Search results for: iron oxide nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3256

Search results for: iron oxide nanoparticles

616 Effect of Intrinsic Point Defects on the Structural and Optical Properties of SnO₂ Thin Films Grown by Ultrasonic Spray Pyrolysis Method

Authors: Fatiha Besahraoui, M'hamed Guezzoul, Kheira Chebbah, M'hamed Bouslama

Abstract:

SnO₂ thin film is characterized by Atomic Force Microscopy (AFM) and Photoluminescence Spectroscopies. AFM images show a dense surface of columnar grains with a roughness of 78.69 nm. The PL measurements at 7 K reveal the presence of PL peaks centered in IR and visible regions. They are attributed to radiative transitions via oxygen vacancies, Sn interstitials, and dangling bonds. A bands diagram model is presented with the approximate positions of intrinsic point defect levels in SnO₂ thin films. The integrated PL measurements demonstrate the good thermal stability of our sample, which makes it very useful in optoelectronic devices functioning at room temperature. The unusual behavior of the evolution of PL peaks and their full width at half maximum as a function of temperature indicates the thermal sensitivity of the point defects present in the band gap. The shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for excited electrons. Small redshifting of PL peaks is observed with increasing temperature. This behavior is attributed to the reduction of oxygen vacancies.

Keywords: transparent conducting oxide, photoluminescence, intrinsic point defects, semiconductors, oxygen vacancies

Procedia PDF Downloads 51
615 Oxidative Status and Some Serum Macro Minerals during Estrus, Anestrous and Repeat Breeding in Cholistani Cattle

Authors: Farah Ali, Laeeq Akbar Lodhi, Riaz Hussain, Muhammad Sufyan

Abstract:

The present study was conducted to determine the macro mineral profile and biomarkers of oxidative stress in Cholistani cattle kept at a public farm and various villages in district Bahawalpur. For this purpose 90 blood samples were collected each from estrual, anestrous and repeat breeding cattle having different age and lactation number. Reproductive tract examination of all the cattle was carried out to determine the reproductive status. Blood samples without EDTA were collected for serum separation at day of estrus (normal cyclic), repeat breeder and anestrous cows. The serum calcium levels were significantly decreased (P<0.05) in anestrous (7.31±0.02 mg/dl) cattle as compared to estrus. However, these values were non-significantly different between repeat breeder and cattle having estrus phase. The concentrations of serum phosphorus were significantly higher (P<0.01) in normal estrual (4.99±0.08 mg/dl) as compared torepeat breeder (3.90±0.06 mg/dl) and anestrous (3.82±0.04 mg/dl) Cholistani cattle. Mean serum MDA (nmol/ml) levels of repeat breeder (2.68±0.18) and anestrous (2.54±0.22) were significantly(P<0.01) higher than the estrous (1.71±0.03) cattle. Moreover, the serum nitric oxide levels(µmol/L) were also increased significantly (P<0.01) in repeat breeder(58.28±4.01)and anestrous (61.40±9.40) than the normalestrous (31.67±6.71) cattle. The ratio of Ca: P in normal cyclic animals was lower (1.73:1) as compared to the anestrous animals (1.92:1). It can be concluded from the present study that the level of Ca: P should also be near to 1.5:1 for better reproductive performance.

Keywords: anestrus, cholistani cattle, minerals, oxidative stress, repeat breeder

Procedia PDF Downloads 566
614 Carbon Supported Silver Nanostructures for Electrochemical Carbon Dioxide Reduction

Authors: Sonali Panigrahy, Manjunatha K., Sudip Barman

Abstract:

Electrocatalytic reduction methods hold significant promise in addressing the urgent need to mitigate excessive greenhouse gas emissions, particularly carbon dioxide (CO₂). A highly effective catalyst is essential for achieving the conversion of CO₂ into valuable products due to the complex, multi-electron, and multi-product nature of the CO₂ reduction process. The electrochemical reduction of CO₂, driven by renewable energy sources, presents a valuable opportunity for simultaneously reducing CO₂ emissions while generating valuable chemicals and fuels, with syngas being a noteworthy product. Silver-based electrodes have been the focus of extensive research due to their low overpotential and remarkable selectivity in promoting the generation of carbon monoxide (CO) in the electrocatalytic carbon dioxide reduction reaction (CO₂RR). In this study, we delve into the synthesis of carbon-supported silver nanoparticles (Ag/C), which serve as efficient electrocatalysts for the reduction of CO₂. The as-prepared catalyst, Ag/C, is not only cost-effective but also highly proficient in facilitating the conversion of CO₂ and H₂O into syngas, which is a customizable mixture of hydrogen (H₂) and carbon monoxide (CO). The highest faradic efficiency for the production of CO on Ag/C was calculated to be 56.4% at -1.4 V vs Ag/AgCl. The maximum partial current density for the generation of CO was determined to be -9.4 mA cm-2 at a potential of -1.6 V vs Ag/AgCl. This research demonstrates the potential of Ag/C as an electrocatalyst to enable the sustainable production of syngas, contributing to the reduction of CO₂ emissions and the synthesis of valuable chemical precursors and fuels.

