Search results for: glycerol phosphate disodium salt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1269

Search results for: glycerol phosphate disodium salt

1209 Salinity Response of Some Cowpea Genotypes in Germination of Periods

Authors: Meryem Aydin, Serdar Karadas, Ercan Ceyhan

Abstract:

The research was conducted to determine effects of salt concentrations on emergence of cowpea genotypes. Trials were performed during the year of 2014 on the laboratory of Agricultural Faculty, Selcuk University. Emergency trial was set up according to “Randomized Plots Design” by two factors and four replications with three replications. Samandag, Akkiz-86, Karnikara and Sarigobek cowpea genotypes have been used as trial material in this study. Effects of the five doses of salt concentrations (control, 30 mM, 60 mM, 90 mM and 120 mM) on the ratio of emergency, speed of emergency, average time for emergency, index of sensibility were evaluated. Responses of the cowpea genotypes for salt concentrations were found different. Comparing to the control, all of the investigated characteristics on the cowpea genotypes showed significant reduction by depending on the increasing salt application. According to the effects of salt application, the cowpea genotypes Samandag and Karnikara were the most tolerant in respect to index of sensibility while the Sarigobek genotypes was the most sensitive.

Keywords: cowpea, Vigna sinensis, emergence, salt tolerant

Procedia PDF Downloads 231
1208 Phosphate Capture from Sewage by Hafnium-Modified Fe₃O₄@SiO₂ Superparamagnetic Nanoparticles: Adsorption Capacity, Selectivity, Reusability Analysis and Mechanistic Insights

Authors: Qian Zhao

Abstract:

With global increasing demand for phosphorus and intensively depleting reserves, it is urgent need to explore innovative approaches towards capturing phosphate from sewage, which is also an effective way to reduce phosphate contamination and avoid eutrophication of water bodies. In the present article, the superparamagnetic nano-sorbents containing Fe₃O₄ core and hafnium-modified MgAl/MgFe layered double hydroxides shell (abbreviated as MgAlHf-NP and MgFeHf-NP) was developed using a simple and low-cost synthesis protocol. The obtained Hf-coated nano-materials showed well-defined crystal structure and sufficient saturation magnetization and exhibited higher adsorption capacity for phosphate. Meanwhile, high selectivity was also confirmed since coexisting foreign anions and biomacromolecules showed little competitive effect on phosphate adsorption. The enhancement via doping with Hf should be explained by the stronger ligand complexation built by the pair of hard acid Hf ion and hard base phosphate that matched up the bonding preferences. Sufficient OH⁻ concentration and clear pH shift during the desorption/regeneration allowed for regeneration rate of higher than 90% after 5 cycles of adsorption desorption. This article attempts to provide a competitive candidate for phosphate-capture, which is highly effective, easily separable and repeatedly usable.

Keywords: phosphate recovery, nanoparticles, superparamagnetic, adsorption, reusability

Procedia PDF Downloads 101
1207 Investigation of Dissolution in Diammonium Hydrogen Phosphate Solutions of Gypsum

Authors: Turan Çalban, Nursel Keskin, Sabri Çolak, Soner Kuşlu

Abstract:

Gypsum (CaSO4.2H2O) is a mineral that is found in large quantities in the Turkey and in the World. The dissolution of this mineral in the diammonium hydrogen phosphate solutions has not been studied so far. Investigation of the dissolution and dissolution kinetics gypsum in diammonium hydrogen phosphate solutions will be useful for evaluating of solid wastes containing gypsum. In this study, parameters such as diammonium hydrogen phosphate concentration, temperature and stirring speed affecting on the dissolution rate of the gypsum in diammonium hydrogen phosphate solutions were investigated. In experimental studies have researched effectiveness of the selected parameters. The dissolution of gypsum were examined in two parts at low and high temperatures. The experimental results were successfully correlated by linear regression using Statistica program. Dissolution curves were evaluated shrinking core models for solid-fluid systems. The activation energy was found to be 34.58 kJ/mol and 44.45 kJ/mol for the low and the high temperatures. The dissolution of gypsum was controlled by chemical reaction both low temperatures and high temperatures. Reaction rate expressions of dissolution of gypsum at the low temperatures and the high temperatures controlled by chemical reaction are as follows, respectively. = k1.e-5159.5/T.t = k2.e-5346.8/T.t Where k1 and k2 are constants depending on the diammonium hydrogen phosphate solution concentration, the solid/liquid ratio, the stirring speed and the particle size.

