Search results for: leaching kinetics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 814

Search results for: leaching kinetics

124 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 85
123 Integration of a Protective Film to Enhance the Longevity and Performance of Miniaturized Ion Sensors

Authors: Antonio Ruiz Gonzalez, Kwang-Leong Choy

Abstract:

The measurement of electrolytes has a high value in the clinical routine. Ions are present in all body fluids with variable concentrations and are involved in multiple pathologies such as heart failures and chronic kidney disease. In the case of dissolved potassium, although a high concentration in the blood (hyperkalemia) is relatively uncommon in the general population, it is one of the most frequent acute electrolyte abnormalities. In recent years, the integration of thin films technologies in this field has allowed the development of highly sensitive biosensors with ultra-low limits of detection for the assessment of metals in liquid samples. However, despite the current efforts in the miniaturization of sensitive devices and their integration into portable systems, only a limited number of successful examples used commercially can be found. This fact can be attributed to a high cost involved in their production and the sustained degradation of the electrodes over time, which causes a signal drift in the measurements. Thus, there is an unmet necessity for the development of low-cost and robust sensors for the real-time monitoring of analyte concentrations in patients to allow the early detection and diagnosis of diseases. This paper reports a thin film ion-selective sensor for the evaluation of potassium ions in aqueous samples. As an alternative for this fabrication method, aerosol assisted chemical vapor deposition (AACVD), was applied due to cost-effectivity and fine control over the film deposition. Such a technique does not require vacuum and is suitable for the coating of large surface areas and structures with complex geometries. This approach allowed the fabrication of highly homogeneous surfaces with well-defined microstructures onto 50 nm thin gold layers. The degradative processes of the ubiquitously employed poly (vinyl chloride) membranes in contact with an electrolyte solution were studied, including the polymer leaching process, mechanical desorption of nanoparticles and chemical degradation over time. Rational design of a protective coating based on an organosilicon material in combination with cellulose to improve the long-term stability of the sensors was then carried out, showing an improvement in the performance after 5 weeks. The antifouling properties of such coating were assessed using a cutting-edge quartz microbalance sensor, allowing the quantification of the adsorbed proteins in the nanogram range. A correlation between the microstructural properties of the films with the surface energy and biomolecules adhesion was then found and used to optimize the protective film.

Keywords: hyperkalemia, drift, AACVD, organosilicon

Procedia PDF Downloads 102
122 The Growth Reaction, Membrane Potential and Oxidative Stress of Maize Coleoptile Cells Incubated in the Presence of the Naphthoquinones

Authors: Malgorzata Rudnicka, Waldemar Karcz

Abstract:

Introduction: Naphthoquinones are widely occurring organic compounds produced by bacteria, fungi, and plants. They can act as the functional components of biochemical systems (plastoquinone) as well as biologically active substances, which have a negative impact on environmental processes. Naphthoquinones seem to act through two mechanisms: a covalent modification of biological molecules at their nucleophilic sites or by generation of reactive oxygen species (ROS) connected with redox cycling. Investigating the effect of naphthoquinones (1,4-naphthoquinone, lawsone and naphthazarin) on the elongation growth, membrane potential and the level of oxidative stress of maize cells seems to be important due to the possibility of using these substances as herbicides. Methods: All experiments were performed on etiolated maize coleoptile segments. Simultaneous measurements of elongation growth and pH of the incubation medium were carried out using an angular position transducer, allowing a precise record of the growth kinetics. To compare the oxidative stress level induced by all tested naphthoquinones, the changes in malondialdehyde content, as well as superoxide dismutase and catalase activities were measured. In order to measure the membrane potential of parenchymal cells the standard electrophysiology technique was used. Results: Naphthoquinones such as: 1,4-naphthoquinone, lawsone and naphthazarin were studied. It was found that all of the naphthoquinones diminished the growth of the maize coleoptile cells depending on the type of naphthoquinones and their concentration. Interestingly, naphthazarin at the intermediate concentration was less toxic compared to the others. In addition, the effect of naphthoquinones on the oxidative stress was dependent on their concentration as well. Superoxide dismutase and catalase activities were changed in the presence of higher concentrations of naphthoquinones. Similar interrelations were observed for membrane potential changes. Conclusion: It can be concluded that naphthoquinones tested differ in their toxic effect on the growth of maize coleoptile cells. Furthermore, naphthoquinones can be distinguish considering the oxidative stress level and membrane potential changes. The results presented here give new insight into the possible opportunities of practical usage of naphthoquinones for herbicides improvement.

Keywords: growth rate, membrane potential, naphthoquinones, oxidative stress

Procedia PDF Downloads 255
121 Exploring the Potential of Reduced Graphene Oxide/Polyaniline (rGo/PANI) Nanocomposites for High-Performance Supercapacitor Application

Authors: Ahmad Umar, Ahmed A. Ibrahim, Mohsen A. Alhamami

Abstract:

This study introduces a facile synthesis method for synthesizing reduced graphene oxide (rGO) nanosheets with surface decoration of polyaniline (PANI). The resultant rGO@PANI nanocomposite (NC) exhibit substantial potential as advanced electrode materials for high-performance supercapacitors. The strategic integration of PANI onto the rGO surface serves dual purposes, effectively mitigating the agglomeration of rGO films and augmenting their utility in supercapacitor applications. The PANI coating manifests a highly porous and nanosized morphology, fostering increased surface area and optimized mass transport by reducing diffusion kinetics. The nanosized structure of PANI contributes to the maximization of active sites, thereby bolstering the efficacy of the nanocomposites for diverse applications. The inherent conductive nature of the rGO surface significantly expedites electron transport, thereby amplifying the overall electrochemical performance of the nanocomposites. To systematically evaluate the influence of PANI concentration on the electrode performance, varying concentrations of PANI were incorporated. Notably, an elevated PANI concentration was found to enhance the response owing to the unique morphology of PANI. Remarkably, the 5% rGO@PANI NC emerged as the most promising candidate, demonstrating exceptional response characteristics with a specific capacitance of 314.2 F/g at a current density of 1 A/g. Furthermore, this catalyst exhibits outstanding long-term stability, retaining approximately 92% of its capacitance even after enduring 4000 cycles. This research underscores the significance of the synergistic integration of rGO and PANI in the design of high-performance supercapacitors. The elucidation of the underlying mechanisms governing the improved electrochemical properties contributes to the fundamental understanding of nanocomposite behavior, thereby paving the way for the rational design of next-generation energy storage materials.