Keywords: CO₂, carbon monooxide, electrochemical, silver

Procedia PDF Downloads 34
613 Manganese and Other Geothermal Minerals Exposure to Residents in Ketenger Village, Banyumas, Indonesia

Authors: Rita Yuniatun, Dewi Fadlilah Firdausi, Anida Hanifah, Putrisuvi Nurjannah Zalqis, Erza Nur Afrilia, Akrima Fajrin Nurimani, Andrew Luis Krishna

Abstract:

Manganese (Mn) is one of the potential contaminants minerals geothermal water. Preliminary studies conducted in Ketenger village, the nearest village with Baturaden hot spring, showed that the concentration of Mn in water supply has exceeded the reference value. Mineral contamination problem in Ketenger village is not only Mn, but also other potential geothermal minerals, such as chromium (Cr), iron (Fe), sulfide (S2-), nickel (Ni), cobalt (Co), and zinc (Zn). It becomes a concern because generally the residents still use ground water as the water source for their daily needs, including drinking and cooking. Therefore, this study aimed to determine the distribution of mineral contamination in drinking water and food and to estimate the health risks possibility from the exposure. Four minerals (Mn, Fe, S2-, and Cr6+) were analyzed in drinking water, carbohydrate sources, vegetables, fishes, and fruits. The test results indicate that Mn concentration in drinking water is 0.35 mg/L, has exceeded the maximum contaminant level (MCL) according to the US EPA (MCL = 0.005 mg/L), whereas other minerals still comply with the standards. In addition, we found that the average of Mn concentration in the carbohydrate sources is quite high (1.87 mg/Kg). Measurement results in Chronic Daily Intake (CDI) and the Risk Quotient (RQ) found that exposure to manganese and other geothermal minerals in drinking water and food are safe from the non-carcinogenic effects in each age group (RQ<1). So, geothermal mineral concentrations in drinking water and food has no effect on non-carcinogenic risk in Ketenger’s residents because of CDI is also influenced by other parameters such as the duration of exposure and the rate of consumption. However, it was found that intake of essential minerals (Mn and Fe) are deficient in every age group. So that, the addition of Mn and Fe intake is recommended.

Keywords: CDI, contaminant, geothermal minerals, manganese, RQ

Procedia PDF Downloads 232
612 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 297
611 Protective Role of CoQ10 or L-Carnitine on the Integrity of the Myocardium in Doxorubicin Induced Toxicity

Authors: Gehan A. Hegazy, Hesham N. Mustafa, Sally A. El Awdan, Marawan AbdelBaset

Abstract:

Doxorubicin (DOX) is a chemotherapeutic agent used for the treatment of different cancers and its clinical usage is hindered by the oxidative injury-related cardiotoxicity. This work aims to declare if the harmful effects of DOX on the heart can be alleviated with the use of Coenzyme Q10 (CoQ10) or L-carnitine. The study was performed on seventy-two female Wistar albino rats divided into six groups, 12 animals each: Control group; DOX group (10 mg/kg); CoQ10 group (200 mg/kg); L-carnitine group (100 mg/kg); DOX + CoQ10 group; DOX + L-carnitine group. CoQ10 and L-carnitine treatment orally started five days before a single dose of 10 mg/kg DOX that injected intraperitoneally (IP) then the treatment continued for ten days. At the end of the study, serum biochemical parameters of cardiac damage, oxidative stress indices, and histopathological changes were investigated. CoQ10 or L-carnitine showed noticeable effects in improving cardiac functions evidenced reducing serum enzymes as serum interleukin-1 beta (IL-1), tumor necrosis factor alpha (TNF-), leptin, lactate dehydrogenase (LDH), Cardiotrophin-1, Troponin-I and Troponin-T. Also, alleviate oxidative stress, decrease of cardiac Malondialdehyde (MDA), Nitric oxide (NO) and restoring cardiac reduced glutathione levels to normal levels. Both corrected the cardiac alterations histologically and ultrastructurally. With visible improvements in -SMA, vimentin and eNOS immunohistochemical markers. CoQ10 or L-carnitine supplementation improves the functional and structural integrity of the myocardium.

Keywords: CoQ10, doxorubicin, L-Carnitine, cardiotoxicity

Procedia PDF Downloads 139
610 Eliminating Injury in the Work Place and Realizing Vision Zero Using Accident Investigation and Analysis as Method: A Case Study

Authors: Ramesh Kumar Behera, Md. Izhar Hassan

Abstract:

Accident investigation and analysis are useful to identify deficiencies in plant, process, and management practices and formulate preventive strategies for injury elimination. In India and other parts of the world, industrial accidents are investigated to know the causes and also to fulfill legal compliances. However, findings of investigation are seldom used appropriately to strengthen Occupational Safety and Health (OSH) in expected lines. The mineral rich state of Odisha in eastern coast of India; known as a hub for Iron and Steel industries, witnessed frequent accidents during 2005-2009. This article based on study of 982 fatal ‘factory-accidents’ occurred in Odisha during the period 2001-2016, discusses the ‘turnaround-story’ resulting in reduction of fatal accident from 122 in 2009 to 45 in 2016. This paper examines various factors causing incidents; accident pattern in steel and chemical sector; role of climate and harsh weather conditions on accident causation. Software such as R, SQL, MS-Excel and Tableau were used for analysis of data. It is found that maximum fatality is caused due to ‘fall from height’ (24%); steel industries are relatively more accident prone; harsh weather conditions of summer increase chances of accident by 20%. Further, the study suggests that enforcement of partial work-restriction around lunch time during peak summer, screening and training of employees reduce accidents due to fall from height. The study indicates that learning from accident investigation and analysis can be used as a method to reduce work related accidents in the journey towards ‘Vision Zero’.

