing, defects are responsible form 69.3% to 97.3 % of total defects. Process Sigma level has been improved from 0.79 to 1.3 and performance rate improved, from F to D level. The results showed that the new set of sewing parameters was superior to the original one. It can be seen that fabric size has the largest effect on the sewing defects and that needle size has the smallest effect on the stitching defects.

Keywords: garment, sewing defects, cost of rework, DMAIC, sigma level, cause and effect diagram, Pareto analysis

Procedia PDF Downloads 143
6218 Model Free Terminal Sliding Mode with Gravity Compensation: Application to an Exoskeleton-Upper Limb System

Authors: Sana Bembli, Nahla Khraief Haddad, Safya Belghith

Abstract:

This paper deals with a robust model free terminal sliding mode with gravity compensation approach used to control an exoskeleton-upper limb system. The considered system is a 2-DoF robot in interaction with an upper limb used for rehabilitation. The aim of this paper is to control the flexion/extension movement of the shoulder and the elbow joints in presence of matched disturbances. In the first part, we present the exoskeleton-upper limb system modeling. Then, we controlled the considered system by the model free terminal sliding mode with gravity compensation. A stability study is realized. To prove the controller performance, a robustness analysis was needed. Simulation results are provided to confirm the robustness of the gravity compensation combined with to the Model free terminal sliding mode in presence of uncertainties.

Keywords: exoskeleton- upper limb system, model free terminal sliding mode, gravity compensation, robustness analysis

Procedia PDF Downloads 115
6217 Creating a Virtual Perception for Upper Limb Rehabilitation

Authors: Nina Robson, Kenneth John Faller II, Vishalkumar Ahir, Arthur Ricardo Deps Miguel Ferreira, John Buchanan, Amarnath Banerjee

Abstract:

This paper describes the development of a virtual-reality system ARWED, which will be used in physical rehabilitation of patients with reduced upper extremity mobility to increase limb Active Range of Motion (AROM). The ARWED system performs a symmetric reflection and real-time mapping of the patient’s healthy limb on to their most affected limb, tapping into the mirror neuron system and facilitating the initial learning phase. Using the ARWED, future experiments will test the extension of the action-observation priming effect linked to the mirror-neuron system on healthy subjects and then stroke patients.

Keywords: physical rehabilitation, mirror neuron, virtual reality, stroke therapy

Procedia PDF Downloads 400
6216 Symmetry of Performance across Lower Limb Tests between the Dominant and Non-Dominant Legs

Authors: Ghulam Hussain, Herrington Lee, Comfort Paul, Jones Richard

Abstract:

Background: To determine the functional limitations of the lower limbs or readiness to return to sport, most rehabilitation programs use some form of testing; however, it is still unknown what the pass criteria is. This study aims to investigate the differences between the dominant and non-dominant leg performances across several lower limb tasks, which are hop tests, two-dimensional (2D) frontal plane projection angle (FPPA) tests, and isokinetic muscle tests. This study also provides the reference values for the limb symmetry index (LSI) for the hop and isokinetic muscle strength tests. Twenty recreationally active participants were recruited, 11 males and 9 females (age 23.65±2.79 years; height 169.9±3.74 cm; and body mass 74.72±5.81 kg. All tests were undertaken on the dominant and non-dominant legs. These tests are (1) Hop tests, which include horizontal hop for distance and crossover hop tests, (2) Frontal plane projection angle (FPPA): 2D capturing from two different tasks, which are forward hop landing and squatting, and (3) Isokinetic muscle strength tests: four different muscles were tested: quadriceps, hamstring, ankle plantar flexor, and hip extensor muscles. The main outcome measurements were, for the (1) hop tests: maximum distance was taken when undertaking single/crossover hop for distance using a standard tape measure, (2) for the FPPA: the knee valgus angle was measured from the maximum knee flexion position using a single 2D camera, and (3) for the isokinetic muscle strength tests: three different variables were measured: peak torque, peak torque to body weight, and the total work to body weight. All the muscle strength tests have been applied in both concentric and eccentric muscle actions at a speed of 60°/sec. This study revealed no differences between the dominant and non-dominant leg performance, and 85% of LSI was achieved by the majority of the subjects in both hop and isokinetic muscle tests, and; therefore, one leg’s hop performance can define the other.

