Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1989

Search results for: inverse graph transforma-tion

1989 Characterising Stable Model by Extended Labelled Dependency Graph

Authors: Asraful Islam


Extended dependency graph (EDG) is a state-of-the-art isomorphic graph to represent normal logic programs (NLPs) that can characterize the consistency of NLPs by graph analysis. To construct the vertices and arcs of an EDG, additional renaming atoms and rules besides those the given program provides are used, resulting in higher space complexity compared to the corresponding traditional dependency graph (TDG). In this article, we propose an extended labeled dependency graph (ELDG) to represent an NLP that shares an equal number of nodes and arcs with TDG and prove that it is isomorphic to the domain program. The number of nodes and arcs used in the underlying dependency graphs are formulated to compare the space complexity. Results show that ELDG uses less memory to store nodes, arcs, and cycles compared to EDG. To exhibit the desirability of ELDG, firstly, the stable models of the kernel form of NLP are characterized by the admissible coloring of ELDG; secondly, a relation of the stable models of a kernel program with the handles of the minimal, odd cycles appearing in the corresponding ELDG has been established; thirdly, to our best knowledge, for the first time an inverse transformation from a dependency graph to the representing NLP w.r.t. ELDG has been defined that enables transferring analytical results from the graph to the program straightforwardly.

Keywords: normal logic program, isomorphism of graph, extended labelled dependency graph, inverse graph transforma-tion, graph colouring

Procedia PDF Downloads 123
1988 Infinite Impulse Response Digital Filters Design

Authors: Phuoc Si Nguyen


Infinite impulse response (IIR) filters can be designed from an analogue low pass prototype by using frequency transformation in the s-domain and bilinear z-transformation with pre-warping frequency; this method is known as frequency transformation from the s-domain to the z-domain. This paper will introduce a new method to transform an IIR digital filter to another type of IIR digital filter (low pass, high pass, band pass, band stop or narrow band) using a technique based on inverse bilinear z-transformation and inverse matrices. First, a matrix equation is derived from inverse bilinear z-transformation and Pascal’s triangle. This Low Pass Digital to Digital Filter Pascal Matrix Equation is used to transform a low pass digital filter to other digital filter types. From this equation and the inverse matrix, a Digital to Digital Filter Pascal Matrix Equation can be derived that is able to transform any IIR digital filter. This paper will also introduce some specific matrices to replace the inverse matrix, which is difficult to determine due to the larger size of the matrix in the current method. This will make computing and hand calculation easier when transforming from one IIR digital filter to another in the digital domain.

Keywords: bilinear z-transformation, frequency transformation, inverse bilinear z-transformation, IIR digital filters

Procedia PDF Downloads 334
1987 Efficient Filtering of Graph Based Data Using Graph Partitioning

Authors: Nileshkumar Vaishnav, Aditya Tatu


An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.

Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing

Procedia PDF Downloads 233
1986 Synchrotron Radiation and Inverse Compton Scattering in Astrophysical Plasma

Authors: S. S. Sathiesh


The aim of this project is to study the radiation mechanism synchrotron and Inverse Compton scattering. Theoretically, we discussed spectral energy distribution for both. Programming is done for plotting the graph of Power-law spectrum for synchrotron Radiation using fortran90. The importance of power law spectrum was discussed and studied to infer its physical parameters from the model fitting. We also discussed how to infer the physical parameters from the theoretically drawn graph, we have seen how one can infer B (magnetic field of the source), γ min, γ max, spectral indices (p1, p2) while fitting the curve to the observed data.

Keywords: blazars/quasars, beaming, synchrotron radiation, Synchrotron Self Compton, inverse Compton scattering, mrk421

Procedia PDF Downloads 353
1985 Construction of Graph Signal Modulations via Graph Fourier Transform and Its Applications