Keywords: accident investigation and analysis, fatal accidents in India, fall from height, vision zero

Procedia PDF Downloads 125
609 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications

Authors: Noureddine Ramdani

Abstract:

In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.

Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding

Procedia PDF Downloads 51
608 Nanoparaquat Effects on Oxidative Stress Status and Liver Function in Male Rats

Authors: Zahra Azizi, Ashkan Karbasi, Farzin Firouzian, Sara Soleimani Asl, Akram Ranjbar

Abstract:

Background: One of the most often used herbicides in agriculture is paraquat (PQ), which is very harmful to both people and animals. Chitosan is a well-known, non-toxic polymer commonly used in preparing particles via ionotropic gelation facilitated by negatively charged agents such as sodium alginate. This study aimed to compare the effects of PQ and nanoparaquat (PQNPs) on liver function in male rats. Materials & Methods: Rats were exposed to PQ & PQNPs (4 mg/kg/day, intraperitoneally) for seven days. Then, rats were anesthetized, and serum and liver samples were collected. Later, enzymatic activities such as alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) in serum and oxidative stress biomarkers such as lipid peroxidation (LPO), total antioxidant capacity (TAC) and total thiol groups (TTG) levels in liver tissue were measured by colorimetric methods. Also, histological changes in the liver were evaluated. Results: PQ altered the levels of ALT, AST, and ALP while inducing oxidative stress in the liver. Additionally, liver homogenates with PQ exposure had challenged LPO, TAC, and TTG levels. The severe liver damage is indicated by a significant increase in the enzyme activity of AST, ALT, and ALP in serum. According to the results of the current study, PQNPs, as compared to PQ and the control group, lowered ALT, AST, ALP, and LPO levels while increasing TAC and TTG levels. Conclusion: According to biochemical and histological investigations, PQ loaded in chitosan-alginate particles is more efficient than free PQ at reducing liver toxicity.

Keywords: paraquat, paraquat nanoparticles, liver, oxidative stress

Procedia PDF Downloads 22
607 Human and Environment Coevolution: The Chalcolithic Tell Settlements from Muntenia and Dobrogea, South-Eastern Romania

Authors: Constantin Haita

Abstract:

The chalcolithic tell settlements from south-eastern Romania, attributed to Gumelnița culture, are characterised by a well-defined surface, marked often by delimitation structures, a succession of many layers of construction, destruction, and rebuilding, and a well-structured area of occupation: built spaces, passage areas, waste zones. Settlements of tell type are located in the river valleys –on erosion remnants, alluvial bars or small islands, at the border of the valleys– on edges or prominences of Pleistocene terraces, lower Holocene terraces, and banks of lakes. This study integrates data on the geographical position, the morphological background, and the general stratigraphy of these important settlements. The correlation of the spatial distribution with the geomorphological units of each area of evolution creates an image of the natural landscape in which they occurred. The sedimentological researches achieved in the floodplain area of Balta Ialomiței showed important changes in the alluvial activity of Danube, after the Chalcolithic period (ca. 6500 - 6000 BP), to Iron Age and Middle Ages. The micromorphological analysis, consisting in thin section interpretation, at the microscopic scale, of sediments and soils in an undisturbed state, allowed the interpretation of the identified sedimentary facies, in terms of mode of formation and anthropic activities. Our studied cases reflect some distinct situations, correlating either with the geomorphological background or with the vertical development, the presence of delimiting structures and the internal organization. The characteristics of tells from this area bring significant information about the human habitation of Lower Danube in Prehistory.

Keywords: chalcolithic, micromorphology, Romania, sedimentology, tell settlements

Procedia PDF Downloads 104
606 Evaluation of Efficiency of Naturally Available Disinfectants and Filter Media in Conventional Gravity Filters

Authors: Abhinav Mane, Kedar Karvande, Shubham Patel, Abhayraj Lodha

Abstract:

Gravity filters are one of the most commonly used, economically viable and moderately efficient water purification systems. Their efficiency is mainly based on the type of filter media installed and its location within the filter mass. Several researchers provide valuable input in decision of the type of filter media. However, the choice is mainly restricted to the chemical combinations of different substances. This makes it very much dependent on the factory made filter media, and no cheap alternatives could be found and used. This paper presents the use of disinfectants and filter medias either available naturally or could be prepared using natural resources in conventional mechanism of gravity filter. A small scale laboratory investigation was made with variation in filter media thickness and its location from the top surface of the filter. A rigid steel frame based custom fabricated test setup was used to facilitate placement of filter media at different height within the filter mass. Finely grinded sun dried Neem (Azadirachta indica) extracts and porous burnt clay pads were used as two distinct filter media and placed in isolation as well as in combination with each other. Ground water available in Marathwada region of Maharashtra, India which mainly consists of harmful materials like Arsenic, Chlorides, Iron, Magnesium and Manganese, etc. was treated in the filters fabricated in the present study. The evaluation was made mainly in terms of the input/output water quality assessment through laboratory tests. The present paper should give a cheap and eco-friendly solution to prepare gravity filter at the merit of household skills and availability.

