Search results for: joint inversion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1207

Search results for: joint inversion

997 Joint Space Hybrid Force/Position Control of 6-DoF Robot Manipulator Using Neural Network

Authors: Habtemariam Alemu

Abstract:

It has been known that the performance of position and force control is highly affected by both robot dynamic and environment stiffness uncertainties. In this paper, joint space hybrid force and position control strategy with self-selecting matrix using artificial neural network compensator is proposed. The objective of the work is to improve controller robustness by applying a neural network technique in order to compensate the effect of uncertainties in the robot model. Simulation results for a 6 degree of freedom (6-DoF) manipulator and different types of environments showed the effectiveness of the suggested approach. 6-DoF Puma 560 family robot manipulator is chosen as industrial robot and its efficient dynamic model is designed using Matlab/SimMechanics library.

Keywords: robot manipulator, force/position control, artificial neural network, Matlab/Simulink

Procedia PDF Downloads 483
996 A Survey on Quasi-Likelihood Estimation Approaches for Longitudinal Set-ups

Authors: Naushad Mamode Khan

Abstract:

The Com-Poisson (CMP) model is one of the most popular discrete generalized linear models (GLMS) that handles both equi-, over- and under-dispersed data. In longitudinal context, an integer-valued autoregressive (INAR(1)) process that incorporates covariate specification has been developed to model longitudinal CMP counts. However, the joint likelihood CMP function is difficult to specify and thus restricts the likelihood based estimating methodology. The joint generalized quasilikelihood approach (GQL-I) was instead considered but is rather computationally intensive and may not even estimate the regression effects due to a complex and frequently ill conditioned covariance structure. This paper proposes a new GQL approach for estimating the regression parameters (GQLIII) that are based on a single score vector representation. The performance of GQL-III is compared with GQL-I and separate marginal GQLs (GQL-II) through some simulation experiments and is proved to yield equally efficient estimates as GQL-I and is far more computationally stable.

Keywords: longitudinal, com-Poisson, ill-conditioned, INAR(1), GLMS, GQL

Procedia PDF Downloads 333
995 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 177
994 The Effects of Water Fraction and Salinity on Crude Oil-Water Dispersions

Authors: Ramin Dabirian, Yi Zhang, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Oil-water emulsions can be found in almost every part of the petroleum industry, namely in reservoir rocks, drilling cuttings circulation, production in wells, transportation pipelines, surface facilities and refining process. However, it is necessary for oil production and refinery engineers to resolve the petroleum emulsion problems as well as to eliminate the contaminants in order to meet environmental standards, achieve the desired product quality and to improve equipment reliability and efficiency. A state-of-art Dispersion Characterization Rig (DCR) has been utilized to investigate crude oil-distilled water dispersion separation. Over 80 experimental tests were ran to investigate the flow behavior and stability of the dispersions. The experimental conditions include the effects of water cuts (25%, 50% and 75%), NaCl concentrations (0, 3.5% and 18%), mixture flow velocities (0.89 and 1.71 ft/s), and also orifice place types on the separation rate. The experimental data demonstrate that the water cut can significantly affects the separation time and efficiency. The dispersion with lower water cut takes longer time to separate and have low separation efficiency. The medium and lower water cuts will result in the formation of Mousse emulsion and the phase inversion happens around the medium water cut. The data also confirm that increasing the NaCl concentration in aqueous phase can increase the crude oil water dispersion separation efficiency especially at higher salinities. The separation profile for dispersions with lower salt concentrations has a lower sedimentation rate slope before the inflection point. Dispersions in all tests with higher salt concentrations have a larger sedimenting rate. The presence of NaCl can influence the interfacial tension gradients along the interface and it plays a role in avoiding the Mousse emulsion formation.

Keywords: oil-water dispersion, separation mechanism, phase inversion, emulsion formation

Procedia PDF Downloads 161
993 Basin Geometry and Salt Structures in the Knana/Ragoubet Mahjbia Ranges, North of Tunisia

Authors: Mohamed Montassar Ben Slama, Mohamed Fadel Ladeb, Mohamed Ghanmi, Mohamed Ben Youssef, Fouad Zargouni

Abstract:

The salt province Basin in Northern Tunisia is a complex of late Triassic to Early Cretaceous rift and sag basins which was inverted during the Tertiary folding. The deposition of evaporitic sediments during the Late Triassic times played a major role in the subsequent tectonic evolution of the basin. Within southern tethyan passive marge, the ductile salt mass shown early mobilization, vertical transport and withdrawal of the evaporites. These movements influenced the sedimentation during the late Jurassic and Early Cretaceous. The evaporites also influenced deformation during the inversion of the basin and the development of the Tertiary and Quaternary folding. In the studied area, the biostratigraphic and tectonic map analysis of the region of Jebel el Asoued / Ragoubet el Mahjbia can resolve between the hypotheses of the diapiric intrusion of the Triassic salt and the lateral spreading of the Triassic salt as salt ‘glacier’. Also the variation in thickness and facies of the Aptian sediments demonstrates the existence of continental rise architecture at the Aptian time. The observation in a mappable outcrop of the extension segment of the graben fault of Bou Arada on the one hand confirms the existence of a Cretaceous extensive architecture and the tectonic inversion during the Tertiary time has not filled the main game distension. The extent of our observations of Triassic/Aptian and Triassic/Early Campanian contacts, we propose a composite salt ‘glacier’ model as the structures recorded in the Gulf of Mexico in the subsurface and in the Ouenza east Algeria and in Tunisia within Fedj el Adoum, Touiref-Nebeur and Jebel Ech Cheid in the outcrops.