Keywords: 2D FPPA, hop tests, isokinetic testing, LSI

Procedia PDF Downloads 36
6215 Quantification of Learned Non-Use of the Upper-Limb After a Stroke

Authors: K. K. A. Bakhti, D. Mottet, J. Froger, I. Laffont

Abstract:

Background: After a cerebrovascular accident (or stroke), many patients use excessive trunk movements to move their paretic hand towards a target (while the elbow is maintained flexed) even though they can use the upper-limb when the trunk is restrained. This phenomenon is labelled learned non-use and is known to be detrimental to neuroplasticity and recovery. Objective: The aim of this study is to quantify learned non-use of the paretic upper limb during a hand reaching task using 3D movement analysis. Methods: Thirty-four participants post supratentorial stroke were asked to reach a cone placed in front of them at 80% of their arm length. The reaching movement was repeated 5 times with the paretic hand, and then 5 times with the less-impaired hand. This sequence was first performed with the trunk free, then with the trunk restrained. Learned non-use of the upper-limb (LNUUL) was obtained from the difference of the amount of trunk compensation between the free trunk condition and the restrained trunk condition. Results: LNUUL was significantly higher for the paretic hand, with individual values ranging from 1% to 43%, and one-half of the patients with an LNUUL higher than 15%. Conclusions: Quantification of LNUUL can be used to objectively diagnose patients who need trunk rehabilitation. It can be also used for monitoring the rehabilitation progress. Quantification of LNUUL may guide upper-limb rehabilitation towards more optimal motor recovery avoiding maladaptive trunk compensation and its consequences on neuroplasticity.

Keywords: learned non-use, rehabilitation, stroke, upper limb

Procedia PDF Downloads 214
6214 The Effects of Seat Heights and Obesity on Lower-Limb Joint Kinematics during Sit-To-Stand Movement

Authors: Seungwon Baek, Haeseok Jeong, Haehyun Lee, Woojin Park

Abstract:

The main purpose of this study was to compare obese people to the non-obese in terms of joint kinematics in lower-limb body. The height of chairs was also considered as a design factor. Obese people had a difficulty in sit-to-stand (STS) tasks compared to the non-obese people. High chair heights can make STS task easy and it helps the obese to be more comfortable with STS task in particular. Subjects were instructed to wear inertial measurement unit (IMU) sensors. They perform STS task using chairs of different heights. Joint kinematics and subjective ratings of discomfort were measured. Knee angles of the obese group were greater than that of the non-obese group in normal type. No significant difference in joint kinematics was found in high chair. Interaction effect was found between obesity and height of chair. The results verified the previous research that had suggested a biomechanical model of STS movement. The results can be applied to occupational design for the obese.

Keywords: biomechanics, electromyography, joint kinematics, obesity, sitting, sit-to-stand

Procedia PDF Downloads 278
6213 Research Trends in Using Virtual Reality for the Analysis and Treatment of Lower-Limb Musculoskeletal Injury of Athletes: A Literature Review

Authors: Hannah K. M. Tang, Muhammad Ateeq, Mark J. Lake, Badr Abdullah, Frederic A. Bezombes

Abstract:

There is little research applying virtual reality (VR) to the treatment of musculoskeletal injury in athletes. This is despite their prevalence, and the implications for physical and psychological health. Nevertheless, developments of wireless VR headsets better facilitate dynamic movement in VR environments (VREs), and more research is expected in this emerging field. This systematic review identified publications that used VR interventions for the analysis or treatment of lower-limb musculoskeletal injury of athletes. It established a search protocol, and through narrative discussion, identified existing trends. Database searches encompassed four term sets: 1) VR systems; 2) musculoskeletal injuries; 3) sporting population; 4) movement outcome analysis. Overall, a total of 126 publications were identified through database searching, and twelve were included in the final analysis and discussion. Many of the studies were pilot and proof of concept work. Seven of the twelve publications were observational studies. However, this may provide preliminary data from which clinical trials will branch. If specified, the focus of the literature was very narrow, with very similar population demographics and injuries. The trends in the literature findings emphasised the role of VR and attentional focus, the strategic manipulation of movement outcomes, and the transfer of skill to the real-world. Causal inferences may have been undermined by flaws, as most studies were limited by the practicality of conducting a two-factor clinical-VR-based study. In conclusion, by assessing the exploratory studies, and combining this with the use of numerous developments, techniques, and tools, a novel application could be established to utilise VR with dynamic movement, for the effective treatment of specific musculoskeletal injuries of athletes.

