Search results for: harmonic oscillator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 356

Search results for: harmonic oscillator

146 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 76
145 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition

Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur

Abstract:

Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.

Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission

Procedia PDF Downloads 241
144 Dynamic Voltage Restorer Control Strategies: An Overview

Authors: Arvind Dhingra, Ashwani Kumar Sharma

Abstract:

Power quality is an important parameter for today’s consumers. Various custom power devices are in use to give a proper supply of power quality. Dynamic Voltage Restorer is one such custom power device. DVR is a static VAR device which is used for series compensation. It is a power electronic device that is used to inject a voltage in series and in synchronism to compensate for the sag in voltage. Inductive Loads are a major source of power quality distortion. The induction furnace is one such typical load. A typical induction furnace is used for melting the scrap or iron. At the time of starting the melting process, the power quality is distorted to a large extent especially with the induction of harmonics. DVR is one such approach to mitigate these harmonics. This paper is an attempt to overview the various control strategies being followed for control of power quality by using DVR. An overview of control of harmonics using DVR is also presented.

Keywords: DVR, power quality, harmonics, harmonic mitigation

Procedia PDF Downloads 344
143 OMTHD Strategy in Asymmetrical Seven-Level Inverter for High Power Induction Motor

Authors: Rachid Taleb, M’hamed Helaimi, Djilali Benyoucef, Ahmed Derrouazin

Abstract:

Multilevel inverters are well used in high power electronic applications because of their ability to generate a very good quality of waveforms, reducing switching frequency, and their low voltage stress across the power devices. This paper presents the Optimal Minimization of the Total Harmonic Distortion (OMTHD) strategy of a uniform step asymmetrical seven-level inverter (USA7LI). The OMTHD approach is compared to the well-known sinusoidal pulse-width modulation (SPWM) strategy. Simulation results demonstrate the better performances and technical advantages of the OMTHD controller in feeding a High Power Induction Motor (HPIM).

Keywords: uniform step asymmetrical seven-level inverter (USA7LI), optimal minimization of the THD (OMTHD), sinusoidal PWM (SPWM), high power induction motor (HPIM)

Procedia PDF Downloads 564
142 Using Coupled Oscillators for Implementing Frequency Diverse Array

Authors: Maryam Hasheminasab, Ahmed Cheldavi, Ahmed Kishk

Abstract:

Frequency-diverse arrays (FDAs) have garnered significant attention from researchers due to their ability to combine frequency diversity with the inherent spatial diversity of an array. The introduction of frequency diversity in FDAs enables the generation of auto-scanning patterns that are range-dependent, which can have advantageous applications in communication and radar systems. However, the main challenge in implementing FDAs lies in determining the technique for distributing frequencies among the array elements. One approach to address this challenge is by utilizing coupled oscillators, which are a technique commonly employed in active microwave theory. Nevertheless, the limited stability range of coupled oscillators poses another obstacle to effectively utilizing this technique. In this paper, we explore the possibility of employing a coupled oscillator array in the mode lock state (MLS) for implementing frequency distribution in FDAs. Additionally, we propose and simulate the use of a digital phase-locked loop (DPLL) as a backup technique to stabilize the oscillators. Through simulations, we validate the functionality of this technique. This technique holds great promise for advancing the implementation of phased arrays and overcoming current scan rate and phase shifter limitations, especially in millimeter wave frequencies.

Keywords: angle-changing rate, auto scanning beam, pull-in range, hold-in range, locking range, mode locked state, frequency locked state

Procedia PDF Downloads 51
141 Control Scheme for Single-Stage Boost Inverter for Grid-Connected Photovoltaic

Authors: Mohammad Reza Ebrahimi, Behnaz Mahdaviani

Abstract:

Increasing renewable sources such photovoltaic are the reason of environmental pollution. Because photovoltaic generates power in low voltage, first, generated power should increase. Usually, distributed generation injects their power to AC-Grid, hence after voltage increasing an inverter is needed to convert DC power to AC power. This results in utilization two series converter that grows cost, complexity, and low efficiency. In this paper a single stage inverter is utilized to boost and invert in one stage. Control of this scheme is easier, and its initial cost decreases comparing to conventional double stage inverters. A simple control scheme is used to control active power as well as minimum total harmonic distortion (THD) in injected current. Simulations in MATLAB demonstrate better outputs comparing with conventional approaches.

