Search results for: crystal facet and cation vacancy engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3794

Search results for: crystal facet and cation vacancy engineering

3794 Intensified Electrochemical H₂O₂ Synthesis and Highly Efficient Pollutant Removal Enabled by Nickel Oxides with Surface Engineered Facets and Vacancies

Authors: Wenjun Zhang, Thao Thi Le, Dongyup Shin, Jong Min Kim

Abstract:

Electrochemical hydrogen peroxide (H₂O₂) synthesis holds significant promise for decentralized environmental remediation through the electro-Fenton process. However, challenges persist, such as the absence of robust electrocatalysts for the selective two-electron oxygen reduction reaction (2e⁻ ORR) and the high cost and sluggish kinetics of conventional electro-Fenton systems in treating highly concentrated wastewater. This study introduces an efficient water treatment system for removing substantial quantities of organic pollutants using an advanced electro-Fenton system coupled with a high-valent NiO catalyst. By employing a precipitation method involving crystal facet and cation vacancy engineering, a trivalent Ni (Ni³⁺)-rich NiO catalyst with a (111)-domain-exposed crystal facet, named {111}-NivO, was synthesized. This catalyst exhibited a remarkable 96% selectivity and a high mass activity of 59 A g⁻¹ for H₂O₂ production, outperforming all previously reported Ni-based catalysts. Furthermore, an advanced electro-Fenton system, integrated with a flow cell for electrochemical H₂O₂ production, was utilized to achieve 100% removal of 50 ppm bisphenol A (BPA) in 200 mL of wastewater under heavy-duty conditions, reaching a superior rapid degradation rate (4 min, k = 1.125 min⁻¹), approximately 102 times faster than the conventional electro-Fenton system. The hyper-efficiency is attributed to the continuous and appropriate supply of H₂O₂, the provision of O₂, and the timely recycling of the electrolyte under high current density operation. This catalyst also demonstrated a 93% removal of total organic carbon after 2 hours of operation and can be applied for efficient removal of highly concentrated phenol pollutants from aqueous systems, which opens new avenues for wastewater treatment.

Keywords: hydrogen peroxide production, nickel oxides, crystal facet and cation vacancy engineering, wastewater treatment, flow cell, electro-Fenton

Procedia PDF Downloads 16
3793 Joule Self-Heating Effects and Controlling Oxygen Vacancy in La₀.₈Ba₀.₂MnO₃ Ultrathin Films with Nano-Sized Labyrinth Morphology

Authors: Guankai Lin, Wei Tong, Hong Zhu

Abstract:

The electric current induced Joule heating effects have been investigated in La₀.₈Ba₀.₂MnO₃ ultrathin films deposited on LaAlO₃(001) single crystal substrate with smaller lattice constant by using the sol-gel method. By applying moderate bias currents (~ 10 mA), it is found that Joule self-heating simply gives rise to a temperature deviation between the thermostat and the test sample, but the intrinsic ρ(T) relationship measured at a low current (0.1 mA) changes little. However, it is noteworthy that the low-temperature transport behavior degrades from metallic to insulating state after applying higher bias currents ( > 31 mA) in a vacuum. Furthermore, metallic transport can be recovered by placing the degraded film in air. The results clearly suggest that the oxygen vacancy in the La₀.₈Ba₀.₂MnO₃ films is controllable in different atmospheres, particularly with the aid of the Joule self-heating. According to the SEM images, we attribute the controlled oxygen vacancy to the nano-sized labyrinth pattern of the films, where the large surface-to-volume ratio plays a curial role.

Keywords: controlling oxygen vacancy, joule self-heating, manganite, sol-gel method

Procedia PDF Downloads 117
3792 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution

Authors: C. K. Ngaw

Abstract:

Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.

Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets

Procedia PDF Downloads 33
3791 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices

Authors: Zeinab Jokar, Mohammad Reza Moslemi

Abstract:

In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width.