Keywords: Cretaceous rift, salt ‘glassier’, tertiary folding, Tunisia

Procedia PDF Downloads 350
992 Effectiveness of Exercise and TENS in the Treatment of Temporomandibular Joint Disorders

Authors: Arben Murtezani, Shefqet Mrasori, Vančo Spirov, Bukurije Rama, Oliver Dimitrovski, Visar Bunjaku

Abstract:

Overview: Temporomandibular disorders (TMDs) are chronic musculoskeletal pain conditions. Clinical indicators of discomfort are related to the use of the joint stiffness during first motions after extended rest and restricted joint range of motion can cause substantial pain and disability. There is little evidence that physical therapy methods of management cause long-lasting reduction in signs and symptoms. Exercise programs premeditated to improve physical fitness have beneficial effects on chronic pain and disability of the musculoskeletal system. Objective: The aim of this study was to assess the effectiveness of physical therapy interventions in the management of temporomandibular disorders. Materials and Methods: A prospective comparative study with a 2-month follow-up period was conducted between April 2016 and June 2016 at the Physical Medicine and Rehabilitation Clinic in Prishtina. Forty six patients with TMDs, (more than three months duration of symptoms) were randomized into two groups: the TENS therapy group (n=24) and combination of active exercise and manual therapy group (n=22). The TENS therapy group patients were treated with twelve sessions of TENS. The treatment period of both groups was 3 weeks at an outpatient clinic. Following main outcome measures were evaluated: (1) pain at rest (2) pain at stress (3) impairment (4) mouth opening at base-line, before and after treatment and at 3 month follow-up. Results: Significant reduction in pain was observed in both treatment groups. In the TENS group 73% (16/22) achieved at least 80% improvement from baseline in TMJ pain at 2 months compared with 54% (13/24) in the exercise group (difference of 19%; 95% confidence interval 220 to 30%). Active and passive maximum mouth opening has been greater in the TENS group (p < 0.05). Conclusion: Exercise therapy in combination with TENS seems to be useful in the treatment of temporomandibular disorders.

Keywords: temporomandibular joint disorders, TENS, manual therapy, exercise

Procedia PDF Downloads 205
991 Temperature Evolution, Microstructure and Mechanical Properties of Heat-Treatable Aluminum Alloy Welded by Friction Stir Welding: Comparison with Tungsten Inert Gas

Authors: Saliha Gachi, Mouloud Aissani, Fouad Boubenider

Abstract:

Friction Stir Welding (FSW) is a solid-state welding technique that can join material without melting the plates to be welded. In this work, we are interested to demonstrate the potentiality of FSW for joining the heat-treatable aluminum alloy 2024-T3 which is reputed as difficult to be welded by fusion techniques. Thereafter, the FSW joint is compared with another one obtained from a conventional fusion process Tungsten Inert Gas (TIG). FSW welds are made up using an FSW tool mounted on a milling machine. Single pass welding was applied to fabricated TIG joint. The comparison between the two processes has been made on the temperature evolution, mechanical and microstructure behavior. The microstructural examination revealed that FSW weld is composed of four zones: Base metal (BM), Heat affected zone (HAZ), Thermo-mechanical affected zone (THAZ) and the nugget zone (NZ). The NZ exhibits a recrystallized equiaxed refined grains that induce better mechanical properties and good ductility compared to TIG joint where the grains have a larger size in the welded region compared with the BM due to the elevated heat input. The microhardness results show that, in FSW weld, the THAZ contains the lowest microhardness values and increase in the NZ; however, in TIG process, the lowest values are localized on the NZ.

Keywords: friction stir welding, tungsten inert gaz, aluminum, microstructure

Procedia PDF Downloads 249
990 Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

The Stability in harsh environments thanks to excellent electrical, mechanical and thermal properties is what ceramics are all about selected materials for many applications despite advent of new materials such as plastics and composites. However, ceramic materials have disadvantages, including brittleness. Fragility is often attributed to pottery strong covalent and ionic bonds in the ceramic body. There is still much to learn about brittle cracks in a attention to detail, hence the fragility of the ceramic and its catastrophic failure of a frequently studied topic, particularly in charging applications. One of the most commonly used ceramics for load-bearing applications such as veneers is porcelain. Porcelain is a type of traditional pottery. Traditional pottery consists mainly of three basic ingredients: clay, which gives plasticity; silica which maintains the shape and stability of the ceramic body over temperature high temperature; and feldspar affecting glazing. In traditional pottery, the inversion of quartz during cooling the process can create microcracks that act as a stress concentration centers. Consequently, subcritical crack growth is caused due to quartz inversion origins unpredictable catastrophic failure of the work of ceramic bodies when reloading. In the case of porcelain, however, this is what the mullite hypothesis says the strength of porcelain can be significantly increased with felt Interlocking of mullite needles in the ceramic body.in this way realistic assessment of the role of quartz and mullite Porcelain with a strength of is needed to grow stronger and smaller fragile porcelain. Currently,the lack of reports on Young's moduli in the literature leads to erroneous conclusions in this regard mechanical behavior of porcelain. Therefore, the current project uses the Young's modulus approach for the investigation the role of quartz and mullite on the mechanical strength of various porcelains, in addition to reducing particle size, flexural strength fractographic forces and techniques.