Keywords: maximum power point tracking, boost inverter, control strategy, three phase inverter

Procedia PDF Downloads 341
140 Performance Analysis of Shunt Active Power Filter for Various Reference Current Generation Techniques

Authors: Vishal V. Choudhari, Gaurao A. Dongre, S. P. Diwan

Abstract:

A number of reference current generation have been developed for analysis of shunt active power filter to mitigate the load compensation. Depending upon the type of load the technique has to be chosen. In this paper, six reference current generation techniques viz. instantaneous reactive power theory(IRP), Synchronous reference frame theory(SRF), Perfect harmonic cancellation(PHC), Unity power factor method(UPF), Self-tuning filter method(STF), Predictive filtering method(PFM) are compared for different operating conditions. The harmonics are introduced because of non-linear loads in the system. These harmonics are eliminated using above techniques. The results and performance of system simulated on MATLAB/Simulink platform. The system is experimentally implemented using DS1104 card of dSPACE system.

Keywords: SAPF, power quality, THD, IRP, SRF, dSPACE module DS1104

Procedia PDF Downloads 560
139 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 388
138 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array

Authors: Rachid Dehini, Brahim Berbaoui

Abstract:

The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.

Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)

Procedia PDF Downloads 304
137 Enhance Power Quality by HVDC System, Comparison Technique between HVDC and HVAC Transmission Systems

Authors: Smko Zangana, Ergun Ercelebi

Abstract:

The alternating current is the main power in all industries and other aspects especially for the short and mid distances, but as far as long a distance which exceeds 500 KMs, using the alternating current technically will face many difficulties and more costs because it's difficult to control the current and also other restrictions. Therefore, recently those reasons led to building transmission lines HVDC to transmit power for long distances. This document presents technical comparison and assessments for power transmission system among distances either ways and studying the stability of the system regarding the proportion of losses in the actual power sent and received between both sides in different systems and also categorizing filters used in the HVDC system and its impact and effect on reducing Harmonic in the power transmission. MATLAB /Simulink simulation software is used to simulate both HVAC & HVDC power transmission system topologies.

Keywords: HVAC power system, HVDC power system, power system simulation (MATLAB), the alternating current, voltage stability

Procedia PDF Downloads 343
136 Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application

Authors: Edwina G. Rodrigues, S. J. Bindhu, A. V. Rajesh

Abstract:

This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs.

Keywords: bridgeless rectifier, power factor correction(PFC), SC converter, total harmonic distortion (THD)

Procedia PDF Downloads 842
135 First Principal Calculation of Structural, Elastic and Thermodynamic Properties of Yttrium-Copper Intermetallic Compound

Authors: Ammar Benamrani

Abstract:

This work investigates the equation of state parameters, elastic constants, and several other physical properties of (B2-type) Yttrium-Copper (YCu) rare earth intermetallic compound using the projected augmented wave (PAW) pseudopotentials method as implemented in the Quantum Espresso code. Using both the local density approximation (LDA) and the generalized gradient approximation (GGA), the finding of this research on the lattice parameter of YCu intermetallic compound agree very well with the experimental ones. The obtained results of the elastic constants and the Debye temperature are also in general in good agreement compared to the theoretical ones reported previously in literature. Furthermore, several thermodynamic properties of YCu intermetallic compound have been studied using quasi-harmonic approximations (QHA). The calculated data on the thermodynamic properties shows that the free energy and both isothermal and adiabatic bulk moduli decrease gradually with increasing of the temperature, while all other thermodynamic quantities increase with the temperature.

Keywords: Yttrium-Copper intermetallic compound, thermo_pw package, elastic constants, thermodynamic properties

Procedia PDF Downloads 123
134 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method

Procedia PDF Downloads 329
133 Minimization of Switching Losses in Cascaded Multilevel Inverters Using Efficient Sequential Switching Hybrid-Modulation Techniques

Authors: P. Satish Kumar, K. Ramakrishna, Ch. Lokeshwar Reddy, G. Sridhar

Abstract:

This paper presents two different sequential switching hybrid-modulation strategies and implemented for cascaded multilevel inverters. Hybrid modulation strategies represent the combinations of Fundamental-Frequency Pulse Width Modulation (FFPWM) and Multilevel Sinusoidal-Modulation (MSPWM) strategies, and are designed for performance of the well-known Alternative Phase Opposition Disposition (APOD), Phase Shifted Carrier (PSC). The main characteristics of these modulations are the reduction of switching losses with good harmonic performance, balanced power loss dissipation among the devices with in a cell, and among the series-connected cells. The feasibility of these modulations is verified through spectral analysis, power loss analysis and simulation.