Keywords: diammonium hydrogen phosphate, dissolution kinetics, gypsum, kinetics.

Procedia PDF Downloads 357
1206 Identification of Salt Responsive Proteins in Rice Leaf Sheath (Oryza sativa L.) with Nanoliquid Chromatography-Tandem Mass Spectrometry

Authors: Kanlaya Kong-Ngern, Chutima Homwonk, Sittiruk Roytrakul

Abstract:

In this research, we compared the proteomic profile of two rice leaf sheaths under salt stress, Thai moderately salt tolerant rice (Leaung Anan), and high salt tolerant rice (Pokkali). Seeds were grown in hydroponic culture for 21 days before NaCl was introduced initially at the level of 12 dS m⁻¹ for 10 days. Then the leaf sheath proteomes were analyzed by 1D-SDS-PAGE and NanoLC-MS/MS. In this study, 873 proteins were detected. Among these proteins, 219 proteins were known proteins and the other proteins were unnamed and unknown proteins. By using Mev software, we found that only 31 proteins in treated plants of both rice cultivars significantly expressed, 21 proteins were up-regulated and 10 proteins were down-regulated. Interestingly, the intensity of the 3 proteins in the Leaung Anan more expressed than in the Pokkali. The results indicate that the up-regulated proteins were more expressed in less tolerant rice may play an important role in helping rice to survive under salt stress.

Keywords: mass spectrometry, proteomics, rice leaf sheaths, salt stress

Procedia PDF Downloads 100
1205 Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys

Authors: Jeong-Hyun Yoo, Hanjung Kwon, Sung-Wook Cho

Abstract:

Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company.

Keywords: domestic rare-earth ore, fused salt electrolysis, rare-earth materials, hydrogen storage alloy, secondary battery

Procedia PDF Downloads 497
1204 In vitro Assessment of Tomato (Lycopersicon esculentum) and Cauliflower (Brassica oleracea) Seedlings Growth and Proline Production under Salt Stress

Authors: Amir Wahid, Fazal Hadi, Amin Ullah Jan

Abstract:

Tomato and Cauliflower seedlings were grown in-vitro under salt concentrations (0, 2, 4, 8, and 10 dSm-1) with objectives to investigate; (1) The effect of salinity on seedling growth and free proline production, (2) the correlation between seedling growth and proline contents, (3) comparative salt tolerance of both species. Different concentrations of salt showed considerable effect on percent (%) germination of seeds, length and biomass of shoot and root and also showed effect on percent water content of both plants seedlings. Germination rate in cauliflower was two times higher than tomato even at highest salt concentration (10 dSm-1). Seedling growth of both species was less effected at low salt concentrations (2 and 4 dSm-1) but at high concentrations (6 and 8 dSm-1) the seedling growth of both species was significantly decreased. Particularly the tomato root was highly significantly reduced. The proline level linearly increased in both species with increasing salt concentrations up-to 4 dSm-1 and then declined. The cauliflower showed higher free proline level than tomato under all salt treatments. Overall, the cauliflower seedlings showed better growth response along with higher proline contents on comparison with tomato seedlings.

Keywords: NaCl (Sodium Chloride), EC (Electrical Conductivity), MS (Murashig and Skoog), ANOVA (Analysis of Variance), LSD (Least Significant Differences)

Procedia PDF Downloads 529
1203 Phosphate Regulation of Arbuscular Mycorrhiza Symbiosis in Rice

Authors: Debatosh Das, Moxian Chen, Jianhua Zhang, Caroline Gutjahr

Abstract:

Arbuscular mycorrhiza (AM) is a mutualistic symbiosis between plant roots and Glomeromycotina fungi, which is activated under low but inhibited by high phosphate. The effect of phosphate on AM development has been observed for many years, but mechanisms regulating it under contrasting phosphate levels remain unknown. Based on previous observations that promoters of several AM functional genes contain PHR binding motifs, we hypothesized that PHR2, a master regulator of phosphate starvation response in rice, was recruited to regulate AM symbiosis development. We observed a drastic reduction in root colonization and significant AM transcriptome modulation in phr2. PHR2 targets genes required for root colonization and AM signaling. The role of PHR2 in improving root colonization, mycorrhizal phosphate uptake, and growth response was confirmed in field soil. In conclusion, rice PHR2, which is considered a master regulator of phosphate starvation responses, acts as a positive regulator of AM symbiosis between Glomeromycotina fungi and rice roots. PHR2 directly targets the transcription of plant strigolactone and AM genes involved in the establishment of this symbiosis. Our work facilitates an understanding of ways to enhance AMF propagule populations introduced in field soils (as a biofertilizer) in order to restore the natural plant-AMF networks disrupted by modern agricultural practices. We show that PHR2 is required for AM-mediated improvement of rice yield in low phosphate paddy field soil. Thus, our work contributes knowledge for rational application of AM in sustainable agriculture. Our data provide important insights into the regulation of AM by the plant phosphate status, which has a broad significance in agriculture and terrestrial ecosystems.

Keywords: biofertilizer, phosphate, mycorrhiza, rice, sustainable, symbiosis

Procedia PDF Downloads 101
1202 Effect of Chemical Concentration on the Rheology of Inks for Inkjet Printing

Authors: M. G. Tadesse, J. Yu, Y. Chen, L. Wang, V. Nierstrasz, C. Loghin

Abstract:

Viscosity and surface tension are the fundamental rheological property of an ink for inkjet printing. In this work, we optimized the viscosity and surface tension of inkjet inks by varying the concentration of glycerol with water, PEDOT:PSS with glycerol and water, finally by adding the surfactant. The surface resistance of the sample was characterized by four-probe measurement principle. The change in volume of PEDOT:PSS in water, as well as the change in weight of glycerol in water has got a great influence on the viscosity on both temperature dependence and shear dependence behavior of the ink solution. The surface tension of the solution changed from 37 to 28 mN/m due to the addition of Triton. Varying the volume of PEDOT:PSS and the volume of glycerol in water has a great influence on the viscosity of the ink solution for inkjet printing. Viscosity drops from 12.5 to 9.5 mPa s with the addition of Triton at 25 oC. The PEDOT:PSS solution was found to be temperature dependence but not shear dependence as it is a Newtonian fluid. The sample was used to connect the light emitting diode (LED), and hence the electrical conductivity, with a surface resistance of 0.158 KΩ/square, was sufficient enough to give transfer current for LED lamp. The rheology of the inkjet ink is very critical for the successful droplet formation of the inkjet printing.

Keywords: shear rate, surface tension, surfactant, viscosity

Procedia PDF Downloads 144
1201 Choice of Optimal Methods for Processing Phosphate Raw Materials into Complex Mineral Fertilizers

Authors: Andrey Norov

Abstract:

Based on the generalization of scientific and production experience and the latest developments of JSC “NIUIF”, the oldest (founded in September 1919) and the only Russian research institute for phosphorus-containing fertilizers, this paper shows the factors that determine the reasonable choice of a method for processing phosphate raw materials into complex fertilizers. These factors primarily include the composition of phosphate raw materials and the impurities contained in it, as well as some parameters of the process mode, wastelessness, ecofriendliness, energy saving, maximum use of the heat of chemical reactions, fire and explosion safety, efficiency, productive capacity, the required product range and the possibility of creating flexible technologies, compliance with BAT principles, etc. The presented data allow to choose the right technology for complex granular fertilizers, depending on the abovementioned factors.

Keywords: BAT, ecofriendliness, energy saving, phosphate raw materials, wastelessness

Procedia PDF Downloads 55
1200 Biosynthesis of Silver-Phosphate Nanoparticles Using the Extracellular Polymeric Substance of Sporosarcina pasteurii

Authors: Mohammadhosein Rahimi, Mohammad Raouf Hosseini, Mehran Bakhshi, Alireza Baghbanan

Abstract:

Silver ions (Ag+) and their compounds are consequentially toxic to microorganisms, showing biocidal effects on many species of bacteria. Silver-phosphate (or silver orthophosphate) is one of these compounds, which is famous for its antimicrobial effect and catalysis application. In the present study, a green method was presented to synthesis silver-phosphate nanoparticles using Sporosarcina pasteurii. The composition of the biosynthesized nanoparticles was identified as Ag3PO4 using X-ray Diffraction (XRD) and Energy Dispersive Spectroscopy (EDS). Also, Fourier Transform Infrared (FTIR) spectroscopy showed that Ag3PO4 nanoparticles was synthesized in the presence of biosurfactants, enzymes, and proteins. In addition, UV-Vis adsorption of the produced colloidal suspension approved the results of XRD and FTIR analyses. Finally, Transmission Electron Microscope (TEM) images indicated that the size of the nanoparticles was about 20 nm.