Keywords: materials, technical, ceramics, properties, thermal, stability, advantages

Procedia PDF Downloads 56
989 Operational Advantages of Tungsten Inert Gas over Metal Inert Gas Welding Process

Authors: Emmanuel Ogundimu, Esther Akinlabi, Mutiu Erinosho

Abstract:

In this research, studies were done on the material characterization of type 304 austenitic stainless steel weld produced by TIG (Tungsten Inert Gas) and MIG (Metal Inert Gas) welding processes. This research is aimed to establish optimized process parameters that will result in a defect-free weld joint, homogenous distribution of the iron (Fe), chromium (Cr) and nickel (Ni) was observed at the welded joint of all the six samples. The welded sample produced at the current of 170 A by TIG welding process had the highest ultimate tensile strength (UTS) value of 621 MPa at the welds zone, and the welded sample produced by MIG process at the welding current of 150 A had the lowest UTS value of 568 MPa. However, it was established that TIG welding process is more appropriate for the welding of type 304 austenitic stainless steel compared to the MIG welding process.

Keywords: microhardness, microstructure, tensile, MIG welding, process, tensile, shear stress TIG welding, TIG-MIG welding

Procedia PDF Downloads 157
988 Seismic Strengthening of Reinforced Concrete Beam-Column Joint by Reversible Mixed Technologies of FRP

Authors: Nasser-Eddine Attari

Abstract:

After the earthquake many structures were classified as slightly damaged and, being uneconomic to replace them, at least in the short term, suitable means of repairs of the beam column joint area are being studied. Furthermore, there exist a large number of buildings that need retrofitting of the joints before the next earthquake. The paper reports the results of the experimental programme, constituted of three beam-column reinforced concrete joints at a scale of one to three (1/3) tested under the effect of a pre-stressing axial load acting over the column. The beams were subjected at their ends to an alternate cyclic loading under displacement control to simulate a seismic action. Strain and cracking fields were monitored with the help a digital recording camera. Following the analysis of the results, a comparison can be made between the performances in terms of ductility, strength, and mode of failure of the different strengthening solution considered.

Keywords: fibre reinforced polymers, joints, reinforced concrete, beam columns

Procedia PDF Downloads 407
987 Improvement of the Q-System Using the Rock Engineering System: A Case Study of Water Conveyor Tunnel of Azad Dam

Authors: Sahand Golmohammadi, Sana Hosseini Shirazi

Abstract:

Because the status and mechanical parameters of discontinuities in the rock mass are included in the calculations, various methods of rock engineering classification are often used as a starting point for the design of different types of structures. The Q-system is one of the most frequently used methods for stability analysis and determination of support systems of underground structures in rock, including tunnel. In this method, six main parameters of the rock mass, namely, the rock quality designation (RQD), joint set number (Jn), joint roughness number (Jr), joint alteration number (Ja), joint water parameter (Jw) and stress reduction factor (SRF) are required. In this regard, in order to achieve a reasonable and optimal design, identifying the effective parameters for the stability of the mentioned structures is one of the most important goals and the most necessary actions in rock engineering. Therefore, it is necessary to study the relationships between the parameters of a system and how they interact with each other and, ultimately, the whole system. In this research, it has attempted to determine the most effective parameters (key parameters) from the six parameters of rock mass in the Q-system using the rock engineering system (RES) method to improve the relationships between the parameters in the calculation of the Q value. The RES system is, in fact, a method by which one can determine the degree of cause and effect of a system's parameters by making an interaction matrix. In this research, the geomechanical data collected from the water conveyor tunnel of Azad Dam were used to make the interaction matrix of the Q-system. For this purpose, instead of using the conventional methods that are always accompanied by defects such as uncertainty, the Q-system interaction matrix is coded using a technique that is actually a statistical analysis of the data and determining the correlation coefficient between them. So, the effect of each parameter on the system is evaluated with greater certainty. The results of this study show that the formed interaction matrix provides a reasonable estimate of the effective parameters in the Q-system. Among the six parameters of the Q-system, the SRF and Jr parameters have the maximum and minimum impact on the system, respectively, and also the RQD and Jw parameters have the maximum and minimum impact on the system, respectively. Therefore, by developing this method, we can obtain a more accurate relation to the rock mass classification by weighting the required parameters in the Q-system.