Keywords: fliter media, gravity filters, natural disinfectants, porous clay pads

Procedia PDF Downloads 219
605 Bacterial Cellulose/Silver-Doped Hydroxyapatite Composites for Tissue Engineering Application

Authors: Adrian Ionut Nicoara, Denisa Ionela Ene, Alina Maria Holban, Cristina Busuioc

Abstract:

At present, the development of materials with biomedical applications is a domain of interest that will produce a full series of benefits in engineering and medicine. In this sense, it is required to use a natural material, and this paper is focused on the development of a composite material based on bacterial cellulose – hydroxyapatite and silver nanoparticles with applications in hard tissue. Bacterial cellulose own features like biocompatibility, non-toxicity character and flexibility. Moreover, the bacterial cellulose can be conjugated with different forms of active silver to possess antimicrobial activity. Hydroxyapatite is well known that can mimic at a significant level the activity of the initial bone. The material was synthesized by using an ultrasound probe and finally characterized by several methods. Thereby, the morphological properties were analyzed by using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Because the synthesized material has medical application in restore the tissue and to fight against microbial invasion, the samples were tested from the biological point of view by evaluating the biodegradability in phosphate-buffered saline (PBS) and simulated body fluid (SBF) and moreover the antimicrobial effect was performed on Gram-positive bacterium Staphylococcus aureus, Gram-negative bacterium Escherichia coli, and fungi Candida albicans. The results reveal that the obtained material has specific characteristics for bone regeneration.

Keywords: bacterial cellulose, biomaterials, hydroxyapatite, scaffolds materials

Procedia PDF Downloads 102
604 Modified Gold Screen Printed Electrode with Ruthenium Complex for Selective Detection of Porcine DNA

Authors: Siti Aishah Hasbullah

Abstract:

Studies on identification of pork content in food have grown rapidly to meet the Halal food standard in Malaysia. The used mitochondria DNA (mtDNA) approaches for the identification of pig species is thought to be the most precise marker due to the mtDNA genes are present in thousands of copies per cell, the large variability of mtDNA. The standard method commonly used for DNA detection is based on polymerase chain reaction (PCR) method combined with gel electrophoresis but has major drawback. Its major drawbacks are laborious, need longer time and toxic to handle. Therefore, the need for simplicity and fast assay of DNA is vital and has triggered us to develop DNA biosensors for porcine DNA detection. Therefore, the aim of this project is to develop electrochemical DNA biosensor based on ruthenium (II) complex, [Ru(bpy)2(p-PIP)]2+ as DNA hybridization label. The interaction of DNA and [Ru(bpy)2(p-HPIP)]2+ will be studied by electrochemical transduction using Gold Screen-Printed Electrode (GSPE) modified with gold nanoparticles (AuNPs) and succinimide acrylic microspheres. The electrochemical detection by redox active ruthenium (II) complex was measured by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The results indicate that the interaction of [Ru(bpy)2(PIP)]2+ with hybridization complementary DNA has higher response compared to single-stranded and mismatch complementary DNA. Under optimized condition, this porcine DNA biosensor incorporated modified GSPE shows good linear range towards porcine DNA.

Keywords: gold, screen printed electrode, ruthenium, porcine DNA

Procedia PDF Downloads 281
603 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance

Authors: Han Xiao

Abstract:

The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.

Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image

Procedia PDF Downloads 102
602 Polysaccharide-Based Oral Delivery Systems for Site Specific Delivery in Gastro-Intestinal Tract

Authors: Kaarunya Sampathkumar, Say Chye Joachim Loo

Abstract:

Oral delivery is regarded as the facile method for the administration of active pharmaceutical ingredients (API) and drug carriers. In an initiative towards sustainable nanotechnology, an oral nano-delivery system has been developed that is made entirely of food-based materials and can also act as a site-specific delivery device depending on the stimulus encountered in different parts of the gastrointestinal tract (GIT). The delivery system has been fabricated from food grade polysaccharide materials like chitosan and starch through electrospraying technique without the use of any organic solvents. A nutraceutical extracted from an Indian medicinal plant, has been loaded into the nano carrier to test its efficacy in encapsulation and stimuli based release of the active ingredient. The release kinetics of the nutraceutical from the carrier was evaluated in simulated gastric, intestinal and colonic fluid and was found to be triggered both by the enzymes and the pH in each part of the intestinal tract depending on the polysaccharide being used. The toxicity of the nanoparticles on the intestinal epithelial cells was tested and found to be relatively safe for up to 24 hours at a concentration of 0.2 mg/mL with cellular uptake also being observed. The developed nano carrier thus serves as a promising delivery vehicle for targeted delivery to different parts of the GIT with the inherent conditions of the GIT itself acting as the stimulus. In addition, being fabricated from food grade materials, the carrier could be potentially used for the targeted delivery of nutrients through functional foods.

Keywords: bioavailability, chitosan, delivery systems, encapsulation

Procedia PDF Downloads 182
601 Long-Term Cohort of Patients with Beta Thalassemia; Prevailing Role of Serum Ferritin Levels in Hypocalcemia and Growth Retardation

Authors: Shervin Rashidinia, Sara Shahmoradi, Seyyed Shahin Eftekhari, Mohsen Talebizadeh, Mohammad Saleh Sadeghi

Abstract:

Background: Beta-thalassemia Major (BTM) is a kind of hereditary hemolytic anemia which depended on regular monthly blood transfusion. However, iron deposition into the organs leads to multi-organ damage. The present study is the first study which aimed to evaluate the average of five-years serum ferritin level and compared by the prevalence of short stature and hypocalcemia. Materials/Methods: A cross-sectional retrospective study which a total of 140 patients with beta-thalassemia who were referred to Qom Thalassemia Clinic between February 2011 and July 2016 were enrolled to be reviewed. The exclusion criteria were consisting of incomplete medical records, diagnosis less than 2-years-ago and the blood transfusion less than every 4 weeks. The data including age, gender, weight, height, age of initial blood transfusion, age of initial chelation therapy, ferritin, and calcium were collected and analysis by SPSS version 24. Results: A total of 140 patients were enrolled. Of them, 75 (53.4%) were female. The mean age of the patients was 13.4±4.6 years.The mean age of initial diagnosis was 20.2±7.4 months. Hypocalcemia and short stature were occurred in 41 (29.3%) and 37 (26.4%) patients, respectively. The mean five-years serum ferritin level was significantly higher in the patients with short stature and hypocalcemia (P<0.0001). However, rise in serum ferritin level significantly increases the risk of short-stature and hypocalcemia (1.0004- and 1.0029 fold, respectively). Conclusion: We demonstrated that prevalence of short stature and hypocalcemia were significantly higher in the BTM.However, ferritin significantly increases the risk of short stature and hypocalcemia.

Keywords: beta-thalassemia, ferritin, growth retardation, hypocalcemia

Procedia PDF Downloads 298
600 Development of a Semiconductor Material Based on Functionalized Graphene: Application to the Detection of Nitrogen Oxides (NOₓ)

Authors: Djamil Guettiche, Ahmed Mekki, Tighilt Fatma-Zohra, Rachid Mahmoud

Abstract:

The aim of this study was to synthesize and characterize conducting polymer composites of polypyrrole and graphene, including pristine and surface-treated graphene (PPy/GO, PPy/rGO, and PPy/rGO-ArCOOH), for use as sensitive elements in a homemade chemiresistive module for on-line detection of nitrogen oxides vapors. The chemiresistive module was prepared, characterized, and evaluated for performance. Structural and morphological characterizations of the composite were carried out using FTIR, Raman spectroscopy, and XRD analyses. After exposure to NO and NO₂ gases in both static and dynamic modes, the sensitivity, selectivity, limit of detection, and response time of the sensor were determined at ambient temperature. The resulting sensor showed high sensitivity, selectivity, and reversibility, with a low limit of detection of 1 ppm. A composite of polypyrrole and graphene functionalized with aryl 4-carboxy benzene diazonium salt was synthesized and characterized using FTIR, scanning electron microscopy, transmission electron microscopy, UV-visible, and X-ray diffraction. The PPy-rGOArCOOH composite exhibited a good electrical resistance response to NO₂ at room temperature and showed enhanced NO₂-sensing properties compared to PPy-rGO thin films. The selectivity and stability of the NO₂ sensor based on the PPy/rGO-ArCOOH nanocomposite were also investigated.

Keywords: conducting polymers, surface treated graphene, diazonium salt, polypyrrole, Nitrogen oxide sensing

Procedia PDF Downloads 47
599 Co-Precipitation Method for the Fabrication of Charge-Transfer Molecular Crystal Nanocapsules

Authors: Rabih Al-Kaysi

Abstract:

When quasi-stable solutions of 9-methylanthracene (pi-electron donor, 0.0005 M) and 1,2,4,5-Tetracyanobenzene (pi-electron acceptor, 0.0005 M) in aqueous sodium dodecyl sulfate (SDS, 0.025 M) were gently mixed, uniform-shaped rectangular charge-transfer nanocrystals precipitated out. These red colored charge-transfer (CT) crystals were composed of a 1:1-mole ratio of acceptor/ donor and are highly insoluble in water/SDS solution. The rectangular crystals morphology is semi hollow with symmetrical twin pockets reminiscent of nanocapsules. For a typical crop of nanocapsules, the dimensions are 21 x 6 x 0.5 microns with an approximate hollow volume of 1.5 x 105 nm3. By varying the concentration of aqueous SDS, mixing duration and incubation temperature, we can control the size and volume of the nanocapsules. The initial number of CT seed nanoparticles, formed by mixing the D and A solutions, determined the number and dimensions of the obtained nanocapsules formed after several hours of incubation under still conditions. Prolonged mixing of the donor and acceptor solutions resulted in plenty of initial seeds hence smaller nanocapsules. Short mixing times yields less seed formation and larger micron-sized capsules. The addition of Doxorubicin in situ with the quasi-stable solutions while mixing leads to the formation of CT nanocapsules with Doxorubicin sealed inside. The Doxorubicin can be liberated from the nanocapsules by cracking them using ultrasonication. This method can be extended to other binary CT complex crystals as well.

Keywords: charge-transfer, nanocapsules, nanocrystals, doxorubicin

Procedia PDF Downloads 181
598 Heat Transfer Enhancement of Structural Concretes Made of Macro-Encapsulated Phase Change Materials

Authors: Ehsan Mohseni, Waiching Tang, Shanyong Wang

Abstract:

Low thermal conductivity of phase change materials (PCMs) affects the thermal performance and energy storage efficiency of latent heat thermal energy storage systems. In the current research, a structural lightweight concrete with function of indoor temperature control was developed using thermal energy storage aggregates (TESA) and nano-titanium (NT). The macro-encapsulated technique was served to incorporate the PCM into the lightweight aggregate through vacuum impregnation. The compressive strength was measured, and the thermal performance of concrete panel was evaluated by using a self-designed environmental chamber. The impact of NT on microstructure was also assessed via scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) tests. The test results indicated that NT was able to increase the compressive strength by filling the micro pores and making the microstructure denser and more homogeneous. In addition, the environmental chamber experiment showed that introduction of NT into TESA improved the heat transfer of composites noticeably. The changes were illustrated by the reduction in peak temperatures in the centre, outside and inside surfaces of concrete panels by the inclusion of NT. It can be concluded that NT particles had the capability to decrease the energy consumption and obtain higher energy storage efficiency by the reduction of indoor temperature.