Keywords: cascaded multilevel inverters, hybrid modulation, power loss analysis, pulse width modulation

Procedia PDF Downloads 509
132 An Improved Parameter Identification Method for Three Phase Induction Motor

Authors: Liang Zhao, Chong-quan Zhong

Abstract:

In order to improve the control performance of vector inverter, an improved parameter identification solution for induction motor is proposed in this paper. Dc or AC voltage is applied to the induction motor using the SVPWM through the inverter. Then stator resistance, stator leakage inductance, rotor resistance, rotor leakage inductance and mutual inductance are obtained according to the signal response. The discrete Fourier transform (DFT) is used to deal with the noise and harmonic. The impact on parameter identification caused by delays in the inverter switch tube, tube voltage drop and dead-time is avoided by effective compensation measures. Finally, the parameter identification experiment is conducted based on the vector inverter which using TMS320F2808 DSP as the core processor and results show that the strategy is verified.

Keywords: vector inverter, parameter identification, SVPWM; DFT, dead-time compensation

Procedia PDF Downloads 432
131 Nonlinear Passive Shunt for Electroacoustic Absorbers Using Nonlinear Energy Sink

Authors: Diala Bitar, Emmanuel Gourdon, Claude H. Lamarque, Manuel Collet

Abstract:

Acoustic absorber devices play an important role reducing the noise at the propagation and reception paths. An electroacoustic absorber consists of a loudspeaker coupled to an electric shunt circuit, where the membrane is playing the role of an absorber/reflector of sound. Although the use of linear shunt resistors at the transducer terminals, has shown to improve the performances of the dynamical absorbers, it is nearly efficient in a narrow frequency band. Therefore, and since nonlinear phenomena are promising for their ability to absorb the vibrations and sound on a larger frequency range, we propose to couple a nonlinear electric shunt circuit at the loudspeaker terminals. Then, the equivalent model can be described by a 2 degrees of freedom system, consisting of a primary linear oscillator describing the dynamics of the loudspeaker membrane, linearly coupled to a cubic nonlinear energy sink (NES). The system is analytically treated for the case of 1:1 resonance, using an invariant manifold approach at different time scales. The proposed methodology enables us to detect the equilibrium points and fold singularities at the first slow time scales, providing a predictive tool to design the nonlinear circuit shunt during the energy exchange process. The preliminary results are promising; a significant improvement of acoustic absorption performances are obtained.

Keywords: electroacoustic absorber, multiple-time-scale with small finite parameter, nonlinear energy sink, nonlinear passive shunt

Procedia PDF Downloads 191
130 Comparative Analysis of SVPWM and the Standard PWM Technique for Three Level Diode Clamped Inverter fed Induction Motor

Authors: L. Lakhdari, B. Bouchiba, M. Bechar

Abstract:

The multi-level inverters present an important novelty in the field of energy control with high voltage and power. The major advantage of all multi-level inverters is the improvement and spectral quality of its generated output signals. In recent years, various pulse width modulation techniques have been developed. From these technics we have: Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM). This work presents a detailed analysis of the comparative advantage of space vector pulse width modulation (SVPWM) and the standard SPWM technique for Three Level Diode Clamped Inverter fed Induction Motor. The comparison is based on the evaluation of harmonic distortion THD.

Keywords: induction motor, multilevel inverters, SVPWM, SPWM, THD

Procedia PDF Downloads 310
129 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures

Authors: R. K. Apalowo, D. Chronopoulos

Abstract:

A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.

Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element

Procedia PDF Downloads 126
128 Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect

Authors: Tai-Ping Chang

Abstract:

In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping.