Keywords: Q-system, rock engineering system, statistical analysis, rock mass, tunnel

Procedia PDF Downloads 40
986 Numerical Modelling and Experiment of a Composite Single-Lap Joint Reinforced by Multifunctional Thermoplastic Composite Fastener

Authors: Wenhao Li, Shijun Guo

Abstract:

Carbon fibre reinforced composites are progressively replacing metal structures in modern civil aircraft. This is because composite materials have large potential of weight saving compared with metal. However, the achievement to date of weight saving in composite structure is far less than the theoretical potential due to many uncertainties in structural integrity and safety concern. Unlike the conventional metallic structure, composite components are bonded together along the joints where structural integrity is a major concern. To ensure the safety, metal fasteners are used to reinforce the composite bonded joints. One of the solutions for a significant weight saving of composite structure is to develop an effective technology of on-board Structural Health Monitoring (SHM) System. By monitoring the real-life stress status of composite structures during service, the safety margin set in the structure design can be reduced with confidence. It provides a means of safeguard to minimize the need for programmed inspections and allow for maintenance to be need-driven, rather than usage-driven. The aim of this paper is to develop smart composite joint. The key technology is a multifunctional thermoplastic composite fastener (MTCF). The MTCF will replace some of the existing metallic fasteners in the most concerned locations distributed over the aircraft composite structures to reinforce the joints and form an on-board SHM network system. Each of the MTCFs will work as a unit of the AU and AE technology. The proposed MTCF technology has been patented and developed by Prof. Guo in Cranfield University, UK in the past a few years. The manufactured MTCF has been successfully employed in the composite SLJ (Single-Lap Joint). In terms of the structure integrity, the hybrid SLJ reinforced by MTCF achieves 19.1% improvement in the ultimate failure strength in comparison to the bonded SLJ. By increasing the diameter or rearranging the lay-up sequence of MTCF, the hybrid SLJ reinforced by MTCF is able to achieve the equivalent ultimate strength as that reinforced by titanium fastener. The predicted ultimate strength in simulation is in good agreement with the test results. In terms of the structural health monitoring, a signal from the MTCF was measured well before the load of mechanical failure. This signal provides a warning of initial crack in the joint which could not be detected by the strain gauge until the final failure.

Keywords: composite single-lap joint, crack propagation, multifunctional composite fastener, structural health monitoring

Procedia PDF Downloads 131
985 Experimental Investigation of the Static and Dynamic Behaviour of Double Lap Joints

Authors: H. I. Beloufa, M. Tarfaoui

Abstract:

For many applications, adhesively bonded assemblies have gained an increasing interest in the industry due to several advantages over welding, riveting and bolting, such as reduction of stress concentrations, lightness, low cost and easy manufacturing. This work is largely concerned to show the effects of the loading rate of the adhesively bonded joints under different speed rates. The tensile tests were conducted at four different rates; static (5mm/min, 50mm/min) and dynamic tests (1m/s, and 10m/s). An attempt was made to determine the damage kinetic and a comparison between the use of aluminium and composite laminate substrates is introduced. Aluminum T6082 and glass/vinylester laminated composite Substrates were used to construct aluminum/aluminum and laminate/laminate specimens. The adhesive used in this study was Araldite 2015. The results showed the effects of the loading rate évolution on the double joint strength. The comparison of the results of static and dynamic tests showed a raise of the strength of the specimens while the load velocity is elevated. In the case of composite substrates double joint lap, the stiffness increased by more than 60% between static and dynamic tests. However, in the case of aluminum substrates, the rigidity improved about 28% from static to moderately high velocity loading. For both aluminum and composite double joint lap, the strength increased by approximately 25% when the tensile velocity is increased from 5 mm/min to 50 mm/min (static tests). Nevertheless, the tensile velocity is extended to 1m/s the strength increased by 13% and 25% respectively for composite and aluminum substrates.

Keywords: adhesive, double lap joints, static and dynamic behavior, tensile tests

Procedia PDF Downloads 174
984 Oxide Based Memristor and Its Potential Application in Analog-Digital Electronics

Authors: P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu

Abstract:

Oxide based memristors were fabricated in order to establish its potential applications in analog/digital electronics. BaTiO₃-BiFeO₃ (BT-BFO) was employed as an active material, whereas platinum (Pt) and Nb-doped SrTiO₃ (Nb:STO) were served as a top and bottom electrodes, respectively. Piezoelectric force microscopy (PFM) was utilized to present the ferroelectricity and repeatable polarization inversion in the BT-BFO, demonstrating its effectiveness for resistive switching. The fabricated memristors exhibited excellent electrical characteristics, such as hysteresis current-voltage (I-V), high on/off ratio, high retention time, cyclic endurance, and low operating voltages. The band-alignment between the active material BT-BFO and the substrate Nb:STO was experimentally investigated using X-Ray photoelectron spectroscopy, and it attributed to staggered heterojunction alignment. An energy band diagram was proposed in order to understand the electrical transport in BT-BFO/Nb:STO heterojunction. It was identified that the I-V curves of these memristors have several discontinuities. Curve fitting technique was utilized to analyse the I-V characteristic, and the obtained I-V equations were found to be parabolic. Utilizing this analysis, a non-linear BT-BFO memristors equivalent circuit model was developed. Interestingly, the obtained equivalent circuit of the BT-BFO memristors mimics the identical electrical performance, those obtained in the fabricated devices. Based on the developed equivalent circuit, a finite state machine (FSM) design was proposed. Efforts were devoted to fabricate the same FSM, and the results were well matched with those in the simulated FSM devices. Its multilevel noise filtering and immunity to external noise characteristics were also studied. Further, the feature of variable negative resistance was established by controlling the current through the memristor.