Keywords: heat transfer, macro-encapsulation, microstructure properties, nanoparticles, phase change material

Procedia PDF Downloads 81
597 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen

Authors: Ashutosh Kumar, Irene M. C. Lo

Abstract:

Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.

Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources

Procedia PDF Downloads 216
596 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 77
595 Marker Assisted Breeding for Grain Quality Improvement in Durum Wheat

Authors: Özlem Ateş Sönmezoğlu, Begüm Terzi, Ahmet Yıldırım, Leyla Gündüz

Abstract:

Durum wheat quality is defined as its suitability for pasta processing, that is pasta making quality. Another factor that determines the quality of durum wheat is the nutritional value of wheat or its final products. Wheat is a basic source of calories, proteins and minerals for humans in many countries of the world. For this reason, improvement of wheat nutritional value is of great importance. In recent years, deficiencies in protein and micronutrients, particularly in iron and zinc, have seriously increased. Therefore, basic foods such as wheat must be improved for micronutrient content. The effects of some major genes for grain quality established. Gpc-B1 locus is one of the genes increased protein and micronutrients content, and used in improvement studies of durum wheat nutritional value. The aim of this study was to increase the protein content and the micronutrient (Fe, Zn ve Mn) contents of an advanced durum wheat line (TMB 1) that was previously improved for its protein quality. For this purpose, TMB1 advanced durum wheat line were used as the recurrent parent and also, UC1113-Gpc-B1 line containing the Gpc-B1 gene was used as the gene source. In all of the generations, backcrossed plants carrying the targeted gene region were selected by marker assisted selection (MAS). BC4F1 plants MAS method was employed in combination with embryo culture and rapid plant growth in a controlled greenhouse conditions in order to shorten the duration of the transition between generations in backcross breeding. The Gpc-B1 gene was selected specific molecular markers. Since Yr-36 gene associated with Gpc-B1 allele, it was also transferred to the Gpc-B1 transferred lines. Thus, the backcrossed plants selected by MAS are resistance to yellow rust disease. This research has been financially supported by TÜBİTAK (112T910).

Keywords: Durum wheat, Gpc-B1, MAS, Triticum durum, Yr-36

Procedia PDF Downloads 246
594 Effects of Cymbopogon citratus, Stapf (CS) or Lemon Grass Ethanol Extract on Antioxidant and Vascular Disorders Parameters in Rat

Authors: Suphaket Saenthaweesuk, Nutiya Somparn, Atcharaporn Thewmore

Abstract:

The present study aims to investigate the effects of Cymbopogon citratus, Stapf (CS) or lemon grass ethanol extract on antioxidant and vascular disorders parameters in rat. The CS ethanol extract was screened for its phytochemical contents and antioxidant activity in vitro. Moreover, the extract was studied in rats to evaluate its effects in vivo. Rats were orally administered with CS at 1,000 mg/kg/day for 30 days. Phytochemical screening of CS extract indicated the presence of tannins, flavonoids and phenolic compounds. The extract contained phenolic compounds 1,400.10 ± 0.47 mg of gallic acid equivalents per gram CS extract. The free radical scavenging activity assessed by DPPH assay gave IC50 of 168.77 ± 3.32µg/mL, which is relatively lower than that of BHT with IC50 of 12.34 ± 1.14 µg/mL. In the animals, the protein expression of antioxidant enzymes, γ-glutamylcysteine ligase (γ-GCL) in liver was significantly increased. This was consistent with elevation of serum catalase (CAT) and superoxide dismutase (SOD) activities. However, Protein expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule (ICAM-1) and endothelial nitric oxide synthase (eNOS) in heart and aorta were not differenced from normal control. Taken together, the present study provides evidence that CCS water extract exhibits direct antioxidant properties and can induce cytoprotective enzymes in vivo.

Keywords: antioxidant, Cymbopogon citratus Stapf, VCAM-1, γ-glutamylcysteine ligase

Procedia PDF Downloads 281
593 MHD Boundary Layer Flow of a Nanofluid Past a Wedge Shaped Wick in Heat Pipe

Authors: Ziya Uddin

Abstract:

This paper deals with the theoretical and numerical investigation of magneto-hydrodynamic boundary layer flow of a nano fluid past a wedge shaped wick in heat pipe used for the cooling of electronic components and different type of machines. To incorporate the effect of nanoparticle diameter, concentration of nanoparticles in the pure fluid, nano thermal layer formed around the nanoparticle and Brownian motion of nano particles etc., appropriate models are used for the effective thermal and physical properties of nano fluids. To model the rotation of nano particles inside the base fluid, microfluidics theory is used. In this investigation ethylene glycol (EG) based nanofluids, are taken into account. The non-linear equations governing the flow and heat transfer are solved by using a very effective particle swarm optimization technique along with Runge-Kutta method. The values of heat transfer coefficient are found for different parameters involved in the formulation viz. nanoparticle concentration, nanoparticle size, magnetic field and wedge angle etc. It is found that the wedge angle, presence of magnetic field, nanoparticle size and nanoparticle concentration etc. have prominent effects on fluid flow and heat transfer characteristics for the considered configuration.