Keywords: athletes, lower-limb musculoskeletal injury, rehabilitation, return-to-sport, virtual reality

Procedia PDF Downloads 207
6212 Deviations and Defects of the Sub-Task’s Requirements in Construction Projects

Authors: Abdullah Almusharraf, Andrew Whyte

Abstract:

The sub-task pattern in terms of the deviations and defects should be identified and understand in order to improve the quality practices in construction projects. Therefore, the sub-task susceptibility to exposure to deviations and defects have been evaluated and classified via six classifications that have proposed in this study. 34 case studies on specific sub-task (from compression member in construction concrete structure) have been collected from seven construction projects in order to examined study’s classifications. The study revealed that the sub-task has high sensitive to deviation where (91%) of the cases recorded as deviations, however, only (19%) of cases recorded as defects. Another findings were that the actual work during the execution process has high source of deviation for this sub-task (74%) while only (26%) of the deviation source was due to both design documentations with the actual work. These findings significantly imply that it could be used the study’s classifications to determine the pattern of each sub-task and develop the proactive actions to overcome issues of the sub-task deviations and defects.

Keywords: sub-tasks, deviations, defects, quality, construction projects

Procedia PDF Downloads 407
6211 The Use of Five Times Sit-To-Stand Test in Ambulatory People with Spinal Cord Injury When Tested with or without Hands

Authors: Lalita Khuna, Sugalya Amatachaya, Pipatana Amatachaya, Thiwabhorn Thaweewannakij, Pattra Wattanapan

Abstract:

The five times sit-to-stand test (FTSST) has been widely used to quantify lower extremity motor strength (LEMS), dynamic balance ability, and risk of falls in many individuals. Recently, it has been used in ambulatory patients with spinal cord injury (SCI) but variously using with or without hands according to patients’ ability. This difference might affect the validity of the test in these individuals. Thus, this study assessed the concurrent validity of the FTSST in ambulatory individuals with SCI, separately for those who could complete the test with or without hands using LEMS and standard functional measures as gold standards. Moreover, the data of the tests from those who completed the FTSST with and without hands were compared. A total of 56 ambulatory participants with SCI who could complete sit-to-stand with or without hands were assessed for the time to complete the FTSST according to their ability. Then they were assessed for their LEMS scores and functional abilities, including the 10-meter walk test (10MWT), the walking index for spinal cord injury II (WISCI II), the timed up and go test (TUGT), and the 6-minute walk test (6MWT). The Mann-Whitney U test was used to compare the different findings between the participants who performed the FTSST with and without hands. The Spearman rank correlation coefficient (ρ) was applied to analyze the levels of correlation between the FTSST and standard tests (LEMS scores and functional measures). There were significant differences in the data between the participants who performed the test with and without hands (p < 0.01). The time to complete the FTSST of the participants who performed the test without hands showed moderate to strong correlation with total LEMS scores and all functional measures (ρ = -0.71 to 0.69, p < 0.001). On the contrary, the FTSST data of those who performed the test with hands were significantly correlated only with the 10MWT, TUGT, and 6MWT (ρ = -0.47 to 0.57, p < 0.01). The present findings confirm the concurrent validity of the FTSST when performed without hands for LEMS and functional mobility necessary for the ability of independence and safety of ambulatory individuals with SCI. However, the test using hands distort the ability of the outcomes to reflect LEMS and WISCI II that reflect lower limb functions. By contrast, the 10MWT, TUGT, and 6MWT allowed upper limb contribution in the tests. Therefore, outcomes of these tests showed a significant correlation to the outcomes of FTSST when assessed using hands. Consequently, the use of FTSST with or without hands needs to consider the clinical application of the outcomes, i.e., to reflect lower limb functions or mobility of the patients.