Keywords: reduced graphene oxide, polyaniline, nanocomposites, supercapacitors, energy storage

Procedia PDF Downloads 38
120 A Study for Effective CO2 Sequestration of Hydrated Cement by Direct Aqueous Carbonation

Authors: Hyomin Lee, Jinhyun Lee, Jinyeon Hwang, Younghoon Choi, Byeongseo Son

Abstract:

Global warming is a world-wide issue. Various carbon capture and storage (CCS) technologies for reducing CO2 concentration in the atmosphere have been increasingly studied. Mineral carbonation is one of promising method for CO2 sequestration. Waste cement generating from aggregate recycling processes of waste concrete is potentially a good raw material containing reactive components for mineral carbonation. The major goal of our long-term project is to developed effective methods for CO2 sequestration using waste cement. In the present study, the carbonation characteristics of hydrated cement were examined by conducting two different direct aqueous carbonation experiments. We also evaluate the influence of NaCl and MgCl2 as additives to increase mineral carbonation efficiency of hydrated cement. Cement paste was made with W:C= 6:4 and stored for 28 days in water bath. The prepared cement paste was pulverized to the size less than 0.15 mm. 15 g of pulverized cement paste and 200 ml of solutions containing additives were reacted in ambient temperature and pressure conditions. 1M NaCl and 0.25 M MgCl2 was selected for additives after leaching test. Two different sources of CO2 was applied for direct aqueous carbonation experiment: 0.64 M NaHCO3 was used for CO2 donor in method 1 and pure CO2 gas (99.9%) was bubbling into reacting solution at the flow rate of 20 ml/min in method 2. The pH and Ca ion concentration were continuously measured with pH/ISE Multiparameter to observe carbonation behaviors. Material characterization of reacted solids was performed by TGA, XRD, SEM/EDS analyses. The carbonation characteristics of hydrated cement were significantly different with additives. Calcite was a dominant calcium carbonate mineral after the two carbonation experiments with no additive and NaCl additive. The significant amount of aragonite and vaterite as well as very fine calcite of poorer crystallinity was formed with MgCl2 additive. CSH (calcium silicate hydrate) in hydrated cement were changed to MSH (magnesium silicate hydrate). This transformation contributed to the high carbonation efficiency. Carbonation experiment with method 1 revealed that that the carbonation of hydrated cement took relatively long time in MgCl2 solution compared to that in NaCl solution and the contents of aragonite and vaterite were increased as increasing reaction time. In order to maximize carbonation efficiency in direct aqueous carbonation with CO2 gas injection (method 2), the control of solution pH was important. The solution pH was decreased with injection of CO2 gas. Therefore, the carbonation efficiency in direct aqueous carbonation was closely related to the stability of calcium carbonate minerals with pH changes. With no additive and NaCl additive, the maximum carbonation was achieved when the solution pH was greater than 11. Calcium carbonate form by mineral carbonation seemed to be re-dissolved as pH decreased below 11 with continuous CO2 gas injection. The type of calcium carbonate mineral formed during carbonation in MgCl2 solution was closely related to the variation of solution pH caused by CO2 gas injection. The amount of aragonite significantly increased with decreasing solution pH, whereas the amount of calcite decreased.

Keywords: CO2 sequestration, Mineral carbonation, Cement and concrete, MgCl2 and NaCl

Procedia PDF Downloads 353
119 Bioavailability Enhancement of Ficus religiosa Extract by Solid Lipid Nanoparticles

Authors: Sanjay Singh, Karunanithi Priyanka, Ramoji Kosuru, Raju Prasad Sharma

Abstract:

Herbal drugs are well known for their mixed pharmacological activities with the benefit of no harmful side effects. The use of herbal drugs is limited because of their higher dose requirement, frequent drug administration, poor bioavailability of phytochemicals and delayed onset of action. Ficus religiosa, a potent anti-oxidant plant useful in the treatment of diabetes and cancer was selected for the study. Solid lipid nanoparticles (SLN) of Ficus religiosa extract was developed for the enhancement in oral bioavailability of stigmasterol and β-sitosterol-d-glucoside, principal components present in the extract. Hot homogenization followed by ultrasonication method was used to develop extract loaded SLN. Developed extract loaded SLN were characterized for particle size, PDI, zeta potential, entrapment efficiency, in vitro drug release and kinetics, fourier transform infra-red spectroscopy, differential scanning calorimetry, powder X-ray diffractrometry and stability studies. Entrapment efficiency of optimized extract loaded SLN was found to be 68.46 % (56.13 % of stigmasterol and 12.33 % of β-sitosteryl-d-glucoside, respectively). RP HPLC method development was done for simultaneous estimation of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract in rat plasma. Bioavailability studies were carried out for extract in suspension form and optimized extract loaded SLN. AUC of stigmasterol and β-sitosterol-d-glucoside were increased by 6.7-folds by 9.2-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Also, Cmax of stigmasterol and β-sitosterol-d-glucoside were increased by 4.3-folds by 3.9-folds, respectively in rats treated with extract loaded SLN compared to extract suspension. Mean residence times (MRT) for stigmasterol were found to be 12.3 ± 0.67 hours from extract and 7.4 ± 2.1 hours from SLN and for β-sitosterol-d-glucoside, 10.49 ± 2.9 hours from extract and 6.4 ± 0.3 hours from SLN. Hence, it was concluded that SLN enhanced the bioavailability and reduced the MRT of stigmasterol and β-sitosterol-d-glucoside in Ficus religiosa extract which in turn may lead to reduction in dose of Ficus religiosa extract, prolonged duration of action and also enhanced therapeutic efficacy.