Keywords: AGNR, antidot, atomistic toolKit, vacancy

Procedia PDF Downloads 944
3790 SPPO-Based Cation Exchange Membranes with a Positively Charged Layer for Cation Fractionation

Authors: Noor Ul Afsar, Wengen Ji, Bin Wu, Muhammad A. Shehzad, Liang Ge, Tongwen Xu

Abstract:

The synthesis of monovalent cation perm-selective membranes (MCPMs) to efficiently discriminate amongst cations from seawater is of great importance for several industrial applications. However, a technical approach is highly desired to construct MCPMs to obtain a high ionic flux and sustain perm-selectivity simultaneously. In the present work, the thickness of the quaternized poly (2, 6-dimethyl-1, 4-phenylene oxide) (QPPO) layer on the surface of the SPPO-PVA (SPVA) composite membrane was adjusted using a facile procedure to achieve high permselectivity without scarifying the ionic flux. The thickness of the selective layer was precisely controlled using various concentrations of the QPPO solution. By the introduction of the cationic layer on the SPVA membrane, the monovalent cation can be separated from the divalent cation by their difference in charge density. The influence of the selective barrier (thickness) endows MCPMs with high perm-selectivity up to 12.7 for 0.1 mol L⁻¹ Li⁺/Mg²⁺ system, which is very satisfactory for polymeric membranes. The fabricated membranes have low electrical resistance and high limiting current density (iₗᵢₘ). Keeping in view the ED results, the prepared membranes with selective surface layers could be a viable candidate for Li⁺ selective separation from divalent cation Mg²⁺.

Keywords: monovalent cation perm-selective membranes, cation fractionation, perm-selectivity, ionic flux, electrodialysis

Procedia PDF Downloads 35
3789 Performances of the Double-Crystal Setup at CERN SPS Accelerator for Physics beyond Colliders Experiments

Authors: Andrii Natochii

Abstract:

We are currently presenting the recent results from the CERN accelerator facilities obtained in the frame of the UA9 Collaboration. The UA9 experiment investigates how a tiny silicon bent crystal (few millimeters long) can be used for various high-energy physics applications. Due to the huge electrostatic field (tens of GV/cm) between crystalline planes, there is a probability for charged particles, impinging the crystal, to be trapped in the channeling regime. It gives a possibility to steer a high intensity and momentum beam by bending the crystal: channeled particles will follow the crystal curvature and deflect on the certain angle (from tens microradians for LHC to few milliradians for SPS energy ranges). The measurements at SPS, performed in 2017 and 2018, confirmed that the protons deflected by the first crystal, inserted in the primary beam halo, can be caught and channeled by the second crystal. In this configuration, we measure the single pass deflection efficiency of the second crystal and prove our opportunity to perform the fixed target experiment at SPS accelerator (LHC in the future).

Keywords: channeling, double-crystal setup, fixed target experiment, Timepix detector

Procedia PDF Downloads 121
3788 Carbamazepine Co-crystal Screening with Dicarboxylic Acids Co-Crystal Formers

Authors: S. Abd Rahim, F. A. Rahman, E. M. Nasir, N. A. Ramle

Abstract:

Co-crystal is believed to improve the solubility and dissolution rates and thus, enhanced the bioavailability of poor water soluble drugs particularly during the oral route of administration. With the existing of poorly soluble drugs in pharmaceutical industry, the screening of co-crystal formation using carbamazepine (CBZ) as a model drug compound with dicarboxylic acids co-crystal formers (CCF) namely fumaric (FA) and succinic (SA) acids in ethanol has been studied. The co-crystal formations were studied by varying the mol ratio values of CCF to CBZ to access the effect of CCF concentration on the formation of the co-crystal. Solvent evaporation, slurry, and cooling crystallisations which representing the solution based method co-crystal screening were used. The product crystal from the screening was characterized using X-ray powder diffraction (XRPD). The XRPD pattern profile analysis has shown that the CBZ co-crystals with FA and SA were successfully formed for all ratios studied. The findings revealed that CBZ-FA co-crystal were formed in two different polymorphs. It was found that CBZ-FA form A and form B were formed from evaporation and slurry crystallisation methods respectively. On the other hand, in cooling crystallisation method, CBZ-FA form A was formed at lower mol ratio of CCF to CBZ and vice versa. This study disclosed that different methods and mol ratios during the co-crystal screening can affect the outcome of co-crystal produced such as polymorphic forms of co-crystal and thereof. Thus, it was suggested that careful attentions is needed during the screening since the co-crystal formation is currently one of the promising approach to be considered in research and development for pharmaceutical industry to improve the poorly soluble drugs.