Keywords: mobility, lower limb muscle strength, clinical test, rehabilitation

Procedia PDF Downloads 114
6210 Study of Human Upper Arm Girth during Elbow Isokinetic Contractions Based on a Smart Circumferential Measuring System

Authors: Xi Wang, Xiaoming Tao, Raymond C. H. So

Abstract:

As one of the convenient and noninvasive sensing approaches, the automatic limb girth measurement has been applied to detect intention behind human motion from muscle deformation. The sensing validity has been elaborated by preliminary researches but still need more fundamental study, especially on kinetic contraction modes. Based on the novel fabric strain sensors, a soft and smart limb girth measurement system was developed by the authors’ group, which can measure the limb girth in-motion. Experiments were carried out on elbow isometric flexion and elbow isokinetic flexion (biceps’ isokinetic contractions) of 90°/s, 60°/s, and 120°/s for 10 subjects (2 canoeists and 8 ordinary people). After removal of natural circumferential increments due to elbow position, the joint torque is found not uniformly sensitive to the limb circumferential strains, but declining as elbow joint angle rises, regardless of the angular speed. Moreover, the maximum joint torque was found as an exponential function of the joint’s angular speed. This research highly contributes to the application of the automatic limb girth measuring during kinetic contractions, and it is useful to predict the contraction level of voluntary skeletal muscles.

Keywords: fabric strain sensor, muscle deformation, isokinetic contraction, joint torque, limb girth strain

Procedia PDF Downloads 304
6209 Mesoscopic Defects of Forming and Induced Properties on the Impact of a Composite Glass/Polyester

Authors: Bachir Kacimi, Fatiha Teklal, Arezki Djebbar

Abstract:

Forming processes induce residual deformations on the reinforcement and sometimes lead to mesoscopic defects, which are more recurrent than macroscopic defects during the manufacture of complex structural parts. This study deals with the influence of the fabric shear and buckles defects, which appear during draping processes of composite, on the impact behavior of a glass fiber reinforced polymer. To achieve this aim, we produced several specimens with different amplitude of deformations (shear) and defects on the fabric using a specific bench. The specimens were manufactured using the contact molding and tested with several impact energies. The results and measurements made on tested specimens were compared to those of the healthy material. The results showed that the buckle defects have a negative effect on elastic parameters and revealed a larger damage with significant out-of-plane mode relatively to the healthy composite material. This effect is the consequence of a local fiber impoverishment and a disorganization of the fibrous network, with a reorientation of the fibers following the out-of-plane buckling of the yarns, in the area where the defects are located. For the material with calibrated shear of the reinforcement, the increased local fiber rate due to the shear deformations and the contribution to stiffness of the transverse yarns led to an increase in mechanical properties.

Keywords: Defects, Forming, Impact, Induced properties, Textiles

Procedia PDF Downloads 109
6208 Effect of Foot Posture and Fatigue on Static Balance and Electromyographic Activity of Selected Lower Limb Muscles in School Children Aged 12 to 14 Years

Authors: Riza Adriyani, Tommy Apriantono, Suprijanto

Abstract:

Objective: Several studies have revealed that flatfoot posture has some effect on altered lower limb muscle function, in comparison to normal foot posture. There were still limited studies to examine the effect of fatigue on flatfoot posture in children. Therefore, this study was aimed to find out jumping fatiguing effect on static balance and to compare lower limb muscle function between flatfoot and normal foot in school children. Methods: Thirty junior high school children aged 12 to 14 years took part in this study. Of these all children, 15 had the normal foot (8 males and 7 females) and 15 had flatfoot (6 males and 9 females). Foot posture was classified based on an arch index of the footprint by a foot scanner which calculated the data using AUTOCAD 2013 software. Surface electromyography (EMG) activity was recorded from tibialis anterior, gastrocnemius medialis, and peroneus longus muscles while those participants were standing on one leg barefoot with opened eyes. All participants completed the entire protocol (pre-fatigue data collection, fatigue protocol, and post fatigue data collection) in a single session. Static balance and electromyographic data were collected before and after a functional fatigue protocol. Results: School children with normal foot had arch index 0.25±0.01 whereas those with flatfoot had 0.36±0.01. In fact, there were no significant differences for anthropometric characteristics between children with flatfoot and normal foot. This statistical analysis showed that fatigue could influence static balance in flatfoot school children (p < 0.05), but not in normal foot school children. Based on electromyographic data, the statistical analysis showed that there were significant differences (p < 0.05) of the decreased median frequency on tibialis anterior in flatfoot compared to normal foot school children after fatigue. However, there were no significant differences on the median frequency of gastrocnemius medialis and peroneus longus between both groups. After fatigue, median frequency timing was significantly different (p < 0.05) on tibialis anterior in flatfoot compared to normal foot children and tended to appear earlier on tibialis anterior, gastrocnemius medialis and peroneus longus (at 7s, 8s, 9s) in flatfoot compared to normal foot (at 15s, 11s , 12s). Conclusion: Fatigue influenced static balance and tended to appear earlier on selected lower limb muscles while performing static balance in flatfoot school children. After fatigue, tremor (median frequency decreased) showed more significant differences on tibialis anterior in flatfoot rather than in normal foot school children.