Authors: Xianwei Zheng, Yuan Yan Tang


Classical window Fourier transform has been widely used in signal processing, image processing, machine learning and pattern recognition. The related Gabor transform is powerful enough to capture the texture information of any given dataset. Recently, in the emerging field of graph signal processing, researchers devoting themselves to develop a graph signal processing theory to handle the so-called graph signals. Among the new developing theory, windowed graph Fourier transform has been constructed to establish a time-frequency analysis framework of graph signals. The windowed graph Fourier transform is defined by using the translation and modulation operators of graph signals, following the similar calculations in classical windowed Fourier transform. Specifically, the translation and modulation operators of graph signals are defined by using the Laplacian eigenvectors as follows. For a given graph signal, its translation is defined by a similar manner as its definition in classical signal processing. Specifically, the translation operator can be defined by using the Fourier atoms; the graph signal translation is defined similarly by using the Laplacian eigenvectors. The modulation of the graph can also be established by using the Laplacian eigenvectors. The windowed graph Fourier transform based on these two operators has been applied to obtain time-frequency representations of graph signals. Fundamentally, the modulation operator is defined similarly to the classical modulation by multiplying a graph signal with the entries in each Fourier atom. However, a single Laplacian eigenvector entry cannot play a similar role as the Fourier atom. This definition ignored the relationship between the translation and modulation operators. In this paper, a new definition of the modulation operator is proposed and thus another time-frequency framework for graph signal is constructed. Specifically, the relationship between the translation and modulation operations can be established by the Fourier transform. Specifically, for any signal, the Fourier transform of its translation is the modulation of its Fourier transform. Thus, the modulation of any signal can be defined as the inverse Fourier transform of the translation of its Fourier transform. Therefore, similarly, the graph modulation of any graph signal can be defined as the inverse graph Fourier transform of the translation of its graph Fourier. The novel definition of the graph modulation operator established a relationship of the translation and modulation operations. The new modulation operation and the original translation operation are applied to construct a new framework of graph signal time-frequency analysis. Furthermore, a windowed graph Fourier frame theory is developed. Necessary and sufficient conditions for constructing windowed graph Fourier frames, tight frames and dual frames are presented in this paper. The novel graph signal time-frequency analysis framework is applied to signals defined on well-known graphs, e.g. Minnesota road graph and random graphs. Experimental results show that the novel framework captures new features of graph signals.

Keywords: graph signals, windowed graph Fourier transform, windowed graph Fourier frames, vertex frequency analysis

Procedia PDF Downloads 257
1984 Topological Indices of Some Graph Operations

Authors: U. Mary


Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper.

Keywords: complementary prism graph, first Zagreb index, neighborhood corona graph, steiner distance, splitting graph, steiner wiener index, wiener index

Procedia PDF Downloads 433
1983 Robust Diagnosis of an Electro-Mechanical Actuators, Bond Graph LFT Approach

Authors: A. Boulanoir, B. Ould Bouamama, A. Debiane, N. Achour


The paper deals with robust Fault Detection and isolation with respect to parameter uncertainties based on linear fractional transformation form (LFT) Bond graph. The innovative interest of the proposed methodology is the use only one representation for systematic generation of robust analytical redundancy relations and adaptive residual thresholds for sensibility analysis. Furthermore, the parameter uncertainties are introduced graphically in the bond graph model. The methodology applied to the nonlinear industrial Electro-Mechanical Actuators (EMA) used in avionic systems, has determined first the structural monitorability analysis (which component can be monitored) with given instrumentation architecture with any need of complex calculation and secondly robust fault indicators for online supervision.

Keywords: bond graph (BG), electro mechanical actuators (EMA), fault detection and isolation (FDI), linear fractional transformation (LFT), mechatronic systems, parameter uncertainties, avionic system

Procedia PDF Downloads 280
1982 Survey Paper on Graph Coloring Problem and Its Application

Authors: Prateek Chharia, Biswa Bhusan Ghosh


Graph coloring is one of the prominent concepts in graph coloring. It can be defined as a coloring of the various regions of the graph such that all the constraints are fulfilled. In this paper various graphs coloring approaches like greedy coloring, Heuristic search for maximum independent set and graph coloring using edge table is described. Graph coloring can be used in various real time applications like student time tabling generation, Sudoku as a graph coloring problem, GSM phone network.

Keywords: graph coloring, greedy coloring, heuristic search, edge table, sudoku as a graph coloring problem

Procedia PDF Downloads 445
1981 A New Graph Theoretic Problem with Ample Practical Applications

Authors: Mehmet Hakan Karaata


In this paper, we first coin a new graph theocratic problem with numerous applications. Second, we provide two algorithms for the problem. The first solution is using a brute-force techniques, whereas the second solution is based on an initial identification of the cycles in the given graph. We then provide a correctness proof of the algorithm. The applications of the problem include graph analysis, graph drawing and network structuring.