Keywords: Ficus religiosa, phytosterolins, bioavailability, solid lipid nanoparticles, stigmasterol and β-sitosteryl-d-glucoside

Procedia PDF Downloads 443
118 Pesticides Monitoring in Surface Waters of the São Paulo State, Brazil

Authors: Fabio N. Moreno, Letícia B. Marinho, Beatriz D. Ruiz, Maria Helena R. B. Martins

Abstract:

Brazil is a top consumer of pesticides worldwide, and the São Paulo State is one of the highest consumers among the Brazilian federative states. However, representative data about the occurrence of pesticides in surface waters of the São Paulo State is scarce. This paper aims to present the results of pesticides monitoring executed within the Water Quality Monitoring Network of CETESB (The Environmental Agency of the São Paulo State) between the 2018-2022 period. Surface water sampling points (21 to 25) were selected within basins of predominantly agricultural land-use (5 to 85% of cultivated areas). The samples were collected throughout the year, including high-flow and low-flow conditions. The frequency of sampling varied between 6 to 4 times per year. Selection of pesticide molecules for monitoring followed a prioritizing process from EMBRAPA (Brazilian Agricultural Research Corporation) databases of pesticide use. Pesticides extractions in aqueous samples were performed according to USEPA 3510C and 3546 methods following quality assurance and quality control procedures. Determination of pesticides in water (ng L-1) extracts were performed by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS) and by gas chromatography with nitrogen phosphorus (GC-NPD) and electron capture detectors (GC-ECD). The results showed higher frequencies (20- 65%) in surface water samples for Carbendazim (fungicide), Diuron/Tebuthiuron (herbicides) and Fipronil/Imidaclopride (insecticides). The frequency of observations for these pesticides were generally higher in monitoring points located in sugarcane cultivated areas. The following pesticides were most frequently quantified above the Aquatic life benchmarks for freshwater (USEPA Office of Pesticide Programs, 2023) or Brazilian Federal Regulatory Standards (CONAMA Resolution no. 357/2005): Atrazine, Imidaclopride, Carbendazim, 2,4D, Fipronil, and Chlorpiryfos. Higher median concentrations for Diuron and Tebuthiuron in the rainy months (october to march) indicated pesticide transport through surface runoff. However, measurable concentrations in the dry season (april to september) for Fipronil and Imidaclopride also indicates pathways related to subsurface or base flow discharge after pesticide soil infiltration and leaching or dry deposition following pesticide air spraying. With exception to Diuron, no temporal trends related to median concentrations of the most frequently quantified pesticides were observed. These results are important to assist policymakers in the development of strategies aiming at reducing pesticides migration to surface waters from agricultural areas. Further studies will be carried out in selected points to investigate potential risks as a result of pesticides exposure on aquatic biota.

Keywords: pesticides monitoring, são paulo state, water quality, surface waters

Procedia PDF Downloads 37
117 Photoprotective and Antigenotoxic Effects of a Mixture of Posoqueria latifolia Flower Extract and Kaempferol Against Ultraviolet B Radiation

Authors: Silvia Ximena Barrios, Diego Armando Villamizar Mantilla, Raquel Elvira Ocazionez, , Elena E. Stashenko, María Pilar Vinardell, Jorge Luis Fuentes

Abstract:

Introduction: Skin overexposure to solar radiation has been a serious public health concern, because of its potential carcinogenicity. Therefore, preventive protection strategies using photoprotective agents are critical to counteract the harmful effect of solar radiation. Plants may be a source of photoprotective compounds that inhibit cellular mutations involved in skin cancer initiation. This work evaluated the photoprotective and antigenotoxic effects against ultraviolet B (UVB) radiation of a mixture of Posoqueria latifolia flower extract and Kaempferol (MixPoKa). Methods: The photoprotective efficacy of MixPoka (Posoqueria latifolia flower extract 250 μg/ml and Kaempferol 349.5 μM) was evaluated using in vitro indices such as sun protection factor SPFᵢₙ ᵥᵢₜᵣₒ and critical wavelength (λc). The MixPoKa photostability (Eff) at human minimal erythema doses (MED), according to the Fitzpatrick skin scale, was also estimated. Cytotoxicity and genotoxicity/antigenotoxicity were studied in MRC5 human fibroblasts using the trypan blue exclusion and Comet assays, respectively. Kinetics of the genetic damage repair post irradiation in the presence and absence of the MixPoka, was also evaluated. Results: The MixPoka -UV absorbance spectrum was high across the spectral bands between 200 and 400 nm. The UVB photoprotection efficacy of MixPoka was high (SPFᵢₙ ᵥᵢₜᵣₒ = 25.70 ± 0.06), showed wide photoprotection spectrum (λc = 380 ± 0), and resulted photostable (Eff = 92.3–100.0%). The MixPoka was neither cytotoxic nor genotoxic in MRC5 human fibroblasts; but presented significant antigenotoxic effect against UVB radiation. Additionally, MixPoka stimulate DNA repair post-irradiation. The potential of this phytochemical mixture as sunscreen ingredients was discussed. Conclusion: MixPoka showed a significant antigenotoxic effect against UVB radiation and stimulated DNA repair after irradiation. MixPoka could be used as an ingredient in a sunscreen cream.