Keywords: nanofluids, wedge shaped wick, heat pipe, numerical modeling, particle swarm optimization, nanofluid applications, Heat transfer

Procedia PDF Downloads 355
592 Monodisperse Hallow Sandwich MOF for the Catalytic Oxidation of Benzene at Room Temperature

Authors: Srinivasapriyan Vijayan

Abstract:

Phenol is one of the most vital chemical in industry. Nowadays, phenol production is based upon the three-step cumene process, which involves a hazardous cumene hydroperoxide intermediate and produces nearly equimolar amounts of acetone as a coproduct. An attractive route in phenol production is the direct one-step selective hydroxylation of benzene using eco-friendly oxidants such as O2, N2O, and H2O2. In particular, the direct hydroxylation of benzene to form phenol with O2 has recently attracted extensive research attention because this process is green clean and eco-friendly. However, most of the catalytic systems involving O2 have a low rate of hydroxylation because the direct introduction of hydroxyl functionality into benzene is challenging. Almost all the developed catalytic systems require an elevated temperature and suffer from low conversion because of the notoriously low reactivity of aromatic C–H bonds. Moreover, increased reactivity of phenol relative to benzene makes the selective oxidation of benzene to phenol very difficult, especially under heating conditions. Hollow spheres, a very fascinating class of materials with good permeation and low density, highly monodisperse MOF hollow sandwich spheres have been rationally synthesized using monodisperse polystyrene (PS) nanoparticles as templates through a versatile step-by-step self-assembly strategy. So, our findings could pave the way toward highly efficient nonprecious catalysts for low-temperature oxidation reactions in heterogeneous catalysis. Because it is easy post-reaction separation, its cheap, green and recyclable.

Keywords: benzene hydroxylation, Fe-based metal organic frameworks, molecular oxygen, phenol

Procedia PDF Downloads 185
591 Screening of Thyroid Stimulating Hormone Using Paper-Based Lateral Flow Device

Authors: Pattarachaya Preechakasedkit, Kota Osada, Koji Suzuki, Daniel Citterio, Orawon Chailapakul

Abstract:

A paper-based lateral flow device for screening thyroid stimulating hormone (TSH) is reported. A sandwich immunoassay was performed using two mouse monoclonal TSH antibodies (anti-hTSH 5403 and 5404) as immobilized and labeled antibodies for capturing TSH samples. Test (anti-hTSH 5403) and control (goat anti-Mouse IgG) lines were fabricated on nitrocellulose membrane (NCM) using ballpoint pen printed with a speed of 3 cm/s and thickness setting of 1. The novel gold nanoparticles europium complex (AuNPs@Eu) was used as fluorescence label compared to conventional AuNPs label. The results obtained with this device can be visually assessed by the naked eyes and under UV hand lamps, and quantitative analysis can be performed using the ImageJ program. The limit of detection (LOD) under UV hand lamps (0.1 µIU/mL) provided 50-fold greater sensitivity than AuNPs (5 µIU/mL), which is suitable for both hypothyroidism and hyperthyroidism screening within 30 min. A linear relationship between the red intensity and the logarithmic concentrations of TSH was observed with a good correlation (R²=0.992). Furthermore, the device can be effectively applied for screening TSH in the spiked human serum with recovery range of 96.80-104.45% and RSD of 2.18-3.63%. Therefore, the developed device is an alternative method for TSH screening which provides a lot of advantages including low cost, short time analysis, ease of use, disposability, portability, and on-site measurement.

Keywords: thyroid stimulating hormone, paper-based lateral flow, hypothyroidism, hyperthyroidism

Procedia PDF Downloads 331
590 Microscopic Analysis of Bulk, High-Tc Superconductors by Transmission Kikuchi Diffraction

Authors: Anjela Koblischka-Veneva, Michael R. Koblischka

Abstract:

In this contribution, the Transmission-Kikuchi Diffraction (TKD, or sometimes called t-EBSD) is applied to bulk, melt-grown YBa₂Cu₃O₇ (YBCO) superconductors prepared by the MTMG (melt-textured melt-grown) technique and the infiltration growth (IG) technique. TEM slices required for the analysis were prepared by means of Focused Ion-Beam (FIB) milling using mechanically polished sample surfaces, which enable a proper selection of the interesting regions for investigations. The required optical transparency was reached by an additional polishing step of the resulting surfaces using FIB-Ga-ion and Ar-ion milling. The improved spatial resolution of TKD enabled the investigation of the tiny YBa₂Cu₃O₅ (Y-211) particles having a diameter of about 50-100 nm embedded within the YBCO matrix and of other added secondary phase particles. With the TKD technique, the microstructural properties of the YBCO matrix are studied in detail. It is observed that the matrix shows the effects of stress/strain, depending on the size and distribution of the embedded particles, which are important for providing additional flux pinning centers in such superconducting bulk samples. Using the Kernel Average Misorientation (KAM) maps, the strain induced in the superconducting matrix around the particles, which increases the flux pinning effectivity, can be clearly revealed. This type of analysis of the EBSD/TKD data is, therefore, also important for other material systems, where nanoparticles are embedded in a matrix.