Keywords: algorithm, cycle, graph algorithm, graph theory, network structuring

Procedia PDF Downloads 284
1980 Complete Tripartite Graphs with Spanning Maximal Planar Subgraphs

Authors: Severino Gervacio, Velimor Almonte, Emmanuel Natalio


A simple graph is planar if it there is a way of drawing it in the plane without edge crossings. A planar graph which is not a proper spanning subgraph of another planar graph is a maximal planar graph. We prove that for complete tripartite graphs of order at most 9, the only ones that contain a spanning maximal planar subgraph are K1,1,1, K2,2,2, K2,3,3, and K3,3,3. The main result gives a necessary and sufficient condition for the complete tripartite graph Kx,y,z to contain a spanning maximal planar subgraph.

Keywords: complete tripartite graph, graph, maximal planar graph, planar graph, subgraph

Procedia PDF Downloads 241
1979 Frequency Transformation with Pascal Matrix Equations

Authors: Phuoc Si Nguyen


Frequency transformation with Pascal matrix equations is a method for transforming an electronic filter (analogue or digital) into another filter. The technique is based on frequency transformation in the s-domain, bilinear z-transform with pre-warping frequency, inverse bilinear transformation and a very useful application of the Pascal’s triangle that simplifies computing and enables calculation by hand when transforming from one filter to another. This paper will introduce two methods to transform a filter into a digital filter: frequency transformation from the s-domain into the z-domain; and frequency transformation in the z-domain. Further, two Pascal matrix equations are derived: an analogue to digital filter Pascal matrix equation and a digital to digital filter Pascal matrix equation. These are used to design a desired digital filter from a given filter.

Keywords: frequency transformation, bilinear z-transformation, pre-warping frequency, digital filters, analog filters, pascal’s triangle

Procedia PDF Downloads 464
1978 Improvement a Lower Bound of Energy for Some Family of Graphs, Related to Determinant of Adjacency Matrix

Authors: Saieed Akbari, Yousef Bagheri, Amir Hossein Ghodrati, Sima Saadat Akhtar


Let G be a simple graph with the vertex set V (G) and with the adjacency matrix A (G). The energy E (G) of G is defined to be the sum of the absolute values of all eigenvalues of A (G). Also let n and m be number of edges and vertices of the graph respectively. A regular graph is a graph where each vertex has the same number of neighbours. Given a graph G, its line graph L(G) is a graph such that each vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and only if their corresponding edges share a common endpoint in G. In this paper we show that for every regular graphs and also for every line graphs such that (G) 3 we have, E(G) 2nm + n 1. Also at the other part of the paper we prove that 2 (G) E(G) for an arbitrary graph G.

Keywords: eigenvalues, energy, line graphs, matching number

Procedia PDF Downloads 120
1977 On Direct Matrix Factored Inversion via Broyden's Updates

Authors: Adel Mohsen


A direct method based on the good Broyden's updates for evaluating the inverse of a nonsingular square matrix of full rank and solving related system of linear algebraic equations is studied. For a matrix A of order n whose LU-decomposition is A = LU, the multiplication count is O (n3). This includes the evaluation of the LU-decompositions of the inverse, the lower triangular decomposition of A as well as a “reduced matrix inverse”. If an explicit value of the inverse is not needed the order reduces to O (n3/2) to compute to compute inv(U) and the reduced inverse. For a symmetric matrix only O (n3/3) operations are required to compute inv(L) and the reduced inverse. An example is presented to demonstrate the capability of using the reduced matrix inverse in treating ill-conditioned systems. Besides the simplicity of Broyden's update, the method provides a mean to exploit the possible sparsity in the matrix and to derive a suitable preconditioner.

Keywords: Broyden's updates, matrix inverse, inverse factorization, solution of linear algebraic equations, ill-conditioned matrices, preconditioning

Procedia PDF Downloads 379
1976 Graph Similarity: Algebraic Model and Its Application to Nonuniform Signal Processing

Authors: Nileshkumar Vishnav, Aditya Tatu


A recent approach of representing graph signals and graph filters as polynomials is useful for graph signal processing. In this approach, the adjacency matrix plays pivotal role; instead of the more common approach involving graph-Laplacian. In this work, we follow the adjacency matrix based approach and corresponding algebraic signal model. We further expand the theory and introduce the concept of similarity of two graphs. The similarity of graphs is useful in that key properties (such as filter-response, algebra related to graph) get transferred from one graph to another. We demonstrate potential applications of the relation between two similar graphs, such as nonuniform filter design, DTMF detection and signal reconstruction.