Keywords: flower extract, photoprotection, antigenotoxicity, cytotoxicity, genotoxicit

Procedia PDF Downloads 46
116 Material Concepts and Processing Methods for Electrical Insulation

Authors: R. Sekula

Abstract:

Epoxy composites are broadly used as an electrical insulation for the high voltage applications since only such materials can fulfill particular mechanical, thermal, and dielectric requirements. However, properties of the final product are strongly dependent on proper manufacturing process with minimized material failures, as too large shrinkage, voids and cracks. Therefore, application of proper materials (epoxy, hardener, and filler) and process parameters (mold temperature, filling time, filling velocity, initial temperature of internal parts, gelation time), as well as design and geometric parameters are essential features for final quality of the produced components. In this paper, an approach for three-dimensional modeling of all molding stages, namely filling, curing and post-curing is presented. The reactive molding simulation tool is based on a commercial CFD package, and include dedicated models describing viscosity and reaction kinetics that have been successfully implemented to simulate the reactive nature of the system with exothermic effect. Also a dedicated simulation procedure for stress and shrinkage calculations, as well as simulation results are presented in the paper. Second part of the paper is dedicated to recent developments on formulations of functional composites for electrical insulation applications, focusing on thermally conductive materials. Concepts based on filler modifications for epoxy electrical composites have been presented, including the results of the obtained properties. Finally, having in mind tough environmental regulations, in addition to current process and design aspects, an approach for product re-design has been presented focusing on replacement of epoxy material with the thermoplastic one. Such “design-for-recycling” method is one of new directions associated with development of new material and processing concepts of electrical products and brings a lot of additional research challenges. For that, one of the successful products has been presented to illustrate the presented methodology.

Keywords: curing, epoxy insulation, numerical simulations, recycling

Procedia PDF Downloads 253
115 Copolymers of Epsilon-Caprolactam Received via Anionic Polymerization in the Presence of Polypropylene Glycol Based Polymeric Activators

Authors: Krasimira N. Zhilkova, Mariya K. Kyulavska, Roza P. Mateva

Abstract:

The anionic polymerization of -caprolactam (CL) with bifunctional activators has been extensively studied as an effective and beneficial method of improving chemical and impact resistances, elasticity and other mechanical properties of polyamide (PA6). In presence of activators or macroactivators (MAs) also called polymeric activators (PACs) the anionic polymerization of lactams proceeds rapidly at a temperature range of 130-180C, well below the melting point of PA-6 (220C) permitting thus the direct manufacturing of copolymer product together with desired modifications of polyamide properties. Copolymers of PA6 with an elastic polypropylene glycol (PPG) middle block into main chain were successfully synthesized via activated anionic ring opening polymerization (ROP) of CL. Using novel PACs based on PPG polyols (with differ molecular weight) the anionic ROP of CL was realized and investigated in the presence of a basic initiator sodium salt of CL (NaCL). The PACs were synthesized as N-carbamoyllactam derivatives of hydroxyl terminated PPG functionalized with isophorone diisocyanate [IPh, 5-Isocyanato-1-(isocyanatomethyl)-1,3,3-trimethylcyclohexane] and blocked then with CL units via an addition reaction. The block copolymers were analyzed and proved with 1H-NMR and FT-IR spectroscopy. The influence of the CL/PACs ratio in feed, the length of the PPG segments and polymerization conditions on the kinetics of anionic ROP, on average molecular weight, and on the structure of the obtained block copolymers were investigated. The structure and phase behaviour of the copolymers were explored with differential scanning calorimetry, wide-angle X-ray diffraction, thermogravimetric analysis and dynamic mechanical thermal analysis. The crystallinity dependence of PPG content incorporated into copolymers main backbone was estimate. Additionally, the mechanical properties of the obtained copolymers were studied by notched impact test. From the performed investigation in this study could be concluded that using PPG based PACs at the chosen ROP conditions leads to obtaining well-defined PA6-b-PPG-b-PA6 copolymers with improved impact resistance.

Keywords: anionic ring opening polymerization, caprolactam, polyamide copolymers, polypropylene glycol

Procedia PDF Downloads 387
114 Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution

Authors: Manisha Choudhary, Sudarsan Neogi

Abstract:

Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment.

Keywords: adsorption, biosorbent, cactus, malachite green

Procedia PDF Downloads 342
113 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 40
112 Optimising Post-Process Heat Treatments of Selective Laser Melting-Produced Ti-6Al-4V Parts to Achieve Superior Mechanical Properties

Authors: Gerrit Ter Haar, Thorsten Becker, Deborah Blaine

Abstract:

The Additive Manufacturing (AM) process of Selective Laser Melting (SLM) has seen an exponential growth in sales and development in the past fifteen years. Whereas the capability of SLM was initially limited to rapid prototyping, progress in research and development (R&D) has allowed SLM to be capable of fully functional parts. This technology is still at a primitive stage and technical knowledge of the vast number of variables influencing final part quality is limited. Ongoing research and development of the sensitive printing process and post processes is of utmost importance in order to qualify SLM parts to meet international standards. Quality concerns in Ti-6Al-4V manufactured through SLM has been identified, which include: high residual stresses, part porosity, low ductility and anisotropic mechanical properties. Whereas significant quality improvements have been made through optimising printing parameters, research indicates as-produced part ductility to be a major limiting factor when compared to its wrought counterpart. This study aims at achieving an in-depth understanding of the underlining links between SLM produced Ti-6Al-4V microstructure and its mechanical properties. Knowledge of microstructural transformation kinetics of Ti-6Al-4V allows for the optimisation of post-process heat treatments thereby achieving the required process route to manufacture high quality SLM produced Ti-6Al-4V parts. Experimental methods used to evaluate the kinematics of microstructural transformation of SLM Ti-6Al-4V are: optical microscopy and electron backscatter diffraction. Results show that a low-temperature heat treatment is capable of transforming the as-produced, martensitic microstructure into a duel-phase microstructure exhibiting both a high strength and improved ductility. Furthermore, isotropy of mechanical properties can be achieved through certain annealing routes. Mechanical properties identical to that of wrought Ti-6Al-4V can, therefore, be achieved through an optimised process route.