Keywords: co-crystal, dicarboxylic acid, carbamazepine, industry

Procedia PDF Downloads 327
3787 Model Predictive Control Using Thermal Inputs for Crystal Growth Dynamics

Authors: Takashi Shimizu, Tomoaki Hashimoto

Abstract:

Recently, crystal growth technologies have made progress by the requirement for the high quality of crystal materials. To control the crystal growth dynamics actively by external forces is useuful for reducing composition non-uniformity. In this study, a control method based on model predictive control using thermal inputs is proposed for crystal growth dynamics of semiconductor materials. The control system of crystal growth dynamics considered here is governed by the continuity, momentum, energy, and mass transport equations. To establish the control method for such thermal fluid systems, we adopt model predictive control known as a kind of optimal feedback control in which the control performance over a finite future is optimized with a performance index that has a moving initial time and terminal time. The objective of this study is to establish a model predictive control method for crystal growth dynamics of semiconductor materials.

Keywords: model predictive control, optimal control, process control, crystal growth

Procedia PDF Downloads 325
3786 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate

Authors: Arpit Bhardwaj, Koushik Roy

Abstract:

The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.

Keywords: free vibration, multilayered plates, surface loading, quasicrystals

Procedia PDF Downloads 115
3785 Copper/Nickel Sulfide Catalyst Electrodeposited on Nickel Foam for Efficient Water Splitting

Authors: Hamad Almohamadi, Nabeel Alharthi, Majed Alamoudi

Abstract:

Biphasic electrodes featuring CuSx/NiSx electrodeposited on nickel foam have been investigated for their electrocatalytic activity in water splitting. The study investigates the impacts of an S-vacancy induced biphasic design on the overpotential and Tafel slope. According to the findings, the NiSx/CuSx/NF electrode with S-vacancy defects displays stronger oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) activity with lower overpotential and a steeper Tafel slope than the non-defect sample. NiSx/CuSx/NF exhibits the lowest overpotential value of 212 mV vs reversible hydrogen electrode (RHE) for OER and −109 mV vs RHE for HER at 10 mA cm−2. Tafel slope of 25.4 mV dec−1 for OER and −108 mV dec−1 for OER found of that electrode. The electrochemical surface area (ECSA) and diffusion impedance of the electrode is calculated. The maximum ECSA, lowest series resistance and lowest charge transfer resistance are found in the *NiSx/CuSx/NF sample with S-vacancy defects, showing increased electrical conductivity and quick charge transfer kinetics. The *NiSx/CuSx/NF electrode was found to be stable for 80 hours in pure water splitting and 20 hours in sea-water splitting. The investigation comes to the conclusion that the enhanced water splitting activity and electrical conductivity of the electrode are caused by S-vacancy defects resulting in improved water splitting performance.

Keywords: water splitting, electrocatalyst, biphasic design, electrodeposition

Procedia PDF Downloads 37
3784 Texture Observation of Bending by XRD and EBSD Method

Authors: Takashi Sakai, Yuri Shimomura

Abstract:

The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper.

Keywords: bending, electron backscatter diffraction, X-ray diffraction, microstructure, IPF map, orientation distribution function

Procedia PDF Downloads 291
3783 Enhancement in Seebeck Coefficient of MBE Grown Un-Doped ZnO by Thermal Annealing

Authors: M. Asghar, K. Mahmood, F. Malik, Lu Na, Y-H Xie, Yasin A. Raja, I. Ferguson

Abstract:

In this paper, we have reported an enhancement in Seebeck coefficient of un-doped zinc oxide (ZnO) grown by molecular beam epitaxy (MBE) on silicon (001) substrate by annealing treatment. The grown ZnO thin films were annealed in oxygen environment at 500°C – 800°C, keeping a step of 100°C for one hour. Room temperature Seebeck measurements showed that Seebeck coefficient and power factor increased from 222 to 510 µV/K and 8.8×10^-6 to 2.6×10^-4 Wm^-1K^-2 as annealing temperature increased from 500°C to 800°C respectively. This is the highest value of Seebeck coefficient ever reported for un-doped MBE grown ZnO according to best of our knowledge. This observation was related with the improvement of crystal structure of grown films with annealing temperature. X-ray diffraction (XRD) results demonstrated that full width half maximum (FWHM) of ZnO (002) plane decreased and crystalline size increased as the annealing temperature increased. Photoluminescence study revealed that the intensity of band edge emission increased and defect emission decreased as annealing temperature increased because the density of oxygen vacancy related donor defects decreased with annealing temperature. This argument was further justified by the Hall measurements which showed a decreasing trend of carrier concentration with annealing temperature.

Keywords: ZnO, MBE, thermoelectric properties, annealing temperature, crystal structure

Procedia PDF Downloads 412
3782 Talent-to-Vec: Using Network Graphs to Validate Models with Data Sparsity

Authors: Shaan Khosla, Jon Krohn

Abstract:

In a recruiting context, machine learning models are valuable for recommendations: to predict the best candidates for a vacancy, to match the best vacancies for a candidate, and compile a set of similar candidates for any given candidate. While useful to create these models, validating their accuracy in a recommendation context is difficult due to a sparsity of data. In this report, we use network graph data to generate useful representations for candidates and vacancies. We use candidates and vacancies as network nodes and designate a bi-directional link between them based on the candidate interviewing for the vacancy. After using node2vec, the embeddings are used to construct a validation dataset with a ranked order, which will help validate new recommender systems.

Keywords: AI, machine learning, NLP, recruiting

Procedia PDF Downloads 55
3781 Effect of Synthesis Parameters on Crystal Size and Perfection of Mordenite and Analcime

Authors: Zehui Du, Chaiwat Prapainainar, Paisan Kongkachuichay, Paweena Prapainainar

Abstract:

The aim of this work was to obtain small crystalline size and high crystallinity of mordenites and analcimes, by modifying the aging time, agitation, water content, crystallization temperature and crystallization time. Two different hydrothermal methods were studied. Both methods used Na2SiO3 as the silica source, NaAlO2 as the aluminum source, and NaOH as the alkali source. The first method used HMI as the template while the second method did not use the template. Mordenite crystals with spherical shape and bimodal in size of about 1 and 5 µm were obtained from the first method using conditions of 24 hr aging time, 170°C and 24 hr crystallization. Modernites with high crystallinity were formed using agitation system in the crystallization process. It was also found that the aging time of 2 hr and 24 hr did not much affect the formation of mordenite crystals. Analcime crystals were formed in spherical shape and facet on surface with the size between 13-15 µm by the second method using the conditions of 30 minutes aging time, 170°C and 24 hr crystallization without calcination. By increasing water content, the crystallization process was slowed down and resulted in smaller analcime crystals. Larger size of analcime crystals were observed when the samples were calcined at 300°C and 580°C. Higher calcination temperature led to higher crystal growth and resulted in larger crystal size. Finally, mordenite and analcime was used as fillers in zeolite/Nafion composite membrane to solve the fuel cross over problem in direct alcohol fuel cell.

Keywords: analcime, hydrothermal synthesis, mordenite, zeolite

Procedia PDF Downloads 234
3780 The Catalytic Activity of CU2O Microparticles

Authors: Kanda Wongwailikhit

Abstract:

Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of a surfactant as the shape controller. Both particles were then subjected to a study of the catalytic activity and the results of shape effects of catalysts on rate of catalytic reaction was observed. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and the decrease of reactant with respect to time was measured using a spectrophotometer. The result revealed that morphology of the crystal had no effect on the catalytic activity for the crystal violet reaction but contributed to total surface area predominantly.