Keywords: graph signal processing, algebraic signal processing, graph similarity, isospectral graphs, nonuniform signal processing

Procedia PDF Downloads 264
1975 Metric Dimension on Line Graph of Honeycomb Networks

Authors: M. Hussain, Aqsa Farooq


Let G = (V,E) be a connected graph and distance between any two vertices a and b in G is a−b geodesic and is denoted by d(a, b). A set of vertices W resolves a graph G if each vertex is uniquely determined by its vector of distances to the vertices in W. A metric dimension of G is the minimum cardinality of a resolving set of G. In this paper line graph of honeycomb network has been derived and then we calculated the metric dimension on line graph of honeycomb network.

Keywords: Resolving set, Metric dimension, Honeycomb network, Line graph

Procedia PDF Downloads 92
1974 Speedup Breadth-First Search by Graph Ordering

Authors: Qiuyi Lyu, Bin Gong


Breadth-First Search(BFS) is a core graph algorithm that is widely used for graph analysis. As it is frequently used in many graph applications, improve the BFS performance is essential. In this paper, we present a graph ordering method that could reorder the graph nodes to achieve better data locality, thus, improving the BFS performance. Our method is based on an observation that the sibling relationships will dominate the cache access pattern during the BFS traversal. Therefore, we propose a frequency-based model to construct the graph order. First, we optimize the graph order according to the nodes’ visit frequency. Nodes with high visit frequency will be processed in priority. Second, we try to maximize the child nodes overlap layer by layer. As it is proved to be NP-hard, we propose a heuristic method that could greatly reduce the preprocessing overheads. We conduct extensive experiments on 16 real-world datasets. The result shows that our method could achieve comparable performance with the state-of-the-art methods while the graph ordering overheads are only about 1/15.

Keywords: breadth-first search, BFS, graph ordering, graph algorithm

Procedia PDF Downloads 57
1973 Bayesian Network and Feature Selection for Rank Deficient Inverse Problem

Authors: Kyugneun Lee, Ikjin Lee


Parameter estimation with inverse problem often suffers from unfavorable conditions in the real world. Useless data and many input parameters make the problem complicated or insoluble. Data refinement and reformulation of the problem can solve that kind of difficulties. In this research, a method to solve the rank deficient inverse problem is suggested. A multi-physics system which has rank deficiency caused by response correlation is treated. Impeditive information is removed and the problem is reformulated to sequential estimations using Bayesian network (BN) and subset groups. At first, subset grouping of the responses is performed. Feature selection with singular value decomposition (SVD) is used for the grouping. Next, BN inference is used for sequential conditional estimation according to the group hierarchy. Directed acyclic graph (DAG) structure is organized to maximize the estimation ability. Variance ratio of response to noise is used to pairing the estimable parameters by each response.

Keywords: Bayesian network, feature selection, rank deficiency, statistical inverse analysis

Procedia PDF Downloads 230
1972 On the Zeros of the Degree Polynomial of a Graph

Authors: S. R. Nayaka, Putta Swamy


Graph polynomial is one of the algebraic representations of the Graph. The degree polynomial is one of the simple algebraic representations of graphs. The degree polynomial of a graph G of order n is the polynomial Deg(G, x) with the coefficients deg(G,i) where deg(G,i) denotes the number of vertices of degree i in G. In this article, we investigate the behavior of the roots of some families of Graphs in the complex field. We investigate for the graphs having only integral roots. Further, we characterize the graphs having single roots or having real roots and behavior of the polynomial at the particular value is also obtained.

Keywords: degree polynomial, regular graph, minimum and maximum degree, graph operations

Procedia PDF Downloads 157
1971 An Approach to Solving Some Inverse Problems for Parabolic Equations

Authors: Bolatbek Rysbaiuly, Aliya S. Azhibekova


Problems concerning the interpretation of the well testing results belong to the class of inverse problems of subsurface hydromechanics. The distinctive feature of such problems is that additional information is depending on the capabilities of oilfield experiments. Another factor that should not be overlooked is the existence of errors in the test data. To determine reservoir properties, some inverse problems for parabolic equations were investigated. An approach to solving the inverse problems based on the method of regularization is proposed.

Keywords: iterative approach, inverse problem, parabolic equation, reservoir properties

Procedia PDF Downloads 354
1970 From Convexity in Graphs to Polynomial Rings

Authors: Ladznar S. Laja, Rosalio G. Artes, Jr.