Keywords: bacteria, biosynthesis, silver-phosphate, Sporosarcina pasteurii, nanoparticle

Procedia PDF Downloads 421
1199 Effect of Phosphate and Zinc Biofertilizers on Seed Yield and Molar Ratio of Phytic Acid to Zinc in Two Cultivars of Bean (Phaseolus vulgaris L.)

Authors: M. Mohammadi

Abstract:

In order to evaluate the effect of phosphate and Zn bio-fertilizers on the yield, phytic acid (PA), Zn concentration and PA/Zn molar ratio in bean, a field experiment was carried out for two years. The treatments included two cultivars of bean (Talash and Sadri), four levels of P (P0, P1: 100 kg ha-1 triple super phosphate (TSP), P2: 50 kg ha-1 TSP + phosphate bio-fertilizer, P3: phosphate bio-fertilizer), three levels of Zn (Zn0, Zn1: 50 kg ha-1 ZnSO4, Zn2: Zn bio-fertilizer). Phosphate bio-fertilizer consisted of inoculum of mycorrhizal fungus and Azotobacter and Zn bio-fertilizer consisted of Pseudomonas bacteria. The results revealed that there was significant difference between yield and Zn concentration between years. The effect of cultivar was significant on studied parameters. The lowest content of PA and PA/Zn were obtained from Talash. P treatment caused to significant difference on parameters in which P2 caused to increase yield, P and Zn concentration, and decrease PA and PA/Zn by 21.8%, 38.2%, 33.4%, 17.4% and 38.6% respectively. Zn treatment caused to significant difference on studied parameters. The maximum number of parameters were obtained from Zn1 and Zn2. The higher Zn concentration led to lower content of PA and PA/Zn. Using of P and Zn bio–fertilizers were caused to increasing nutrient uptake, improving growth condition and reducing PA and PA/Zn molar ratio.

Keywords: mycorrhizae, phosphorus, pseudomonas, zinc

Procedia PDF Downloads 228
1198 Removal and/or Recovery of Phosphates by Precipitation as Ferric Phosphate from the Effluent of a Municipal Wastewater Treatment Plant

Authors: Kyriaki Kalaitzidou, Athanasia Tolkou, Christina Raptopoulou, Manassis Mitrakas, Anastasios Zouboulis

Abstract:

Phosphate rock is the main source of phosphorous (P) in fertilizers and is essential for high crop yield in agriculture; currently, it is considered as a critical element, phasing scarcity. Chemical precipitation, which is a commonly used method of phosphorous removal from wastewaters, finds its significance in that phosphates may be precipitated in appropriate chemical forms that can be reused-recovered. Most often phosphorous is removed from wastewaters in the form of insoluble phosphate salts, by using salts (coagulants) of multivalent metal ions, most frequently iron, aluminum, calcium, or magnesium. The removal degree is affected by various factors, such as pH, chemical agent dose, temperature, etc. In this study, phosphate precipitation from the secondary (biologically treated) effluent of a municipal wastewater treatment plant is examined. Using chlorosulfate (FeClSO4) it was attempted to either remove and/or recover PO43-. Results showed that the use of Fe3+ can achieve residual concentrations lower than the commonly applied legislation limit of PO43- (i.e. 3 mg PO43-/L) by adding 7.5 mg/L Fe3+ in the secondary effluent with an initial concentration of about 10 mg PO43-/L and at pH range between 6 to 9. In addition, the formed sediment has a percentage of almost 24% PO43- content. Therefore, simultaneous removal and recovery of PO43- as ferric phosphate can be achieved, making it possible for the ferric phosphate to be re-used as a possible (secondary) fertilizer source.