Keywords: fatigue, foot postures, median frequency, static balance

Procedia PDF Downloads 473
6207 Defects Analysis, Components Distribution, and Properties Simulation in the Fuel Cells and Batteries by 2D and 3D Characterization Techniques

Authors: Amir Peyman Soleymani, Jasna Jankovic

Abstract:

The augmented demand of the clean and renewable energy has necessitated the fuel cell and battery industries to produce more efficient devices at the lower prices, which can be achieved through the improvement of the electrode. Microstructural characterization, as one of the main materials development tools, plays a pivotal role in the production of better clean energy devices. In this study, methods for characterization and studying of the defects and components distribution were performed on the polymer electrolyte membrane fuel cell (PEMFC) and Li-ion battery (LIB) electrodes in 2D and 3D. The particles distribution, porosity, mechanical defects, and component distribution were studied by Scanning Electron Microscope (SEM), SEM-Focused Ion Beam (SEM-FIB), and Scanning Transmission Electron Microscope equipped with Energy Dispersive Spectroscopy (STEM-EDS). The 3D results obtained from X-ray Computed Tomography (XCT) revealed the pathways for electron and ion conductivity and defects progression maps. Computer-aided methods (Avizo) were employed to simulate the properties and performance of the microstructure in the electrodes. The suggestions were provided to improve the performance of PEMFCs and LIBs by adjusting the microstructure and the distribution of the components in the electrodes.

Keywords: PEM fuel cells, Li-ion batteries, 2D and 3D imaging, materials characterizations

Procedia PDF Downloads 125
6206 Modified Norhaya Upper Limp Elevation Sling-Quick Approach Ensuring Timely Limb Elevation

Authors: Prem, Norhaya, Vwrene C., Mohammad Harris A., Amarjit, Fazir M.

Abstract:

Upper limb surgery is a common orthopedic procedure. After surgery, it is necessary to raise the patient's arm to reduce limb swelling and promote recovery. After an injury or surgery, swelling (edema) in the limbs is common. This swelling can be painful, cause stiffness, and affect movement and ability to do daily activities. One of the easiest ways to manage swelling is to elevate the swollen limb. The goal is to elevate the swollen limb slightly above the level of the heart. This helps the extra fluid move back towards the heart for circulation to the rest of the body. Conventional arm sling or pillows are usually placed under the arm to raise it, but in this way the arm cannot be fixed well and easily slide down, without ideal raising effect. Conventional arm sling need experience to tie the sling and this delay in the application process. To reduce the waiting time and cost, modified Norhaya upper limb elevation sling was designed and made readily available. The sling is made from calico fabric, readily available in the ward. Measurements of patients’ arm lengths are obtained, and fabric sizes are cut into the average arm lengths, as well as 1 size above and below. The cut calico fabric is then sewn together with thick sewing threads. Its application is easy and junior most staff or doctor will be able to apply it on patient. The time taken to set up the sling is also reduced. Feedback gathered from ground staff regarding ease of setting up the sling was tremendous and patient also feel comfort in the modified Norhaya sling. The device can freely adjust the raising height of the affected limb and effectively fix the affected limb to reduce its swelling, thus promoting recovery. This device is worthy to be clinically popularized and applied. The Modified Norhaya upper limb elevation sling is the quickest to set up and the delay in elevating the patient’s hand is significantly reduced. Moreover, it is reproducible and there is also significant cost savings.

Keywords: elevate, effective, sling, timely

Procedia PDF Downloads 164
6205 A Comparison and Discussion of Modern Anaesthetic Techniques in Elective Lower Limb Arthroplasties

Authors: P. T. Collett, M. Kershaw

Abstract:

Introduction: The discussion regarding which method of anesthesia provides better results for lower limb arthroplasty is a continuing debate. Multiple meta-analysis has been performed with no clear consensus. The current recommendation is to use neuraxial anesthesia for lower limb arthroplasty; however, the evidence to support this decision is weak. The Enhanced Recovery After Surgery (ERAS) society has recommended, either technique can be used as part of a multimodal anesthetic regimen. A local study was performed to see if the current anesthetic practice correlates with the current recommendations and to evaluate the efficacy of the different techniques utilized. Method: 90 patients who underwent total hip or total knee replacements at Nevill Hall Hospital between February 2019 to July 2019 were reviewed. Data collected included the anesthetic technique, day one opiate use, pain score, and length of stay. The data was collected from anesthetic charts, and the pain team follows up forms. Analysis: The average of patients undergoing lower limb arthroplasty was 70. Of those 83% (n=75) received a spinal anaesthetic and 17% (n=15) received a general anaesthetic. For patients undergoing knee replacement under general anesthetic the average day, one pain score was 2.29 and 1.94 if a spinal anesthetic was performed. For hip replacements, the scores were 1.87 and 1.8, respectively. There was no statistical significance between these scores. Day 1 opiate usage was significantly higher in knee replacement patients who were given a general anesthetic (45.7mg IV morphine equivalent) vs. those who were operated on under spinal anesthetic (19.7mg). This difference was not noticeable in hip replacement patients. There was no significant difference in length of stay between the two anesthetic techniques. Discussion: There was no significant difference in the day one pain score between the patients who received a general or spinal anesthetic for either knee or hip replacements. The higher pain scores in the knee replacement group overall are consistent with this being a more painful procedure. This is a small patient population, which means any difference between the two groups is unlikely to be representative of a larger population. The pain scale has 4 points, which means it is difficult to identify a significant difference between pain scores. Conclusion: There is currently little standardization between the different anesthetic approaches utilized in Nevill Hall Hospital. This is likely due to the lack of adherence to a standardized anesthetic regimen. In accordance with ERAS recommends a standard anesthetic protocol is a core component. The results of this study and the guidance from the ERAS society will support the implementation of a new health board wide ERAS protocol.

Keywords: anaesthesia, orthopaedics, intensive care, patient centered decision making, treatment escalation

Procedia PDF Downloads 94
6204 3D Design of Orthotic Braces and Casts in Medical Applications Using Microsoft Kinect Sensor

Authors: Sanjana S. Mallya, Roshan Arvind Sivakumar

Abstract:

Orthotics is the branch of medicine that deals with the provision and use of artificial casts or braces to alter the biomechanical structure of the limb and provide support for the limb. Custom-made orthoses provide more comfort and can correct issues better than those available over-the-counter. However, they are expensive and require intricate modelling of the limb. Traditional methods of modelling involve creating a plaster of Paris mould of the limb. Lately, CAD/CAM and 3D printing processes have improved the accuracy and reduced the production time. Ordinarily, digital cameras are used to capture the features of the limb from different views to create a 3D model. We propose a system to model the limb using Microsoft Kinect2 sensor. The Kinect can capture RGB and depth frames simultaneously up to 30 fps with sufficient accuracy. The region of interest is captured from three views, each shifted by 90 degrees. The RGB and depth data are fused into a single RGB-D frame. The resolution of the RGB frame is 1920px x 1080px while the resolution of the Depth frame is 512px x 424px. As the resolution of the frames is not equal, RGB pixels are mapped onto the Depth pixels to make sure data is not lost even if the resolution is lower. The resulting RGB-D frames are collected and using the depth coordinates, a three dimensional point cloud is generated for each view of the Kinect sensor. A common reference system was developed to merge the individual point clouds from the Kinect sensors. The reference system consisted of 8 coloured cubes, connected by rods to form a skeleton-cube with the coloured cubes at the corners. For each Kinect, the region of interest is the square formed by the centres of the four cubes facing the Kinect. The point clouds are merged by considering one of the cubes as the origin of a reference system. Depending on the relative distance from each cube, the three dimensional coordinate points from each point cloud is aligned to the reference frame to give a complete point cloud. The RGB data is used to correct for any errors in depth data for the point cloud. A triangular mesh is generated from the point cloud by applying Delaunay triangulation which generates the rough surface of the limb. This technique forms an approximation of the surface of the limb. The mesh is smoothened to obtain a smooth outer layer to give an accurate model of the limb. The model of the limb is used as a base for designing the custom orthotic brace or cast. It is transferred to a CAD/CAM design file to design of the brace above the surface of the limb. The proposed system would be more cost effective than current systems that use MRI or CT scans for generating 3D models and would be quicker than using traditional plaster of Paris cast modelling and the overall setup time is also low. Preliminary results indicate that the accuracy of the Kinect2 is satisfactory to perform modelling.