This paper introduced a graph polynomial relating convexity concepts. A graph polynomial is a polynomial representing a graph given some parameters. On the other hand, a subgraph H of a graph G is said to be convex in G if for every pair of vertices in H, every shortest path with these end-vertices lies entirely in H. We define the convex subgraph polynomial of a graph G to be the generating function of the sequence of the numbers of convex subgraphs of G of cardinalities ranging from zero to the order of G. This graph polynomial is monic since G itself is convex. The convex index which counts the number of convex subgraphs of G of all orders is just the evaluation of this polynomial at 1. Relationships relating algebraic properties of convex subgraphs polynomial with graph theoretic concepts are established.

Keywords: convex subgraph, convex index, generating function, polynomial ring

Procedia PDF Downloads 131
1969 An Application of Graph Theory to The Electrical Circuit Using Matrix Method

Authors: Samai'la Abdullahi


A graph is a pair of two set and so that a graph is a pictorial representation of a system using two basic element nodes and edges. A node is represented by a circle (either hallo shade) and edge is represented by a line segment connecting two nodes together. In this paper, we present a circuit network in the concept of graph theory application and also circuit models of graph are represented in logical connection method were we formulate matrix method of adjacency and incidence of matrix and application of truth table.

Keywords: euler circuit and path, graph representation of circuit networks, representation of graph models, representation of circuit network using logical truth table

Procedia PDF Downloads 476
1968 Building 1-Well-Covered Graphs by Corona, Join, and Rooted Product of Graphs

Authors: Vadim E. Levit, Eugen Mandrescu


A graph is well-covered if all its maximal independent sets are of the same size. A well-covered graph is 1-well-covered if deletion of every vertex of the graph leaves it well-covered. It is known that a graph without isolated vertices is 1-well-covered if and only if every two disjoint independent sets are included in two disjoint maximum independent sets. Well-covered graphs are related to combinatorial commutative algebra (e.g., every Cohen-Macaulay graph is well-covered, while each Gorenstein graph without isolated vertices is 1-well-covered). Our intent is to construct several infinite families of 1-well-covered graphs using the following known graph operations: corona, join, and rooted product of graphs. Adopting some known techniques used to advantage for well-covered graphs, one can prove that: if the graph G has no isolated vertices, then the corona of G and H is 1-well-covered if and only if H is a complete graph of order two at least; the join of the graphs G and H is 1-well-covered if and only if G and H have the same independence number and both are 1-well-covered; if H satisfies the property that every three pairwise disjoint independent sets are included in three pairwise disjoint maximum independent sets, then the rooted product of G and H is 1-well-covered, for every graph G. These findings show not only how to generate some more families of 1-well-covered graphs, but also that, to this aim, sometimes, one may use graphs that are not necessarily 1-well-covered.

Keywords: maximum independent set, corona, concatenation, join, well-covered graph

Procedia PDF Downloads 104
1967 Nullity of t-Tupple Graphs

Authors: Khidir R. Sharaf, Didar A. Ali


The nullity η (G) of a graph is the occurrence of zero as an eigenvalue in its spectra. A zero-sum weighting of a graph G is real valued function, say f from vertices of G to the set of real numbers, provided that for each vertex of G the summation of the weights f (w) over all neighborhood w of v is zero for each v in G.A high zero-sum weighting of G is one that uses maximum number of non-zero independent variables. If G is graph with an end vertex, and if H is an induced sub-graph of G obtained by deleting this vertex together with the vertex adjacent to it, then, η(G)= η(H). In this paper, a high zero-sum weighting technique and the end vertex procedure are applied to evaluate the nullity of t-tupple and generalized t-tupple graphs are derived and determined for some special types of graphs. Also, we introduce and prove some important results about the t-tupple coalescence, Cartesian and Kronecker products of nut graphs.

Keywords: graph theory, graph spectra, nullity of graphs, statistic

Procedia PDF Downloads 158
1966 Congruences Induced by Certain Relations on Ag**-Groupoids

Authors: Faisal Yousafzai, Murad-ul-Islam Khan, Kar Ping Shum


We introduce the concept of partially inverse AG**-groupoids which is almost parallel to the concepts of E-inversive semigroups and E-inversive E-semigroups. Some characterization problems are provided on partially inverse AG**-groupoids. We give necessary and sufficient conditions for a partially inverse AG**-subgroupoid E to be a rectangular band. Furthermore, we determine the unitary congruence η on a partially inverse AG**-groupoid and show that each partially inverse AG**-groupoid possesses an idempotent separating congruence μ. We also study anti-separative commutative image of a locally associative AG**-groupoid. Finally, we give the concept of completely N-inverse AG**-groupoid and characterize a maximum idempotent separating congruence.