Keywords: EBSD analysis, heat treatments, microstructural characterisation, selective laser melting, tensile behaviour, Ti-6Al-4V

Procedia PDF Downloads 393
111 Biodegradation of Endoxifen in Wastewater: Isolation and Identification of Bacteria Degraders, Kinetics, and By-Products

Authors: Marina Arino Martin, John McEvoy, Eakalak Khan

Abstract:

Endoxifen is an active metabolite responsible for the effectiveness of tamoxifen, a chemotherapeutic drug widely used for endocrine responsive breast cancer and chemo-preventive long-term treatment. Tamoxifen and endoxifen are not completely metabolized in human body and are actively excreted. As a result, they are released to the water environment via wastewater treatment plants (WWTPs). The presence of tamoxifen in the environment produces negative effects on aquatic lives due to its antiestrogenic activity. Because endoxifen is 30-100 times more potent than tamoxifen itself and also presents antiestrogenic activity, its presence in the water environment could result in even more toxic effects on aquatic lives compared to tamoxifen. Data on actual concentrations of endoxifen in the environment is limited due to recent discovery of endoxifen pharmaceutical activity. However, endoxifen has been detected in hospital and municipal wastewater effluents. The detection of endoxifen in wastewater effluents questions the treatment efficiency of WWTPs. Studies reporting information about endoxifen removal in WWTPs are also scarce. There was a study that used chlorination to eliminate endoxifen in wastewater. However, an inefficient degradation of endoxifen by chlorination and the production of hazardous disinfection by-products were observed. Therefore, there is a need to remove endoxifen from wastewater prior to chlorination in order to reduce the potential release of endoxifen into the environment and its possible effects. The aim of this research is to isolate and identify bacteria strain(s) capable of degrading endoxifen into less hazardous compound(s). For this purpose, bacteria strains from WWTPs were exposed to endoxifen as a sole carbon and nitrogen source for 40 days. Bacteria presenting positive growth were isolated and tested for endoxifen biodegradation. Endoxifen concentration and by-product formation were monitored. The Monod kinetic model was used to determine endoxifen biodegradation rate. Preliminary results of the study suggest that isolated bacteria from WWTPs are able to growth in presence of endoxifen as a sole carbon and nitrogen source. Ongoing work includes identification of these bacteria strains and by-product(s) of endoxifen biodegradation.

Keywords: biodegradation, bacterial degraders, endoxifen, wastewater

Procedia PDF Downloads 176
110 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100

Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil

Abstract:

Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.

Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification

Procedia PDF Downloads 416
109 Factors Militating the Organization of Intramural Sport Programs in Secondary Schools: A Case Study of the Ekiti West Local Government Area of Ekiti State, Nigeria

Authors: Adewole Taiwo Adelabu

Abstract:

The study investigated the factors militating the organization of intramural sports programs in secondary schools in Ekiti State, Nigeria. The purpose of the study was to identify the factors affecting the organization of sports in secondary schools and also to proffer possible solutions to these factors. The study employed the inferential statistics of chi-square (x2). Five research hypotheses were formulated. The population for the study was all the students in the government-owned secondary schools in Ekiti West Local Government of Ekiti State Nigeria. The sample for the study was 60 students in three schools within the local government selected through simple random sampling techniques. The instrument used for the study was a self-developed questionnaire by the researcher for data collection. The instrument was presented to experts and academicians in the field of Human Kinetics and Health Education for construct and content validation. A reliability test was conducted which involves 10 students who are not part of the study. The test-retest coefficient of 0.74 was obtained which attested to the fact that the instrument was reliable enough for the study. The validated questionnaire was administered to the students in their various schools by the researcher with the help of two research assistants; the questionnaires were filled and returned to the researcher immediately. The data collected were analyzed using the descriptive statistics of frequency count, percentage and mean to analyze demographic data in section A of the questionnaire, while inferential statistics of chi-square was used to test the hypotheses at 0.05 alpha level. The results of the study revealed that personnel, fund, schedule (time) were significant factors that affect the organization of intramural sport programs among students in secondary schools in Ekiti West Local Government Area of the State. The study also revealed that organization of intramural sports programs among students of secondary schools will improve and motivate students’ participation in sports beyond the local level. However, facilities and equipment is not a significant factor affecting the organization of intramural sports among secondary school students in Ekiti West Local Government Area.

Keywords: challenge, intramural sport, militating, programmes

Procedia PDF Downloads 121
108 Evaluation of the Inhibitory Activity of Natural Extracts From Spontaneous Plant on the Α-Amylase and Α–Glucosidase and Their Antioxidant Activities

Authors: Ihcen Khacheba, Amar Djeridane, Abdelkarim Kamli, Mohamed Yousfi

Abstract:

Plant materials constitute an important source of natural bioactive molecules. Thus plants have been used from antiquity as sources of medicament against various diseases. These properties are usually attributed to secondary metabolites that are the subject of a lot of research in this field. This is particularly the case of phenolic compounds plants that are widely renowned in therapeutics as anti-inflammatories, enzyme inhibitors, and antioxidants, particularly flavonoïds. With the aim of acquiring a better knowledge of the secondary metabolism of the vegetable kingdom in the region of Laghouat and of the discovering of new natural therapeutics, 10 extracts from 5 Saharan plant species were submitted to chemical screening.The analysis of the preceding biological targets led to the evaluation of the biological activity of the extracts of the species Genista Corsica. The first step, consists in extracting and quantifying phenolic compounds. The second step has been devoted to stugying the effects of phenolic compounds on the kinetics catalyzed by two enzymes belonging to the class of hydrolase (the α-amylase and α-glucosidase) responsible for the digestion of sugars and finally we evaluate the antiantioxidant potential. The analysis results of phenolic extracts show clearly a low content of phenolic compounds in investigated plants. Average total phenolics ranged from 0.0017 to 11.35 mg equivalent gallic acid/g of the crude extract. Whereas the total flavonoids content lie between 0.0015 and 10.,96 mg/g equivalent of rutin. The results of the kinetic study of enzymatic reactions show that the extracts have inhibitory effects on both enzymes, with IC50 values ranging from 95.03 µg/ml to 1033.53 µg/ml for the α-amylase and 279.99 µg/ml to 1215.43 µg/ml for α-glucosidase whose greatest inhibition was found for the acetone extract of June (IC50 = 95.03 µg/ml). The results the antioxidant activity determined by ABTS, DPPH, and phosphomolybdenum tests clearly showed a good antioxidant capacity comparatively to antioxidants taken as reference the biological potential of these plants and could find their use in medicine to replace synthetic products.