Keywords: copper (I) oxide, catalytic activity, crystal violet

Procedia PDF Downloads 467
3779 Applying the Crystal Model Approach on Light Nuclei for Calculating Radii and Density Distribution

Authors: A. Amar

Abstract:

A new model, namely the crystal model, has been modified to calculate the radius and density distribution of light nuclei up to ⁸Be. The crystal model has been modified according to solid-state physics, which uses the analogy between nucleon distribution and atoms distribution in the crystal. The model has analytical analysis to calculate the radius where the density distribution of light nuclei has obtained from analogy of crystal lattice. The distribution of nucleons over crystal has been discussed in a general form. The equation that has been used to calculate binding energy was taken from the solid-state model of repulsive and attractive force. The numbers of the protons were taken to control repulsive force, where the atomic number was responsible for the attractive force. The parameter has been calculated from the crystal model was found to be proportional to the radius of the nucleus. The density distribution of light nuclei was taken as a summation of two clusters distribution as in ⁶Li=alpha+deuteron configuration. A test has been done on the data obtained for radius and density distribution using double folding for d+⁶,⁷Li with M3Y nucleon-nucleon interaction. Good agreement has been obtained for both the radius and density distribution of light nuclei. The model failed to calculate the radius of ⁹Be, so modifications should be done to overcome discrepancy.

Keywords: nuclear physics, nuclear lattice, study nucleus as crystal, light nuclei till to ⁸Be

Procedia PDF Downloads 140
3778 In situ Investigation of PbI₂ Precursor Film Formation and Its Subsequent Conversion to Mixed Cation Perovskite

Authors: Dounya Barrit, Ming-Chun Tang, Hoang Dang, Kai Wang, Detlef-M. Smilgies, Aram Amassian

Abstract:

Several deposition methods have been developed for perovskite film preparation. The one-step spin-coating process has emerged as a more popular option thanks to its ability to produce films of different compositions, including mixed cation and mixed halide perovskites, which can stabilize the perovskite phase and produce phases with desired band gap. The two-step method, however, is not understood in great detail. There is a significant need and opportunity to adopt the two-step process toward mixed cation and mixed halide perovskites, but this requires deeper understanding of the two-step conversion process, for instance when using different cations and mixtures thereof, to produce high-quality perovskite films with uniform composition. In this work, we demonstrate using in situ investigations that the conversion of PbI₂ to perovskite is largely dictated by the state of the PbI₂ precursor film in terms of its solvated state. Using time-resolved grazing incidence wide-angle X-Ray scattering (GIWAXS) measurements during spin coating of PbI₂ from a DMF (Dimethylformamide) solution we show the film formation to be a sol-gel process involving three PbI₂-DMF solvate complexes: disordered precursor (P₀), ordered precursor (P₁, P₂) prior to PbI₂ formation at room temperature after 5 minutes. The ordered solvates are highly metastable and eventually disappear, but we show that performing conversion from P₀, P₁, P₂ or PbI₂ can lead to very different conversion behaviors and outcomes. We compare conversion behaviors by using MAI (Methylammonium iodide), FAI (Formamidinium Iodide) and mixtures of these cations, and show that conversion can occur spontaneously and quite rapidly at room temperature without requiring further thermal annealing. We confirm this by demonstrating improvements in the morphology and microstructure of the resulting perovskite films, using techniques such as in situ quartz crystal microbalance with dissipation monitoring, SEM and XRD.

Keywords: in situ GIWAXS, lead iodide, mixed cation, perovskite solar cell, sol-gel process, solvate phase

Procedia PDF Downloads 113
3777 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube

Authors: K. Hiro, T. Wada

Abstract:

Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) – nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).

Keywords: Berthelot method, liquid crystal, negative pressure, phase transitions

Procedia PDF Downloads 375
3776 The Unique Electrical and Magnetic Properties of Thorium Di-Iodide Indicate the Arrival of Its Superconducting State

Authors: Dong Zhao

Abstract:

Even though the recent claim of room temperature superconductivity by LK-99 was confirmed an unsuccessful attempt, this work reawakened people’s century striving to get applicable superconductors with Tc of room temperature or higher and under ambient pressure. One of the efforts was focusing on exploring the thorium salts. This is because certain thorium compounds revealed an unusual property of having both high electrical conductivity and diamagnetism or the so-called “coexistence of high electrical conductivity and diamagnetism.” It is well known that this property of the coexistence of high electrical conductivity and diamagnetism is held by superconductors because of the electron pairings. Consequently, the likelihood for these thorium compounds to have superconducting properties becomes great. However, as a surprise, these thorium salts possess this property at room temperature and atmosphere pressure. This gives rise to solid evidence for these thorium compounds to be room-temperature superconductors without a need for external pressure. Among these thorium compound superconductors claimed in that work, thorium di-iodide (ThI₂) is a unique one and has received comprehensive discussion. ThI₂ was synthesized and structurally analyzed by the single crystal diffraction method in the 1960s. Its special property of coexistence of high electrical conductivity and diamagnetism was revealed. Because of this unique property, a special molecular configuration was sketched. Except for an ordinary oxidation of +2 for the thorium cation, the thorium’s oxidation state in ThI₂ is +4. According to the experimental results, ThI₂‘s actual molecular configuration was determined as an unusual one of [Th4+(e-)2](I-)2. This means that the ThI₂ salt’s cation is composed of a [Th4+(e-)2]2+ cation core. In other words, the cation of ThI₂ is constructed by combining an oxidation state +4 of the thorium atom and a pair of electrons or an electron lone pair located on the thorium atom. This combination of the thorium atom and the electron lone pair leads to an oxidation state +2 for the [Th4+(e-)2]2+ cation core. This special construction of the thorium cation is very distinctive, which is believed to be the factor that grants ThI₂ the room temperature superconductivity. Actually, the key for ThI₂ to become a room-temperature superconductor is this characteristic electron lone pair residing on the thorium atom along with the formation of a network constructed by the thorium atoms. This network specializes in a way that allows the electron lone pairs to hop over it and, thus, to generate the supercurrent. This work will discuss, in detail, the special electrical and magnetic properties of ThI₂ as well as its structural features at ambient conditions. The exploration of how the electron pairing in combination with the structurally specialized network works together to bring ThI₂ into a superconducting state. From the experimental results, strong evidence has definitely pointed out that the ThI₂ should be a superconductor, at least at room temperature and under atmosphere pressure.

Keywords: co-existence of high electrical conductivity and diamagnetism, electron lone pair, room temperature superconductor, special molecular configuration of thorium di-iodide ThI₂

Procedia PDF Downloads 17
3775 The Effects of Social Capital and Empowering Leadership on Team Cohesion

Authors: Y. R. Lai, J. C. Jehng, T. T. Chang

Abstract:

Team is a popular job design in the management settings. Because people on a team need to work together to complete a lot of tasks, the interaction between team members strongly influences team effectiveness. The study examines the effect of social capital and empowering leadership on team cohesion. There are three facets of social capital: structural facet, relational facet, and cognitive facet. Empowering leadership includes enhancing the meaningfulness of work, fostering participation in decision making, expressing confidence in high performance, and providing autonomy from bureaucratic constraints. Data were collected from 181 team members of 47 teams in the real estate agency industry. The results show that the relational social capital, enhancing the meaningfulness of work, and providing autonomy from bureaucratic constraints are positively related to two dimensions of team cohesion: sense of belonging and feelings of moral. Additionally, expressing confidence in high performance is negatively related to sense of belonging.

Keywords: social capital, empowering leadership, team cohesion, team effectiveness

Procedia PDF Downloads 381
3774 Synthesis and Crystal Structure of a Cu(II) Complex of a Pyridine-Naphthoimidazole-Based Ligand

Authors: Shuang Zhao, Shintaro Ito, Yoshihiro Ohba, Hiroshi Katagiri

Abstract:

We present the synthesis and single-crystal X-ray crystallography of a Cu(II) complex(bmn-bpy) of a pyridine-naphthoimidazole-based ligand containing two naphthoimidazoles as the chromophores and a vacant coordination site on Cu(II).