Keywords: AG**-groupoids, congruences, inverses, rectangular band

Procedia PDF Downloads 234
1965 Uncontrollable Inaccuracy in Inverse Problems

Authors: Yu Menshikov


In this paper the influence of errors of function derivatives in initial time which have been obtained by experiment (uncontrollable inaccuracy) to the results of inverse problem solution was investigated. It was shown that these errors distort the inverse problem solution as a rule near the beginning of interval where the solution are analyzed. Several methods for remove the influence of uncontrollable inaccuracy have been suggested.

Keywords: inverse problems, filtration, uncontrollable inaccuracy

Procedia PDF Downloads 440
1964 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova


In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 399
1963 Robust Diagnosis Efficiency by Bond-Graph Approach

Authors: Benazzouz Djamel, Termeche Adel, Touati Youcef, Alem Said, Ouziala Mahdi


This paper presents an approach which detect and isolate efficiently a fault in a system. This approach avoids false alarms, non-detections and delays in detecting faults. A study case have been proposed to show the importance of taking into consideration the uncertainties in the decision-making procedure and their effect on the degradation diagnostic performance and advantage of using Bond Graph (BG) for such degradation. The use of BG in the Linear Fractional Transformation (LFT) form allows generating robust Analytical Redundancy Relations (ARR’s), where the uncertain part of ARR’s is used to generate the residuals adaptive thresholds. The study case concerns an electromechanical system composed of a motor, a reducer and an external load. The aim of this application is to show the effectiveness of the BG-LFT approach to robust fault detection.

Keywords: bond graph, LFT, uncertainties, detection and faults isolation, ARR

Procedia PDF Downloads 237
1962 Existence and Construction of Maximal Rectangular Duals

Authors: Krishnendra Shekhawat


Given a graph G = (V, E), a rectangular dual of G represents the vertices of G by a set of interior-disjoint rectangles such that two rectangles touch if and only if there is an edge between the two corresponding vertices in G. Rectangular duals do not exist for every graph, so we can define maximal rectangular duals. A maximal rectangular dual is a rectangular dual of a graph G such that there exists no graph G ′ with a rectangular dual where G is a subgraph of G ′. In this paper, we enumerate all maximal rectangular duals (or, to be precise, the corresponding planar graphs) up to six nodes and presents a necessary condition for the existence of a rectangular dual. This work allegedly has applications in integrated circuit design and architectural floor plans.

Keywords: adjacency, degree sequence, dual graph, rectangular dual

Procedia PDF Downloads 146
1961 Inverse Scattering for a Second-Order Discrete System via Transmission Eigenvalues

Authors: Abdon Choque-Rivero


The Jacobi system with the Dirichlet boundary condition is considered on a half-line lattice when the coefficients are real valued. The inverse problem of recovery of the coefficients from various data sets containing the so-called transmission eigenvalues is analyzed. The Marchenko method is utilized to solve the corresponding inverse problem.

Keywords: inverse scattering, discrete system, transmission eigenvalues, Marchenko method

Procedia PDF Downloads 71
1960 Robust Diagnosability of PEMFC Based on Bond Graph LFT

Authors: Ould Bouamama, M. Bressel, D. Hissel, M. Hilairet


Fuel cell (FC) is one of the best alternatives of fossil energy. Recently, the research community of fuel cell has shown a considerable interest for diagnosis in view to ensure safety, security, and availability when faults occur in the process. The problematic for model based FC diagnosis consists in that the model is complex because of coupling of several kind of energies and the numerical values of parameters are not always known or are uncertain. The present paper deals with use of one tool: the Linear Fractional Transformation bond graph tool not only for uncertain modelling but also for monitorability (ability to detect and isolate faults) analysis and formal generation of robust fault indicators with respect to parameter uncertainties.The developed theory applied to a nonlinear FC system has proved its efficiency.

Keywords: bond graph, fuel cell, fault detection and isolation (FDI), robust diagnosis, structural analysis

Procedia PDF Downloads 300