Keywords: phenolic extracts, inhibition effect, α-amylase, α-glucosidase, antioxidant activity

Procedia PDF Downloads 361
107 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 247
106 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 27
105 In-House Fatty Meal Cholescintigraphy as a Screening Tool in Patients Presenting with Dyspepsia

Authors: Avani Jain, S. Shelley, M. Indirani, Shilpa Kalal, Jaykanth Amalachandran

Abstract:

Aim: To evaluate the prevalence of gall bladder dysfunction in patients with dyspepsia using In-House fatty meal cholescintigraphy. Materials & Methods: This study is a prospective cohort study. 59 healthy volunteers with no dyspeptic complaints and negative ultrasound and endoscopy were recruited in study. 61 patients having complaint of dyspepsia for duration of more than 6 months were included. All of them underwent 99mTc-Mebrofenin fatty meal cholescintigraphy following a standard protocol. Dynamic acquisitions were acquired for 120 minutes with an In-House fatty meal being given at 45th minute. Gall bladder emptying kinetics was determined with gall bladder ejection fractions (GBEF) calculated at 30minutes, 45minutes and at 60 minutes (30min, 45min & 60 min). Standardization of fatty meal was done for volunteers. Receiver operating characteristic (ROC) analysis was used assess the diagnostic accuracy of 3 time points (30min, 45min & 60 min) used for measuring gall bladder emptying. On the basis of cut off derived from volunteers, the patients were assessed for gall bladder dysfunction. Results: In volunteers, the GBEF at 30 min was 74.42±8.26 % (mean ±SD), at 45 min was 82.61 ± 6.5 % and at 60 min was 89.37±4.48%, compared to patients where at 30min it was 33.73±22.87%, at 45 min it was 43.03±26.97% and at 60 min it was 51.85±29.60%. The lower limit of GBEF in volunteers at 30 min was 60%, 45 min was 69% and at 60 min was 81%. ROC analysis showed that area under curve was largest for 30 min GBEF (0.952; 95% CI = 0.914-0.989) and that all the 3 measures were statistically significant (p < 0.005). Majority of the volunteers had 74% of gall bladder emptying by 30 minutes; hence it was taken as an optimum cutoff time to assess gall bladder contraction. > 60% GBEF at 30 min post fatty meal was considered as normal and < 60% GBEF as indicative of gall bladder dysfunction. In patients, various causes for dyspepsia were identified: GB dysfunction (63.93%), Peptic ulcer (8.19 %), Gastroesophageal reflux disease (8.19%), Gastritis (4.91%). In 18.03% of cases GB dysfunction coexisted with other gastrointestinal conditions. The diagnosis of functional dyspepsia was made in 14.75% of cases. Conclusions: Gall bladder dysfunction contributes significantly to the causation of dyspepsia. It could coexist with various other gastrointestinal diseases. Fatty meal was well tolerated and devoid of any side effects. Many patients who are labeled as functional dyspeptics could actually have gall bladder dysfunction. Hence as an adjunct to ultrasound and endoscopy, fatty meal cholescintigraphy can also be used as a screening modality in characterization of dyspepsia.

Keywords: in-house fatty meal, choescintigraphy, dyspepsia, gall bladder ejection fraction, functional dyspepsia

Procedia PDF Downloads 480
104 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin

Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris

Abstract:

While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.

Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin

Procedia PDF Downloads 443
103 Effect of Curing Temperature on the Textural and Rheological of Gelatine-SDS Hydrogels

Authors: Virginia Martin Torrejon, Binjie Wu

Abstract:

Gelatine is a protein biopolymer obtained from the partial hydrolysis of animal tissues which contain collagen, the primary structural component in connective tissue. Gelatine hydrogels have attracted considerable research in recent years as an alternative to synthetic materials due to their outstanding gelling properties, biocompatibility and compostability. Surfactants, such as sodium dodecyl sulfate (SDS), are often used in hydrogels solutions as surface modifiers or solubility enhancers, and their incorporation can influence the hydrogel’s viscoelastic properties and, in turn, its processing and applications. Literature usually focuses on studying the impact of formulation parameters (e.g., gelatine content, gelatine strength, additives incorporation) on gelatine hydrogels properties, but processing parameters, such as curing temperature, are commonly overlooked. For example, some authors have reported a decrease in gel strength at lower curing temperatures, but there is a lack of research on systematic viscoelastic characterisation of high strength gelatine and gelatine-SDS systems at a wide range of curing temperatures. This knowledge is essential to meet and adjust the technological requirements for different applications (e.g., viscosity, setting time, gel strength or melting/gelling temperature). This work investigated the effect of curing temperature (10, 15, 20, 23 and 25 and 30°C) on the elastic modulus (G’) and melting temperature of high strength gelatine-SDS hydrogels, at 10 wt% and 20 wt% gelatine contents, by small-amplitude oscillatory shear rheology coupled with Fourier Transform Infrared Spectroscopy. It also correlates the gel strength obtained by rheological measurements with the gel strength measured by texture analysis. Gelatine and gelatine-SDS hydrogels’ rheological behaviour strongly depended on the curing temperature, and its gel strength and melting temperature can be slightly modified to adjust it to given processing and applications needs. Lower curing temperatures led to gelatine and gelatine-SDS hydrogels with considerably higher storage modulus. However, their melting temperature was lower than those gels cured at higher temperatures and lower gel strength. This effect was more considerable at longer timescales. This behaviour is attributed to the development of thermal-resistant structures in the lower strength gels cured at higher temperatures.