Keywords: chaotic motion, damping, Lyapunov exponents, single-walled carbon nanotube

Procedia PDF Downloads 290
127 A Multilevel-Synthesis Approach with Reduced Number of Switches for 99-Level Inverter

Authors: P. Satish Kumar, V. Ramu, K. Ramakrishna

Abstract:

In this paper, an efficient multilevel wave form synthesis technique is proposed and applied to a 99-level inverter. The basic principle of the proposed scheme is that the continuous output voltage levels can be synthesized by the addition or subtraction of the instantaneous voltages generated from different voltage levels. This synthesis technique can be realized by an array of switching devices composing full-bridge inverter modules and proper mixing of each bi-directional switch modules. The most different aspect, compared to the conventional approach, in the synthesis of the multilevel output waveform is the utilization of a combination of bidirectional switches and full bridge inverter modules with reduced number of components. A 99-level inverter consists of three full-bridge modules and six bi-directional switch modules. The validity of the proposed scheme is verified by the simulation.

Keywords: cascaded connection, multilevel inverter, synthesis, total harmonic distortion

Procedia PDF Downloads 501
126 Photoluminescence and Energy Transfer Studies of Dy3+ Ions Doped Lithium Lead Alumino Borate Glasses for W-LED and Laser Applications

Authors: Nisha Deopa, A. S. Rao

Abstract:

Lithium Lead Alumino Borate (LiPbAlB) glasses doped with different Dy3+ ions concentration were synthesized to investigate their viability in solid state lighting (SSL) technology by melt quenching techniques. From the absorption spectra, bonding parameters (ð) were investigated to study the nature of bonding between Dy3+ ions and its surrounding ligands. Judd-Ofelt (J-O) intensity parameters (Ω = 2, 4, 6), estimated from the experimental oscillator strengths (fex) of the absorption spectral features were used to evaluate the radiative parameters of different transition levels. From the decay curves, experimental lifetime (τex) were measured and coupled with the radiative lifetime to evaluate the quantum efficiency of the as-prepared glasses. As Dy3+ ions concentration increases, decay profile changes from exponential to non-exponential through energy transfer mechanism (ETM) in turn decreasing experimental lifetime. In order to investigate the nature of ETM, non-exponential decay curves were fitted to Inkuti–Hirayama (I-H) model which further confirms dipole-dipole interaction. Among all the emission transition, 4F9/2  6H15/2 transition (483 nm) is best suitable for lasing potentialities. By exciting titled glasses in n-UV to blue regions, CIE chromaticity coordinates and Correlated Color Temperature (CCT) were calculated to understand their capability in cool white light generation. From the evaluated radiative parameters, CIE co-ordinates, quantum efficiency and confocal images it was observed that glass B (0.5 mol%) is a potential candidate for developing w-LEDs and lasers.

Keywords: energy transfer, glasses, J-O parameters, photoluminescence

Procedia PDF Downloads 185
125 Stationary Energy Partition between Waves in a Carbyne Chain

Authors: Svetlana Nikitenkova, Dmitry Kovriguine

Abstract:

Stationary energy partition between waves in a one dimensional carbyne chain at ambient temperatures is investigated. The study is carried out by standard asymptotic methods of nonlinear dynamics in the framework of classical mechanics, based on a simple mathematical model, taking into account central and noncentral interactions between carbon atoms. Within the first-order nonlinear approximation analysis, triple-mode resonant ensembles of quasi-harmonic waves are revealed. Any resonant triad consists of a single primary high-frequency longitudinal mode and a pair of secondary low-frequency transverse modes of oscillations. In general, the motion of the carbyne chain is described by a superposition of resonant triads of various spectral scales. It is found that the stationary energy distribution is obeyed to the classical Rayleigh–Jeans law, at the expense of the proportional amplitude dispersion, except a shift in the frequency band, upwards the spectrum.

Keywords: resonant triplet, Rayleigh–Jeans law, amplitude dispersion, carbyne

Procedia PDF Downloads 410
124 Design of CMOS CFOA Based on Pseudo Operational Transconductance Amplifier

Authors: Hassan Jassim Motlak

Abstract:

A novel design technique employing CMOS Current Feedback Operational Amplifier (CFOA) is presented. The feature of consumption whivh has a very low power in designing pseudo-OTA is used to decreasing the total power consumption of the proposed CFOA. This design approach applies pseudo-OTA as input stage cascaded with buffer stage. Moreover, the DC input offset voltage and harmonic distortion (HD) of the proposed CFOA are very low values compared with the conventional CMOS CFOA due to symmetrical input stage. P-Spice simulation results using 0.18µm MIETEC CMOS process parameters using supply voltage of ±1.2V and 50μA biasing current. The P-Spice simulation shows excellent improvement of the proposed CFOA over existing CMOS CFOA. Some of these performance parameters, for example, are DC gain of 62. dB, open-loop gain-bandwidth product of 108 MHz, slew rate (SR+) of +71.2V/µS, THD of -63dB and DC consumption power (PC) of 2mW.