Keywords: transmission Kikuchi diffraction, EBSD, TKD, embedded particles, superconductors YBa₂Cu₃O₇

Procedia PDF Downloads 105
589 Application of Molecular Materials in the Manufacture of Flexible and Organic Devices for Photovoltaic Applications

Authors: Mariana Gomez Gomez, Maria Elena Sanchez Vergara

Abstract:

Many sustainable approaches to generate electric energy have emerged in the last few decades; one of them is through solar cells. Yet, this also has the disadvantage of highly polluting inorganic semiconductor manufacturing processes. Therefore, the use of molecular semiconductors must be considered. In this work, allene compounds C24H26O4 and C24H26O5 were used as dopants to manufacture semiconductors films based on PbPc by high-vacuum evaporation technique. IR spectroscopy was carried out to determine the phase and any significant chemical changes which may occur during the thermal evaporation. According to UV-visible spectroscopy and Tauc’s model, the deposition process generated thin films with an activation energy range of 1.47 to 1.55 eV for direct transitions and 1.29 to 1.33 eV for indirect transitions. These values place the manufactured films within the range of low bandgap semiconductors. The flexible devices were manufactured: polyethylene terephthalate (PET), Indium tin oxide (ITO)/organic semiconductor/ Cubic Close Packed (CCP). The characterization of the devices was carried out by evaluating electrical conductivity using the four-probe collinear method. I-V curves were obtained under different lighting conditions at room temperature. OS1 (PbPc/C24H26O4) showed an Ohmic behavior, while OS2 (PbPc/C24H26O5) reached higher current values ​​at lower voltages. The results obtained show that the semiconductors devices doped with allene compounds can be used in the manufacture of optoelectronic devices.

Keywords: electrical properties, optical gap, phthalocyanine, thin film.

Procedia PDF Downloads 209
588 Evaluation of Heavy Metal Contamination and Assessment of the Suitability of Water for Irrigation: A Case Study of the Sand River, Limpopo Province, South Africa

Authors: Ngonidzashe Moyo, Mmaditshaba Rapatsa

Abstract:

The primary objective of this study was to determine heavy metal contamination in the water, sediment, grass and fish in Sand River, South Africa. This river passes through an urban area and sewage effluent is discharged into it. Water from the Sand river is subsequently used for irrigation downstream of the sewage treatment works. The suitability of this water and the surrounding boreholes for irrigation was determined. This study was undertaken between January, 2014 and January, 2015. Monthly samples were taken from four sites. Sites 1 was upstream of the Polokwane Wastewater Treatment Plant, sites 2, 3 and 4 were downstream. Ten boreholes in the vicinity of the Sand River were randomly selected and the water was tested for heavy metal contamination. The concentration of heavy metals in Sand River water followed the order Mn>Fe>Pb>Cu≥Zn≥Cd. Manganese concentration averaged 0.34 mg/L. Heavy metal concentration in the sediment, grass and fish followed the order Fe>Mn>Zn>Cu>Pb>Cd. The bioaccumulation factor from grass to fish was highest in manganese (19.25), followed by zinc (16.39) and iron (14.14). Soil permeability index (PI) and sodium adsorption ratio (SAR) were used to determine the suitability of Sand River and borehole water for irrigation. The PI index for Sand River water was 75.1% and this indicates that Sand River water is suitable for irrigation of crops. The PI index for the borehole water ranged from 65.8-72.8% and again this indicates suitability of borehole water for crop irrigation. The sodium adsorption ratio also indicated that both Sand River and borehole water were suitable for irrigation. A risk assessment study is recommended to determine the suitability of the fish for human consumption.

Keywords: bioaccumulation, bioavailability, heavy metals, sodium adsorption ratio

Procedia PDF Downloads 187
587 Characteristics and Prevalence of Anaemia among Mothers and Young Children in Rural Uganda

Authors: Pamela E. Mukaire

Abstract:

Anemia and chronic energy deficiency are significant manifestations of poor nutritional health. Anaemia and nutritional status screening are practical ways for assessing the prevalence of iron deficiency anemia in the food insecure populations with large groups of childbearing women and children. The objective of the study was to assess anemia prevalence and other clinical manifestations of malnutrition among pairs of mothers and young children in rural Uganda. This community cross-sectional study used consecutive sampling to select 214 mothers and 214 children for the study. Data was generated using structured questionnaire, anthropometric measurements and on site analysis for anemia. Bivariable and multivariable analyses were used to assess the effect of different factors on anaemia. Of the 214 mothers, 54.2% were 25-34 years of age, 76.7% unmarried, 63% low income, and 55% had more than four children. Of the 214 children, 57% were female, 50% between 1 to 3 years of age and 35% under one year, and. Overall, 38% of the households had more 4 children under the age of 12. The prevalence of anemia was 48% for mothers and 72% for children; 20.6% of mothers had moderate to severe chronic energy deficiency, 39% had moderately-severe anaemia (10 to 7.1 g/dL). Among children, 53% had moderately-severe anaemia, and 18.2% had severe anaemia. Parity X2 =20, p < .037, number of children under 12 years living in a household X2 =10, p < .015, and child’s gender X2 =6.5, p < .038, had a significant relationship with maternal anaemia. There was a significant relationship between household income X2 =10, p < .005, marital status X2 =9, p < .011, owing a piece of land X2 =18, p < .000, owing home X2 =7, p < .036, and anaemia in children. The prevalence of anemia was high in both mothers and children. Income, marital status, owing a piece of land, owing home, number of children under age 12 in a household were associated with anaemia. Hence, efforts should be made for early diagnosis and management of anaemia deficiencies with special emphasis on those households with large number of children under age 12.

Keywords: anemia, maternal-child, nutrition, rural population

Procedia PDF Downloads 248