Keywords: gelatine gelation kinetics, gelatine-SDS interactions, gelatine-surfactant hydrogels, melting and gelling temperature of gelatine gels, rheology of gelatine hydrogels

Procedia PDF Downloads 77
102 Unveiling the Reaction Mechanism of N-Nitroso Dimethyl Amine Formation from Substituted Hydrazine Derivatives During Ozonation: A Computational Study

Authors: Rehin Sulay, Anandhu Krishna, Jintumol Mathew, Vibin Ipe Thomas

Abstract:

N-Nitrosodimethyl amine, the simplest member of the N-Nitrosoamine family, is a carcinogenic and mutagenic agent that has gained considerable research interest owing to its toxic nature. Ozonation of industrially important hydrazines such as unsymmetrical dimethylhydrazine (UDMH) or monomethylhydrazine (MMH) has been associated with NDMA formation and accumulation in the environment. UDMH/MMH - ozonation also leads to several other transformation products such as acetaldehyde dimethyl hydrazone (ADMH), tetramethyl tetra azene (TMT), diazomethane, methyl diazene, etc, which can be either precursors or competitors for NDMA formation.In this work, we explored the formation mechanism of ADMH and TMT from UDMH-ozonation and their further oxidation to NDMA using the second-order Moller Plesset perturbation theory employing the 6-311G(d) basis set. We have also investigated how MMH selectively forms methyl diazene and diazomethane under normal conditions and NDMA in the presence of excess ozone. Our calculations indicate that the reactions proceed via an initial H abstraction from the hydrazine –NH2 group followed by the oxidation of the generated N-radical species. The formation of ADMH from the UDMH-ozone reaction involves an acetaldehyde intermediate, which then reacts with a second UDMH molecule to generate ADMH. The preferable attack of ozone molecule on N=C bond of ADMH generates DMAN intermediate, which subsequently undergoes oxidation to form NDMA. Unlike other transformation products, TMT formation occurs via the dimerization of DMAN. Though there exist a N=N bonds in the TMT, which are preferable attacking sites for ozone, experimental studies show the lower yields of NDMA formation, which corroborates with the high activation barrier required for the process(42kcal/mol).Overall, our calculated results agree well with the experimental observations and rate constants. Computational calculations bring insights into the electronic nature and kinetics of the elementary reactions of this pathway, enabled by computed energies of structures that are not possible to access experimentally.

Keywords: reaction mechanism, ozonation, substituted hydrazine, transition state

Procedia PDF Downloads 59
101 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 449
100 Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania

Authors: Sospeter P. Maganga, Alphonce Wikedzi, Mussa D. Budeba, Samwel V. Manyele

Abstract:

This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals.

Keywords: complex gold ores, mineral liberation, ore characterization, ore grindability

Procedia PDF Downloads 50
99 Wireless Gyroscopes for Highly Dynamic Objects

Authors: Dmitry Lukyanov, Sergey Shevchenko, Alexander Kukaev

Abstract:

Modern MEMS gyroscopes have strengthened their position in motion control systems and have led to the creation of tactical grade sensors (better than 15 deg/h). This was achieved by virtue of the success in micro- and nanotechnology development, cooperation among international experts and the experience gained in the mass production of MEMS gyros. This production is knowledge-intensive, often unique and, therefore, difficult to develop, especially due to the use of 3D-technology. The latter is usually associated with manufacturing of inertial masses and their elastic suspension, which determines the vibration and shock resistance of gyros. Today, consumers developing highly dynamic objects or objects working under extreme conditions require the gyro shock resistance of up to 65 000 g and the measurement range of more than 10 000 deg/s. Such characteristics can be achieved by solid-state gyroscopes (SSG) without inertial masses or elastic suspensions, which, for example, can be constructed with molecular kinetics of bulk or surface acoustic waves (SAW). Excellent effectiveness of this sensors production and a high level of structural integration provides basis for increased accuracy, size reduction and significant drop in total production costs. Existing principles of SAW-based sensors are based on the theory of SAW propagation in rotating coordinate systems. A short introduction to the theory of a gyroscopic (Coriolis) effect in SAW is provided in the report. Nowadays more and more applications require passive and wireless sensors. SAW-based gyros provide an opportunity to create one. Several design concepts incorporating reflective delay lines were proposed in recent years, but faced some criticism. Still, the concept is promising and is being of interest in St. Petersburg Electrotechnical University. Several experimental models were developed and tested to find the minimal configuration of a passive and wireless SAW-based gyro. Structural schemes, potential characteristics and known limitations are stated in the report. Special attention is dedicated to a novel method of a FEM modeling with piezoelectric and gyroscopic effects simultaneously taken into account.

Keywords: FEM simulation, gyroscope, OOFELIE, surface acoustic wave, wireless sensing

Procedia PDF Downloads 344
98 In Vitro Digestibility of Grains and Straw of Seventeen Ecotypes of Bitter Vetch (Vicia ervilia) in the North of Morocco

Authors: Boukrouh Soumaya, Cabaraux Jean-François, Avril Claire, Noutfia Ali, Chentouf Mouad

Abstract:

The introduction of marginal leguminous forage species in the diet of ruminants are of great importance. Bitter vetch is a good source of proteins, highly resistant against drought and poor soil conditions. Accordingly; two years field trials (2018/2019 and 2019-2020) were conducted to determine the digestibility of straw and grains of 17 promising bitter vetch ecotypes(Vicia ervilia) in the north of Morocco. In vitro dry and organic matter digestibility, gas production, and kinetics of fermentation of grains and straw were evaluated using gas production technique, pepsin-cellulase enzymatic digestibility of DM (CDDM)and OM (CDOM), as well as protease enzymatic CP degradation (CPD) and in vitro true digestibility, were performed using DAISYII Incubator. In vitro digestibility was performed using gas production method of (Menke et al., 1979) improved by Menke and Steingass (1988). Samples were incubated in glass syringes that contained rumen fluid and incubation solution that conserved in water bath in 39°C during 72 hours. Gas production was recorded after 2, 4, 8, 12, 24, 48, and 72 hours. Studied digestibility parameters were dry and organic matter digestibility, microbial biomass production, partitioning factor, and volatile fatty acids. Enzymatic dry matter digestibility was different (p < 0.05) among grains and straw for all ecotypes. It varied from 804.1 to 957.7 g/kg DM and 270.4 to 412.3 g/kg DM for grains and straw, respectively. Metabolizable energy varied between 11.7 to 14.3 MJ/kg DM and 2.6 to 5.0 MJ/kg DM for grains and straw, respectively. Potential gas production (A), the rate constants (c and d), and lag times of grains and straws from different bitter vetch ecotypes were different (p > 0.05). The results emphasized that in any evaluation of bitter vetch ecotypes, where straw of this legume seed is used as an animal feed, not only seed yield but also yield and quality of straw should be taken into consideration, particularly in areas where straw from this legume is considered as an important feedstuff for ruminants. Enzymatic digestibility was lower than in vitro digestibility by gaz production and by the DAISYII method because rumen fluid contains bacteria than increase digestibility. There was no difference between in vitro digestibility by gaz production and the DAISY II method. The DAISY II method can be used to increase labor efficiency in the in vitro DM digestibility analysis if gaz production is not necessary for analysis.

Keywords: bitter vetch, grains, straw, ecotype, in vitro digestibility, gaz production, enzymatic digestibility

Procedia PDF Downloads 150
97 Analysis of Anti-Tuberculosis Immune Response Induced in Lungs by Intranasal Immunization with Mycobacterium indicus pranii

Authors: Ananya Gupta, Sangeeta Bhaskar

Abstract:

Mycobacterium indicus pranii (MIP) is a saprophytic mycobacterium. It is a predecessor of M. avium complex (MAC). Whole genome analysis and growth kinetics studies have placed MIP in between pathogenic and non-pathogenic species. It shares significant antigenic repertoire with M. tuberculosis and have unique immunomodulatory properties. MIP provides better protection than BCG against pulmonary tuberculosis in animal models. Immunization with MIP by aerosol route provides significantly higher protection as compared to immunization by subcutaneous (s.c.) route. However, mechanism behind differential protection has not been studied. In this study, using mice model we have evaluated and compared the M.tb specific immune response in lung compartments (airway lumen / lung interstitium) as well as spleen following MIP immunization via nasal (i.n.) and s.c. route. MIP i.n. vaccination resulted in increased seeding of memory T cells (CD4+ and CD8+ T-cells) in the airway lumen. Frequency of CD4+ T cells expressing Th1 migratory marker (CXCR3) and activation marker (CD69) were also high in airway lumen of MIP i.n. group. Significantly high ex vivo secretion of cytokines- IFN-, IL-12, IL-17 and TNF- from cells of airway luminal spaces provides evidence of antigen-specific lung immune response, besides generating systemic immunity comparable to MIP s.c. group. Analysis of T cell response on per cell basis revealed that antigen specific T-cells of MIP i.n. group were functionally superior as higher percentage of these cells simultaneously secreted IFN-gamma, IL-2 and TNF-alpha cytokines as compared to MIP s.c. group. T-cells secreting more than one of the cytokines simultaneously are believed to have robust effector response and crucial for protection, compared with single cytokine secreting T-cells. Adoptive transfer of airway luminal T-cells from MIP i.n. group into trachea of naive B6 mice revealed that MIP induced CD8 T-cells play crucial role in providing long term protection. Thus the study demonstrates that MIP intranasal vaccination induces M.tb specific memory T-cells in the airway lumen that results in an early and robust recall response against M.tb infection.

Keywords: airway lumen, Mycobacterium indicus pranii, Th1 migratory markers, vaccination

Procedia PDF Downloads 163
96 Adsorptive Media Selection for Bilirubin Removal: An Adsorption Equilibrium Study

Authors: Vincenzo Piemonte

Abstract:

The liver is a complex, large-scale biochemical reactor which plays a unique role in the human physiology. When liver ceases to perform its physiological activity, a functional replacement is required. Actually, liver transplantation is the only clinically effective method of treating severe liver disease. Anyway, the aforementioned therapeutic approach is hampered by the disparity between organ availability and the number of patients on the waiting list. In order to overcome this critical issue, research activities focused on liver support device systems (LSDs) designed to bridging patients to transplantation or to keep them alive until the recovery of native liver function. In recirculating albumin dialysis devices, such as MARS (Molecular Adsorbed Recirculating System), adsorption is one of the fundamental steps in albumin-dialysate regeneration. Among the albumin-bound toxins that must be removed from blood during liver-failure therapy, bilirubin and tryptophan can be considered as representative of two different toxin classes. The first one, not water soluble at physiological blood pH and strongly bounded to albumin, the second one, loosely albumin bound and partially water soluble at pH 7.4. Fixed bed units are normally used for this task, and the design of such units requires information both on toxin adsorption equilibrium and kinetics. The most common adsorptive media used in LSDs are activated carbon, non-ionic polymeric resins and anionic resins. In this paper, bilirubin adsorption isotherms on different adsorptive media, such as polymeric resin, albumin-coated resin, anionic resin, activated carbon and alginate beads with entrapped albumin are presented. By comparing all the results, it can be stated that the adsorption capacity for bilirubin of the five different media increases in the following order: Alginate beads < Polymeric resin < Albumin-coated resin < Activated carbon < Anionic resin. The main focus of this paper is to provide useful guidelines for the optimization of liver support devices which implement adsorption columns to remove albumin-bound toxins from albumin dialysate solutions.

Keywords: adsorptive media, adsorption equilibrium, artificial liver devices, bilirubin, mathematical modelling

Procedia PDF Downloads 237
95 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 181