Keywords: pseudo-OTA used CMOS CFOA, low power CFOA, high-performance CFOA, novel CFOA

Procedia PDF Downloads 288
123 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults

Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane

Abstract:

Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).

Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme

Procedia PDF Downloads 106
122 Chaotic Electronic System with Lambda Diode

Authors: George Mahalu

Abstract:

The Chua diode has been configured over time in various ways, using electronic structures like operational amplifiers (AOs) or devices with gas or semiconductors. When discussing the use of semiconductor devices, tunnel diodes (Esaki diodes) are most often considered, and more recently, transistorized configurations such as lambda diodes. The paperwork proposed here uses in the modeling a lambda diode type configuration consisting of two junction field effect transistors (JFET). The original scheme is created in the MULTISIM electronic simulation environment and is analyzed in order to identify the conditions for the appearance of evolutionary unpredictability specific to nonlinear dynamic systems with chaos-induced behavior. The chaotic deterministic oscillator is one autonomous type, a fact that places it in the class of Chua’s type oscillators, the only significant and most important difference being the presence of a nonlinear device like the one mentioned structure above. The chaotic behavior is identified both by means of strange attractor-type trajectories and visible during the simulation and by highlighting the hypersensitivity of the system to small variations of one of the input parameters. The results obtained through simulation and the conclusions drawn are useful in the further research of ways to implement such constructive electronic solutions in theoretical and practical applications related to modern small signal amplification structures, to systems for encoding and decoding messages through various modern ways of communication, as well as new structures that can be imagined both in modern neural networks and in those for the physical implementation of some requirements imposed by current research with the aim of obtaining practically usable solutions in quantum computing and quantum computers.

Keywords: chua, diode, memristor, chaos

Procedia PDF Downloads 57
121 Magnetic Simulation of the Underground Electric Cable in the Presence of a Short Circuit and Harmonics

Authors: Ahmed Nour El Islam Ayad, Wafa Krika, Abdelghani Ayad, Moulay Larab, Houari Boudjella, Farid Benhamida

Abstract:

The purpose of this study is to evaluate the magnetic emission of underground electric cable of high voltage, because these power lines generate electromagnetic interaction with other objects near to it. The aim of this work shows a numerical simulation of the magnetic field of buried 400 kV line in three cases: permanent and transient states of short circuit and the last case with the presence of the harmonics at different positions as a function of time variation, with finite element resolution using Comsol Multiphysics software. The results obtained showed that the amplitude and distribution of the magnetic flux density change in the transient state and the presence of harmonics. The results of this work calculate the magnetic field generated by the underground lines in order to evaluate and know their impact on ecology and health.

Keywords: underground, electric power cables, cables crossing, harmonic, emission

Procedia PDF Downloads 199
120 Coherent All-Fiber and Polarization Maintaining Source for CO2 Range-Resolved Differential Absorption Lidar

Authors: Erwan Negre, Ewan J. O'Connor, Juha Toivonen

Abstract:

The need for CO2 monitoring technologies grows simultaneously with the worldwide concerns regarding environmental challenges. To that purpose, we developed a compact coherent all-fiber ranged-resolved Differential Absorption Lidar (RR-DIAL). It has been designed along a tunable 2x1fiber optic switch set to a frequency of 1 Hz between two Distributed FeedBack (DFB) lasers emitting in the continuous-wave mode at 1571.41 nm (absorption line of CO2) and 1571.25 nm (CO2 absorption-free line), with linewidth and tuning range of respectively 1 MHz and 3 nm over operating wavelength. A three stages amplification through Erbium and Erbium-Ytterbium doped fibers coupled to a Radio Frequency (RF) driven Acousto-Optic Modulator (AOM) generates 100 ns pulses at a repetition rate from 10 to 30 kHz with a peak power up to 2.5 kW and a spatial resolution of 15 m, allowing fast and highly resolved CO2 profiles. The same afocal collection system is used for the output of the laser source and the backscattered light which is then directed to a circulator before being mixed with the local oscillator for heterodyne detection. Packaged in an easily transportable box which also includes a server and a Field Programmable Gate Array (FPGA) card for on-line data processing and storing, our setup allows an effective and quick deployment for versatile in-situ analysis, whether it be vertical atmospheric monitoring, large field mapping or sequestration site continuous oversight. Setup operation and results from initial field measurements will be discussed.