Keywords: band alignment, finite state machine, polarization inversion, resistive switching

Procedia PDF Downloads 107
983 Effect of Filler Metal Diameter on Weld Joint of Carbon Steel SA516 Gr 70 and Filler Metal SFA 5.17 in Submerged Arc Welding SAW

Authors: A. Nait Salah, M. Kaddami

Abstract:

This work describes an investigation on the effect of filler metals diameter to weld joint, and low alloy carbon steel A516 Grade 70 is the base metal. Commercially SA516 Grade70 is frequently used for the manufacturing of pressure vessels, boilers and storage tank, etc. In fabrication industry, the hardness of the weld joint is between the important parameters to check, after heat treatment of the weld. Submerged arc welding (SAW) is used with two filler metal diameters, and this solid wire electrode is used for SAW non-alloy and for fine grain steels (SFA 5.17). The different diameters were selected (Ø = 2.4 mm and Ø = 4 mm) to weld two specimens. Both specimens were subjected to the same preparation conditions, heat treatment, macrograph, metallurgy micrograph, and micro-hardness test. Samples show almost similar structure with highest hardness. It is important to indicate that the thickness used in the base metal is 22 mm, and all specifications, preparation and controls were according to the ASME section IX. It was observed that two different filler metal diameters performed on two similar specimens demonstrated that the mechanical property (hardness) increases with decreasing diameter. It means that even the heat treatment has the same effect with the same conditions, the filler metal diameter insures a depth weld penetration and better homogenization. Hence, the SAW welding technique mentioned in the present study is favorable to implicate for the industry using the small filler metal diameter.

Keywords: ASME, base metal, micro-hardness test, submerged arc welding

Procedia PDF Downloads 120
982 The Curvature of Bending Analysis and Motion of Soft Robotic Fingers by Full 3D Printing with MC-Cells Technique for Hand Rehabilitation

Authors: Chaiyawat Musikapan, Ratchatin Chancharoen, Saknan Bongsebandhu-Phubhakdi

Abstract:

For many recent years, soft robotic fingers were used for supporting the patients who had survived the neurological diseases that resulted in muscular disorders and neural network damages, such as stroke and Parkinson’s disease, and inflammatory symptoms such as De Quervain and trigger finger. Generally, the major hand function is significant to manipulate objects in activities of daily living (ADL). In this work, we proposed the model of soft actuator that manufactured by full 3D printing without the molding process and one material for use. Furthermore, we designed the model with a technique of multi cavitation cells (MC-Cells). Then, we demonstrated the curvature bending, fluidic pressure and force that generated to the model for assistive finger flexor and hand grasping. Also, the soft actuators were characterized in mathematics solving by the length of chord and arc length. In addition, we used an adaptive push-button switch machine to measure the force in our experiment. Consequently, we evaluated biomechanics efficiency by the range of motion (ROM) that affected to metacarpophalangeal joint (MCP), proximal interphalangeal joint (PIP) and distal interphalangeal joint (DIP). Finally, the model achieved to exhibit the corresponding fluidic pressure with force and ROM to assist the finger flexor and hand grasping.

Keywords: biomechanics efficiency, curvature bending, hand functional assistance, multi cavitation cells (MC-Cells), range of motion (ROM)

Procedia PDF Downloads 203
981 Clinical and Structural Differences in Knee Osteoarthritis with/without Synovial Hypertrophy

Authors: Gi-Young Park, Dong Rak Kwon, Sung Cheol Cho

Abstract:

Objective: The synovium is known to be involved in many pathological characteristic processes. Also, synovitis is common in advanced osteoarthritis. We aimed to evaluate the clinical, radiographic, and ultrasound findings in patients with knee osteoarthritis and to compare the clinical and imaging findings between knee osteoarthritis with and without synovial hypertrophy confirmed by ultrasound. Methods: One hundred knees (54 left, 46 right) in 95 patients (64 women, 31 men; mean age, 65.9 years; range, 43-85 years) with knee osteoarthritis were recruited. The Visual Analogue Scale (VAS) was used to assess the intensity of knee pain. The severity of knee osteoarthritis was classified according to Kellgren and Lawrence's (K-L) grade on a radiograph. Ultrasound examination was performed by a physiatrist who had 24 years of experience in musculoskeletal ultrasound. Ultrasound findings, including the thickness of joint effusion in the suprapatellar pouch, synovial hypertrophy, infrapatellar tendinosis, meniscal tear or extrusion, and Baker cyst, were measured and detected. The thickness of knee joint effusion was measured at the maximal anterior-posterior diameter of fluid collection in the suprapatellar pouch. Synovial hypertrophy was identified as the soft tissue of variable echogenicity, which is poorly compressible and nondisplaceable by compression of an ultrasound transducer. The knees were divided into two groups according to the presence of synovial hypertrophy. The differences in clinical and imaging findings between the two groups were evaluated by independent t-test and chi-square test. Results: Synovial hypertrophy was detected in 48 knees of 100 knees on ultrasound. There were no significant differences in demographic parameters and VAS score except in sex between the two groups (P<0.05). Medial meniscal extrusion and tear were significantly more frequent in knees with synovial hypertrophy than those in knees without synovial hypertrophy. K-L grade and joint effusion thickness were greater in patients with synovial hypertrophy than those in patients without synovial hypertrophy (P<0.05). Conclusion: Synovial hypertrophy in knee osteoarthritis was associated with greater suprapatellar joint effusion and higher K-L grade and maybe a characteristic ultrasound feature of late knee osteoarthritis. These results suggest that synovial hypertrophy on ultrasound can be regarded as a predictor of rapid progression in patients with knee osteoarthritis.

Keywords: knee osteoarthritis, synovial hypertrophy, ultrasound, K-L grade

Procedia PDF Downloads 46
980 A Fast Multi-Scale Finite Element Method for Geophysical Resistivity Measurements

Authors: Mostafa Shahriari, Sergio Rojas, David Pardo, Angel Rodriguez- Rozas, Shaaban A. Bakr, Victor M. Calo, Ignacio Muga

Abstract:

Logging-While Drilling (LWD) is a technique to record down-hole logging measurements while drilling the well. Nowadays, LWD devices (e.g., nuclear, sonic, resistivity) are mostly used commercially for geo-steering applications. Modern borehole resistivity tools are able to measure all components of the magnetic field by incorporating tilted coils. The depth of investigation of LWD tools is limited compared to the thickness of the geological layers. Thus, it is a common practice to approximate the Earth’s subsurface with a sequence of 1D models. For a 1D model, we can reduce the dimensionality of the problem using a Hankel transform. We can solve the resulting system of ordinary differential equations (ODEs) either (a) analytically, which results in a so-called semi-analytic method after performing a numerical inverse Hankel transform, or (b) numerically. Semi-analytic methods are used by the industry due to their high performance. However, they have major limitations, namely: -The analytical solution of the aforementioned system of ODEs exists only for piecewise constant resistivity distributions. For arbitrary resistivity distributions, the solution of the system of ODEs is unknown by today’s knowledge. -In geo-steering, we need to solve inverse problems with respect to the inversion variables (e.g., the constant resistivity value of each layer and bed boundary positions) using a gradient-based inversion method. Thus, we need to compute the corresponding derivatives. However, the analytical derivatives of cross-bedded formation and the analytical derivatives with respect to the bed boundary positions have not been published to the best of our knowledge. The main contribution of this work is to overcome the aforementioned limitations of semi-analytic methods by solving each 1D model (associated with each Hankel mode) using an efficient multi-scale finite element method. The main idea is to divide our computations into two parts: (a) offline computations, which are independent of the tool positions and we precompute only once and use them for all logging positions, and (b) online computations, which depend upon the logging position. With the above method, (a) we can consider arbitrary resistivity distributions along the 1D model, and (b) we can easily and rapidly compute the derivatives with respect to any inversion variable at a negligible additional cost by using an adjoint state formulation. Although the proposed method is slower than semi-analytic methods, its computational efficiency is still high. In the presentation, we shall derive the mathematical variational formulation, describe the proposed multi-scale finite element method, and verify the accuracy and efficiency of our method by performing a wide range of numerical experiments and comparing the numerical solutions to semi-analytic ones when the latest are available.

Keywords: logging-While-Drilling, resistivity measurements, multi-scale finite elements, Hankel transform

Procedia PDF Downloads 359
979 Dynamic Analysis of Double Deck Tunnel

Authors: C. W. Kwak, I. J. Park, D. I. Jang

Abstract:

The importance of cost-wise effective application and construction is getting increase due to the surge of traffic volume in the metropolitan cities. Accordingly, the necessity of the tunnel has large section becomes more critical. Double deck tunnel can be one of the most appropriate solutions to the necessity. The dynamic stability of double deck tunnel is essential against seismic load since it has large section and connection between perimeter lining and interim slab. In this study, 3-dimensional dynamic numerical analysis was conducted based on the Finite Difference Method to investigate the seismic behavior of double deck tunnel. Seismic joint for dynamic stability and the mitigation of seismic impact on the lining was considered in the modeling and analysis. Consequently, the mitigation of acceleration, lining displacement and stress were verified successfully.