Keywords: 3d scanning, mesh generation, Microsoft kinect, orthotics, registration

Procedia PDF Downloads 164
6203 The Osteocutaneous Distal Tibia Turn-over Fillet Flap: A Novel Spare-parts Orthoplastic Surgery Option for Functional Below-knee Amputation

Authors: Harry Burton, Alexios Dimitrios Iliadis, Neil Jones, Aaron Saini, Nicola Bystrzonowski, Alexandros Vris, Georgios Pafitanis

Abstract:

This article portrays the authors’ experience with a complex lower limb bone and soft tissue defect, following chronic osteomyelitis and pathological fracture, which was managed by the multidisciplinary orthoplastic team. The decision for functional amputation versus limb salvage was deemed necessary, enhanced by the principles of “spares parts” in reconstructive microsurgery. This case describes a successful use of the osteocutaneous distal tibia turn-over fillet flap that allowed ‘lowering the level of the amputation’ from a through knee to the conventional level of a below-knee amputation to preserve the knee joint function. This case demonstrates the value of ‘spare-parts’ surgery principles and how these concepts refine complex orthoplastic approaches when limb salvage is not possible to enhance function. The osteocutaneous distal tibia turn-over fillet flap is a robust technique for modified BKA reconstructions that provides sufficient bone length to achieve a tough, sensate stump and functional knee joint.

Keywords: osteocutaneous flap, fillet flap, spare-parts surgery, Below knee amputation

Procedia PDF Downloads 134
6202 Photoelastic Analysis of the Proximal Femur in Deviations of the Mechanical Axis of the Lower Limb

Authors: S. F. Fakhouri, M.M. Shimano, D. Maranho, C. A. Araújo, M. V. Guimarães, A. C. Shimano, J. B. Volpon

Abstract:

Pathological deviations of the mechanical axis of the lower limbs deeply alter the stress distributions on the femur and tibia and the hip, knee, and ankle articulations. The purpose of this research was to assess the effects of pathological deviations in different levels of the lower limbs in the distribution of stress in the proximal femur region using photoelasticity of plane transmission. For most of the types of deviations studied, the results showed that the internal stress was generally higher in the calcar region than in the trochanteric region, followed by the third distal of the femur head. This study allowed for the development of better criteria for the correction of angular deviations and helped identify the deviations that are most harmful to the mechanical axis in terms of the effects on the bone and the articular effort of the lower limbs. These results will lead to future improvements in studies on prostheses.

Keywords: alignment, deviations, inferior limbs, mechanical axis, photoelasticity, stress

Procedia PDF Downloads 355
6201 Ab-Initio Study of Native Defects in SnO Under Strain

Authors: A. Albar, D. B. Granato, U. Schwingenschlogl

Abstract:

Tin monoxide (SnO) has promising properties to be applied as a p-type semiconductor in transparent electronics. To this end, it is necessary to understand the behavior of defects in order to control them. We use density functional theory to study native defects of SnO under tensile and compressive strain. We show that Sn vacancies are more stable under tension and less stable under compression, irrespectively of the charge state. In contrast, O vacancies behave differently for different charge. It turns out that the most stable defect under compression is the +1 charged O vacancy in a Sn-rich environment and the charge neutral O interstitial in an O-rich environment. Therefore, compression can be used to transform SnO from an n-type into un-doped semiconductor.

Keywords: native defects, ab-initio, point defect, tension, compression, semiconductor

Procedia PDF Downloads 362
6200 Recurrent Anterior Gleno-Humeral Instability Management by Modified Latarjet Procedure

Authors: Tarek Aly

Abstract:

The shoulder is the most mobile joint whose stability requires the interaction of both dynamic and static stabilizers. Its wide range of movement predisposes to a high susceptibility to dislocation, accounting for nearly 50% of all dislocations. This trauma typically results in ligament injury (e.g., labral tear, capsular strain) or bony fracture (e.g., loss of glenoid or humeral head bone), which frequently causes recurrent instability. Patients with significant glenoid defects may require Latarjet procedure, which involves transferring the coracoid to the antero-inferior glenoid rim. In spite of outstanding results, 15 to 30% of cases suffer complications. In this article, we discuss the diagnosis of recurrent shoulder instability, the surgical technique and various complications of Latarjet procedure.

Keywords: recurrent, anterior gleno-humeral instability, latarjet, unstable shoulder

Procedia PDF Downloads 38