Keywords: CO2 profiles, coherent DIAL, in-situ atmospheric sensing, near infrared fiber source

Procedia PDF Downloads 107
119 The Plasma Additional Heating Systems by Electron Cyclotron Waves

Authors: Ghoutia Naima Sabri, Tayeb Benouaz

Abstract:

The interaction between wave and electron cyclotron movement when the electron passes through a layer of resonance at a fixed frequency results an Electron Cyclotron (EC) absorption in Tokamak plasma and dependent magnetic field. This technique is the principle of additional heating (ECRH) and the generation of non-inductive current drive (ECCD) in modern fusion devices. In this paper we are interested by the problem of EC absorption which used a microscopic description of kinetic theory treatment versus the propagation which used the cold plasma description. The power absorbed depends on the optical depth which in turn depends on coefficient of absorption and the order of the excited harmonic for O-mode or X-mode. There is another possibility of heating by dissipation of Alfven waves, based on resonance of cold plasma waves, the shear Alfven wave (SW) and the compressional Alfven wave (FW). Once the (FW) power is coupled to (SW), it stays on the magnetic surface and dissipates there, which cause the heating of bulk plasmas.

Keywords: electron cyclotron, heating, plasma, tokamak

Procedia PDF Downloads 475
118 Ab Initio Study of Structural, Elastic, Electronic and Thermal Properties of Full Heusler

Authors: M. Khalfa, H. Khachai, F. Chiker, K. Bougherara, R. Khenata, G. Murtaza, M. Harmel

Abstract:

A theoretical study of structural, elastic, electronic and thermodynamic properties of Fe2VX, (with X = Al and Ga), were studied by means of the full-relativistic version of the full-potential augmented plane wave plus local orbitals method. For exchange and correlation potential we used both generalized-gradient approximation (GGA) and local-density approximation (LDA). Our calculated ground state properties like as lattice constants, bulk modulus and elastic constants appear more accurate when we employed the GGA rather than the LDA approximation, and these results agree very well with the available experimental and theoretical data. Further, prediction of the thermal effects on some macroscopic properties of Fe2VAl and Fe2VGa are given in this paper using the quasi-harmonic Debye model in which the lattice vibrations are taken into account. We have obtained successfully the variations of the primitive cell volume, volume expansion coefficient, heat capacities and Debye temperature with pressure and temperature in the ranges of 0–40 GPa and 0–1500 K.

Keywords: full Heusler, FP-LAPW, electronic properties, thermal properties

Procedia PDF Downloads 459
117 Spatially Encoded Hyperspectral Compressive Microscope for Broadband VIS/NIR Imaging

Authors: Lukáš Klein, Karel Žídek

Abstract:

Hyperspectral imaging counts among the most frequently used multidimensional sensing methods. While there are many approaches to capturing a hyperspectral data cube, optical compression is emerging as a valuable tool to reduce the setup complexity and the amount of data storage needed. Hyperspectral compressive imagers have been created in the past; however, they have primarily focused on relatively narrow sections of the electromagnetic spectrum. A broader spectral study of samples can provide helpful information, especially for applications involving the harmonic generation and advanced material characterizations. We demonstrate a broadband hyperspectral microscope based on the single-pixel camera principle. Captured spatially encoded data are processed to reconstruct a hyperspectral cube in a combined visible and near-infrared spectrum (from 400 to 2500 nm). Hyperspectral cubes can be reconstructed with a spectral resolution of up to 3 nm and spatial resolution of up to 7 µm (subject to diffraction) with a high compressive ratio.

Keywords: compressive imaging, hyperspectral imaging, near-infrared spectrum, single-pixel camera, visible spectrum

Procedia PDF Downloads 65