Keywords: double deck tunnel, interim slab, 3-dimensional dynamic numerical analysis, seismic joint

Procedia PDF Downloads 358
978 Sustainable Management Practices of International Construction Joint Ventures: A Conceptual Model for Managing Barriers and Risks

Authors: Mershack O. Tetteh, Albert P. C. Chan, Amos Darko, Gabriel Nani

Abstract:

International construction joint ventures (ICJVs) have evolved as an effective approach to sustainable development, given their myriad socio-economic and environmental benefits. Yet, they are not free of barriers and risks. In many studies, it is termed as risks for convenience’s sake. While the barriers and risks continue to affect the success of ICJVs, a systematic and reliable approach for managing them has yet to be developed. This study aims to identify and classify the barriers and risks factors affecting ICJVs through a systematic literature review. Based on a critical review of 54 papers published in peer-reviewed journals from 1990 to 2019, a conceptual framework was proposed for managing the barriers and risks in ICJV operations. The review showed that the barriers can be grouped into six including inter-organizational differences, lack of expertise and confidence, lack of effective planning and strategies, lack of knowledge of ICJV’s fundamentals, conflicts among ICJV entities, and management difficulties. The risks were also categorized into six: policy and political risks, legal risks, financial risks, management risks, project and technical risks, and market risks. The developed model would help practitioners achieve more efficient resource allocation and bring new perspectives for managerial practices in ICJVs. Moreover, it is positioned to alleviate the negligence of previous studies that combined the barriers and risks factors as one checklist.

Keywords: barriers, construction, international construction joint venture, risks, sustainable development

Procedia PDF Downloads 216
977 Optimal Policies in a Two-Level Supply Chain with Defective Product and Price Dependent Demand

Authors: Samira Mohabbatdar, Abbas Ahmadi, Mohsen S. Sajadieh

Abstract:

This paper deals with a two-level supply chain consisted of one manufacturer and one retailer for single-type product. The demand function of the customers depends on price. We consider an integrated production inventory system where the manufacturer processes raw materials in order to deliver finished product with imperfect quality to the retailer. Then retailer inspects the products and after that delivers perfect products to customers. The proposed model is based on the joint total profit of both the manufacturer and the retailer, and it determines the optimal ordering lot-size, number of shipment and selling price of the retailer. A numerical example is provided to analyse and illustrate the behaviour and application of the model. Finally, sensitivity analysis of the key parameters are presented to test feasibility of the model.

Keywords: supply chain, pricing policy, defective quality, joint economic lot sizing

Procedia PDF Downloads 307
976 Implementation of Integrated Multi-Channel Analysis of Surface Waves and Waveform Inversion Techniques for Seismic Hazard Estimation with Emphasis on Associated Uncertainty: A Case Study at Zafarana Wind Turbine Towers Farm, Egypt

Authors: Abd El-Aziz Khairy Abd El-Aal, Yuji Yagi, Heba Kamal

Abstract:

In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion methods and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20%) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels.

Keywords: MASW, seismic hazard, wind turbine towers, Zafarana wind farm

Procedia PDF Downloads 380
975 Specific Biomarker Level and Function Outcome Changes in Treatment of Patients with Frozen Shoulder Using Dextrose Prolotherapy Injection

Authors: Nuralam Sam, Irawan Yusuf, Irfan Idris, Endi Adnan

Abstract:

The most case in the shoulder in the the adult is the frozen shoulder. It make an uncomfortable sensation which disturbance daily activity. The studies of frozen shoulder are still limited. This study used a true experimental pre and post test design with a group design. The participant underwent dextrose prolotherapy injection in the rotator cuff, intraarticular glenohumeral joint, long head tendon biceps, and acromioclavicular joint injections with 15% dextrose, respectively, at week 2, week 4, and week 6. Participants were followed for 12 weeks. The specific biomarker MMP and TIMP, ROM, DASH score were measured at baseline, at week 6, and week 12. The data were analyzed by multivariate analysis (repeated measurement ANOVA, Paired T-Test, and Wilcoxon) to determine the effect of the intervention. The result showed a significant decrease in The Disability of the Arm, Shoulder, and Hand (DASH) score in prolo injection patients in each measurement week (p < 0.05). While the measurement of Range of Motion (ROM), each direction of shoulder motion showed a significant difference in average each week, from week 0 to week 6 (p <0.05).Dextrose prolotherapy injection results give a significant improvement in functional outcome of the shoulder joint, and ROMand did not show significant results in assessing the specific biomarker, MMP-1, and TIMP-1 in tissue repair. This study suggestion an alternative to the use of injection prolotherapy in Frozen shoulder patients, which has fewer side effects and better effectiveness than the use of corticosteroid injections.

Keywords: frozen shoulder, ROM, DASH score, prolotherapy, MMP-1, TIMP-1

Procedia PDF Downloads 83
974 Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays

Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev

Abstract:

In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters.