Keywords: synthesis, Cu(II) complex, single-crystal X-ray crystallography

Procedia PDF Downloads 337
3773 Applying the Crystal Model to Different Nuclear Systems

Authors: A. Amar

Abstract:

The angular distributions of the nuclear systems under consideration have been analyzed in the framework of the optical model (OM), where the real part was taken in the crystal model form. A crystal model (CM) has been applied to deuteron elastically scattered by ⁶,⁷Li and ⁹Be. A crystal model (CM) + distorted-wave Born approximation (DWBA) + dynamic polarization potential (DPP) potential has been applied to deuteron elastically scattered by ⁶,⁷Li and 9Be. Also, a crystal model has been applied to ⁶Li elastically scattered by ¹⁶O and ²⁸Sn in addition to the ⁷Li+⁷Li system and the ¹²C(alpha,⁸Be) ⁸Be reaction. The continuum-discretized coupled-channels (CDCC) method has been applied to the ⁷Li+⁷Li system and agreement between the crystal model and the continuum-discretized coupled-channels (CDCC) method has been observed. In general, the models succeeded in reproducing the differential cross sections at the full angular range and for all the energies under consideration.

Keywords: optical model (OM), crystal model (CM), distorted-wave born approximation (DWBA), dynamic polarization potential (DPP), the continuum-discretized coupled-channels (CDCC) method, and deuteron elastically scattered by ⁶, ⁷Li and ⁹Be

Procedia PDF Downloads 38
3772 Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin

Authors: G. S. Sudha, Smita Mohanty, S. K. Nayak

Abstract:

Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin.

Keywords: epoxy resin, epoxidized castor oil, sulphonated polystyrene type cation exchange resin, petroleum derived materials

Procedia PDF Downloads 441
3771 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles

Authors: J. P. Borah, R. D. Raland

Abstract:

Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.

Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study

Procedia PDF Downloads 135
3770 Effect of Chemical Additive on Fixed Abrasive Polishing of LBO Crystal with Non-Water Based Slurry

Authors: Jun Li, Wenze Wang, Zhanggui Hu, Yongwei Zhu, Dunwen Zuo

Abstract:

Non-water based fixed abrasive polishing was adopted to manufacture LBO crystal for nano precision surface quality because of its deliquescent. Ethyl alcohol was selected as the non-water based slurry solvent and ethanediamine, lactic acid, hydrogen peroxide were add in the slurry as a chemical additive, respectively. Effect of different additives with non-water based slurry on material removal rate, surface topography, microscopic appearances and surface roughness were investigated in fixed abrasive polishing of LBO crystal. The results show the best surface quality of LBO crystal with surface roughness Sa 8.2 nm and small damages was obtained by non-water based slurry with lactic acid. Non-water based fixed abrasive polishing can achieve nano precision surface quality of LBO crystal with high material removal.

Keywords: non-water based slurry, LBO crystal, fixed abrasive polishing, surface roughness

Procedia PDF Downloads 428
3769 The Effect of the Crystal Field Interaction on the Critical Temperatures and the Sublattice Magnetizations of a Mixedspin-3/2 and Spin-5/2 Ferromagnetic System

Authors: Fathi Abubrig, Mohamed Delfag, Suad Abuzariba

Abstract:

The influence of the crystal field interactions on the mixed spin-3/2 and spin-5/2 ferromagnetic Ising system is considered by using the mean field theory based on Bogoliubov inequality for the Gibbs free energy. The ground-state phase diagram is constructed, the phase diagrams of the second-order critical temperatures are obtained, and the thermal variation of the sublattice magnetizations is investigated in detail. We find some interesting phenomena for the sublattice magnetizations at particular values of the crystal field interactions.

Keywords: crystal field, Ising system, ferromagnetic, magnetization, phase diagrams

Procedia PDF Downloads 454
3768 Sorption of Crystal Violet from Aqueous Solution Using Chitosan−Charcoal Composite

Authors: Kingsley Izuagbe Ikeke, Abayomi O. Adetuyi

Abstract:

The study investigated the removal efficiency of crystal violet from aqueous solution using chitosan-charcoal composite as adsorbent. Deproteination was carried out by placing 200g of powdered snail shell in 4% w/v NaOH for 2hours. The sample was then placed in 1% HCl for 24 hours to remove CaCO3. Deacetylation was done by boiling in 50% NaOH for 2hours. 10% Oxalic acid was used to dissolve the chitosan before mixing with charcoal at 55°C to form the composite. The composite was characterized by Fourier Transform Infra-Red and Scanning Electron Microscopy measurements. The efficiency of adsorption was evaluated by varying pH of the solution, contact time, initial concentration and adsorbent dose. Maximum removal of crystal violet by composite and activated charcoal was attained at pH10 while maximum removal of crystal violet by chitosan was achieved at pH 8. The results showed that adsorption of both dyes followed the pseudo-second-order rate equation and fit the Langmuir and Freundlich isotherms. The data showed that composite was best suited for crystal violet removal and also did relatively well in the removal of alizarin red. Thermodynamic parameters such as enthalpy change (ΔHº), free energy change (ΔGº) and entropy change (ΔSº) indicate that adsorption process of Crystal Violet was endothermic, spontaneous and feasible respectively.

Keywords: crystal violet, chitosan−charcoal composite, extraction process, sorption

Procedia PDF Downloads 399
3767 Sensing Mechanism of Nano-Toxic Ions Using Quartz Crystal Microbalance

Authors: Chanho Park, Juneseok You, Kuewhan Jang, Sungsoo Na

Abstract:

Detection technique of nanotoxic materials is strongly imperative, because nano-toxic materials can harmfully influence human health and environment as their engineering applications are growing rapidly in recent years. In present work, we report the DNA immobilized quartz crystal microbalance (QCM) based sensor for detection of nano-toxic materials such as silver ions, Hg2+ etc. by using functionalization of quartz crystal with a target-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz crystal is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated fast and in situ detection of nanotoxic materials using quartz crystal microbalance. We report the label-free and highly sensitive detection of silver ion for present case, which is a typical nano-toxic material by using QCM and silver-specific DNA. The detection is based on the measurement of frequency shift of Quartz crystal from constitution of the cytosine-Ag+-cytosine binding. It is shown that the silver-specific DNA measured frequency shift by QCM enables the capturing of silver ions below 100pM. The results suggest that DNA-based detection opens a new avenue for the development of a practical water-testing sensor.

Keywords: nano-toxic ions, quartz crystal microbalance, frequency shift, target-specific DNA

Procedia PDF Downloads 292
3766 Propagation of Cos-Gaussian Beam in Photorefractive Crystal

Authors: A. Keshavarz

Abstract:

A physical model for guiding the wave in photorefractive media is studied. Propagation of cos-Gaussian beam as the special cases of sinusoidal-Gaussian beams in photorefractive crystal is simulated numerically by the Crank-Nicolson method in one dimension. Results show that the beam profile deforms as the energy transfers from the center to the tails under propagation. This simulation approach is of significant interest for application in optical telecommunication. The results are presented graphically and discussed.

Keywords: beam propagation, cos-Gaussian beam, numerical simulation, photorefractive crystal

Procedia PDF Downloads 451
3765 Gas Separation Membranes Using Stability Improved Ion Gels

Authors: Y. H. Hwang, J. Won, Y. S. Kang

Abstract:

Since ionic liquids have a special interaction with gas specially CO2 and/or olefin, supported ionic liquids membrane (SILM) are fabricated for practical gas separation. However, SILM has a problem in practical application due to the low mechanical stability under high pressure for gas separation. In order to improve the mechanical strength of the selective ionic liquid layer, we prepared supported ion gel membrane by the formation of gel on the surface of Nylon support. The ion gel was prepared by the addition of poly(styrene-block-ethyleneoxide-block-styrene) triblock copolymer in four tricyanomethanide ionic liquids have different cation; 1-ethyl-3-methlyimidazolium tricyanomethanide, 1-butyl-3-methlyimidazolium tricyanomethanide, 1-butyl-1-methylpyrrolidinium tricyanomethanide, 1-butyl-4-methylpyridinium tricyanomethanide using methylenechloride as a solvent. The characters of ion gel with different cation were studied. Four different gases (CO2, N2, O2, and CH4) permeance were measured at room temperature by bubble flow meter and cation effect of tricyanomethanide ionic liquids investigated.

Keywords: membrane, ionic liquid, ion gel, nanostructure

Procedia PDF Downloads 309