Keywords: antenna array, signal detection, ToA, AoA estimation

Procedia PDF Downloads 464
973 Understanding Human Rights Violations in the Fight against Boko Haram: A Historical Perspective

Authors: Anthony Mpiani

Abstract:

Recent media and NGO reports suggest that human rights violations have been a salient characteristic of the government Joint Task Force (JTF) in the war on Boko Haram. However, there has been relatively scant scholarly engagement with the forms of abuses committed by the JTF against civilians and why such human rights violations occur. The focus of this paper is to analyse the various human rights violations committed by JTF in the war against Boko Haram. Employing a historical approach, it argues that the JTF's human rights violations is shaped by the philosophy of colonial policing in Nigeria. Consequently, the failure of successive post-colonial governments to ideologically transform policing is accountable for the human rights abuses being witnessed in Nigeria today. A philosophical transformation in Nigeria's security forces especially the police and military is a prerequisite for ending human rights abuses in the fight against Boko Haram.

Keywords: colonialism, policing, joint task force, counterinsurgency, Boko Haram, human rights violations

Procedia PDF Downloads 123
972 Ameliorative Effect of Martynia annua Linn. on Collagen-Induced Arthritis via Modulating Cytokines and Oxidative Stress in Mice

Authors: Alok Pal Jain, Santram Lodhi

Abstract:

Martynia annua Linn. (Martyniaccae) is traditionally used in inflammation and applied locally to tuberculosis glands of camel’s neck. The leaves used topically to bites of venomous insects and wounds of domestic animals. Chemical examination of Martynia annua leaves revealed the presence of glycosides, tannins, proteins, phenols and flavonoids. The present study was aimed to evaluate the anti-arthritic activity of methanolic extract of Martynia annua leaves. Methanolic extract of Martynia annua leaves was tested by using in vivo collagen-induced arthritis mouse model to investigate the anti-rheumatoid arthritis activity. In addition, antioxidant effect of methanolic extract was determined by the estimation of antioxidants level in joint tissues. The severity of arthritis was assessed by arthritis score and edema. Levels of cytokines TNF-α and IL-6, in the joint tissue homogenate were measured using ELISA. A high dose (250 mg/kg) of methanolic extract was significantly reduced the degree of inflammation in mice as compared with reference drug. Antioxidants level and malondialdehyde (MDA) in joint tissue homogenate found significantly (p < 0.05) higher. Methanolic extract at dose of 250 mg/kg modulated the cytokines production and suppressed the oxidative stress in the mice with collagen-induced arthritis. This study suggested that Martynia annua might be alternative herbal medicine for the management of rheumatoid arthritis.

Keywords: Martynia annua, collagen, rheumatoid arthritis, antioxidants

Procedia PDF Downloads 260
971 Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule

Authors: Ming-Jong Yao, Chin-Sum Shui, Chih-Han Wang

Abstract:

This paper is developed based on a real-world decision scenario that an industrial gas company that applies the Vendor Managed Inventory model and supplies liquid oxygen with a self-operated heterogeneous vehicle fleet to hospitals in nearby cities. We name it as a Joint Replenishment and Heterogeneous Vehicle Routing Problem with Cyclical Schedule and formulate it as a non-linear mixed-integer linear programming problem which simultaneously determines the length of the planning cycle (PC), the length of the replenishment cycle and the dates of replenishment for each customer and the vehicle routes of each day within PC, such that the average daily operation cost within PC, including inventory holding cost, setup cost, transportation cost, and overtime labor cost, is minimized. A solution method based on genetic algorithm, embedded with an encoding and decoding mechanism and local search operators, is then proposed, and the hash function is adopted to avoid repetitive fitness evaluation for identical solutions. Numerical experiments demonstrate that the proposed solution method can effectively solve the problem under different lengths of PC and number of customers. The method is also shown to be effective in determining whether the company should expand the storage capacity of a customer whose demand increases. Sensitivity analysis of the vehicle fleet composition shows that deploying a mixed fleet can reduce the daily operating cost.

Keywords: cyclic inventory routing problem, joint replenishment, heterogeneous vehicle, genetic algorithm

Procedia PDF Downloads 52
970 Redundancy Component Matrix and Structural Robustness

Authors: Xinjian Kou, Linlin Li, Yongju Zhou, Jimian Song

Abstract:

We introduce the redundancy matrix that expresses clearly the geometrical/topological configuration of the structure. With the matrix, the redundancy of the structure is resolved into redundant components and assigned to each member or rigid joint. The values of the diagonal elements in the matrix indicates the importance of the corresponding members or rigid joints, and the geometrically correlations can be shown with the non-diagonal elements. If a member or rigid joint failures, reassignment of the redundant components can be calculated with the recursive method given in the paper. By combining the indexes of reliability and redundancy components, we define an index concerning the structural robustness. To further explain the properties of the redundancy matrix, we cited several examples of statically indeterminate structures, including two trusses and a rigid frame. With the examples, some simple results and the properties of the matrix are discussed. The examples also illustrate that the redundancy matrix and the relevant concepts are valuable in structural safety analysis.

Keywords: Structural Robustness, Structural Reliability, Redundancy Component, Redundancy Matrix

Procedia PDF Downloads 241
969 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 89
968 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy

Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani

Abstract:

Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.

Keywords: chitosan, leakage, radiosynovectomy, rhenium

Procedia PDF Downloads 311