Keywords: ferric phosphate, phosphorus recovery, phosphorus removal, wastewater treatment

Procedia PDF Downloads 442
1197 Study of Divalent Phosphate Iron-Oxide Precursor Recycling Technology

Authors: Shinn-Dar Wu

Abstract:

This study aims to synthesize lithium iron phosphate cathode material using a recycling technology involving non-protective gas calcination. The advantages include lower cost and easier production than traditional methods that require a large amount of protective gas. The novel technology may have extensive industrial applications. Given that the traditional gas calcination has a large number of protection free Fe3+ production, this study developed a precursor iron phosphate (Fe2+) material recycling technology and conducted related tests and analyses. It focused on flow field design of calcination and new technology as well as analyzed the best conditions for powder calcination combination. The electrical properties were determined by button batteries and exhibited a capacity of 118 mAh/g (The use of new materials synthesis, capacitance is about 122 mAh/g). The cost reduced to 50% of the original.

Keywords: lithium battery, lithium iron phosphate, calcined technology, recycling technology

Procedia PDF Downloads 429
1196 Comparing the SALT and START Triage System in Disaster and Mass Casualty Incidents: A Systematic Review

Authors: Hendri Purwadi, Christine McCloud

Abstract:

Triage is a complex decision-making process that aims to categorize a victim’s level of acuity and the need for medical assistance. Two common triage systems have been widely used in Mass Casualty Incidents (MCIs) and disaster situation are START (Simple triage algorithm and rapid treatment) and SALT (sort, asses, lifesaving, intervention, and treatment/transport). There is currently controversy regarding the effectiveness of SALT over START triage system. This systematic review aims to investigate and compare the effectiveness between SALT and START triage system in disaster and MCIs setting. Literatures were searched via systematic search strategy from 2009 until 2019 in PubMed, Cochrane Library, CINAHL, Scopus, Science direct, Medlib, ProQuest. This review included simulated-based and medical record -based studies investigating the accuracy and applicability of SALT and START triage systems of adult and children population during MCIs and disaster. All type of studies were included. Joana Briggs institute critical appraisal tools were used to assess the quality of reviewed studies. As a result, 1450 articles identified in the search, 10 articles were included. Four themes were identified by review, they were accuracy, under-triage, over-triage and time to triage per individual victim. The START triage system has a wide range and inconsistent level of accuracy compared to SALT triage system (44% to 94. 2% of START compared to 70% to 83% of SALT). The under-triage error of START triage system ranged from 2.73% to 20%, slightly lower than SALT triage system (7.6 to 23.3%). The over-triage error of START triage system was slightly greater than SALT triage system (START ranged from 2% to 53% compared to 2% to 22% of SALT). The time for applying START triage system was faster than SALT triage system (START was 70-72.18 seconds compared to 78 second of SALT). Consequently; The START triage system has lower level of under-triage error and faster than SALT triage system in classifying victims of MCIs and disaster whereas SALT triage system is known slightly more accurate and lower level of over-triage. However, the magnitude of these differences is relatively small, and therefore the effect on the patient outcomes is not significance. Hence, regardless of the triage error, either START or SALT triage system is equally effective to triage victims of disaster and MCIs.

Keywords: disaster, effectiveness, mass casualty incidents, START triage system, SALT triage system

Procedia PDF Downloads 107
1195 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 305
1194 Solar Pond: Some Issues in Their Management and Mathematical Description

Authors: A. A. Abdullah, K. A. Lindsay

Abstract:

The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond.

Keywords: aqueous sodium chloride, constitutive expression, solar pond, salt-gradient

Procedia PDF Downloads 301
1193 Stabilizing Effects of Deep Eutectic Solvents on Alcohol Dehydrogenase Mediated Systems

Authors: Fatima Zohra Ibn Majdoub Hassani, Ivan Lavandera, Joseph Kreit

Abstract:

This study explored the effects of different organic solvents, temperature, and the amount of glycerol on the alcohol dehydrogenase (ADH)-catalysed stereoselective reduction of different ketones. These conversions were then analyzed by gas chromatography. It was found that when the amount of deep eutectic solvents (DES) increases, it can improve the stereoselectivity of the enzyme although reducing its ability to convert the substrate into the corresponding alcohol. Moreover, glycerol was found to have a strong stabilizing effect on the ADH from Ralstonia sp. (E. coli/ RasADH). In the case of organic solvents, it was observed that the best conversions into the alcohols were achieved with DMSO and hexane. It was also observed that temperature decreased the ability of the enzyme to convert the substrates into the products and also affected the selectivity. In addition to that, the recycling of DES up to three times gave good conversions and enantiomeric excess results and glycerol showed a positive effect in the stability of various ADHs. Using RasADH, a good conversion and enantiomeric excess into the S-alcohol were obtained. It was found that an enhancement of the temperature disabled the stabilizing effect of glycerol and decreased the stereoselectivity of the enzyme. However, for other ADHs a temperature increase had an opposite positive effect, especially with ADH-T from Thermoanaerobium sp. One of the objectives of this study was to see the effect of cofactors such as NAD(P) on the biocatlysis activities of ADHs.

Keywords: alcohol dehydrogenases, DES, gas chromatography, RasADH

Procedia PDF Downloads 163
1192 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model

Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura

Abstract:

The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.

Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride

Procedia PDF Downloads 257
1191 Development of Al Foam by a Low-Cost Salt Replication Method for Industrial Applications

Authors: B. Soni, S. Biswas

Abstract:

Metal foams of Al find diverse applications in several industrial sectors such as in automotive and sports equipment industry as impact, acoustic and vibration absorbers, the aerospace industry as structural components in turbines and spatial cones, in the naval industry as low frequency vibration absorbers, and in construction industry as sound barriers inside tunnels, as fire proof materials and structure protection systems against explosions and even in heat exchangers, orthopedic components, and decorative items. Here, we report on the development of Al foams by a low cost and convenient technique of salt replication method with efficient control over size, geometry and distribution of the pores. Sodium bicarbonate was used as the foaming agent to form the porous refractory salt pattern. The mixed refractory salt slurry was microwave dried followed by sintering for selected time periods. Molten Al was infiltrated into the salt pattern in an inert atmosphere at a pressure of 2 bars. The final products were obtained by leaching out the refractory salt pattern. Mechanical properties of the derived samples were studied with a universal testing machine. The results were analyzed in correlation with their microstructural features evaluated with a scanning electron microscope (SEM).

Keywords: metal foam, Al, salt replication method, mechanical properties, SEM

Procedia PDF Downloads 333
1190 Dissolution Leaching Kinetics of Ulexite in Sodium Dihydrogen Phosphate Solutions

Authors: Emine Teke, Soner Kuşlu, Sabri Çolak, Turan Çalban

Abstract:

The aim of the present study was to investigate the dissolution kinetics of ulexite in sodium dihydrogen phosphate in a mechanical agitation system and also to declare an alternative reactant to produce the boric acid. Reaction temperature, concentration of sodium dihydrogen phosphate, stirring speed, solid-liquid ratio, and ulexite particle size were selected as parameters. The experimental results were successfully correlated by using linear regression and a statistical program. Dissolution curves were evaluated in order to test the shrinking core models for solid-fluid systems. It was observed that increase in the reaction temperature and decrease in the solid/liquid ratio causes an increase in the dissolution rate of ulexite. The activation energy was found to be 36.4 kJ/mol. The leaching of ulexite was controlled by diffusion through the ash (or product) layer.

Keywords: ulexite, sodium dihydrogen phosphate, leaching kinetics, boron

Procedia PDF Downloads 282
1189 Effect of Moisture Removal from Molten Salt on Corrosion of Alloys

Authors: Bhavesh D. Gajbhiye, Divya Raghunandanan, C. S. Sona, Channamallikarjun S. Mathpati

Abstract:

Molten fluoride salt FLiNaK (LiF-NaF-KF: 46.5-11.5-42 mol %) is a promising candidate as high temperature coolant for next generation nuclear reactors due to its superior thermophysical properties. Corrosion of alloys in molten FLiNaK has however been recognized as a serious issue in the selection of structural materials. Corrosion experiments of alloys Inconel-625 (Fe-Ni alloy) and Hastelloy-B (Ni-Mo alloy) were performed in FLiNaK salt. The tests were carried out at a temperature of 650°C in graphite crucibles for 60 hours under inert atmosphere. Corrosion experiments were performed to study the effect of moisture removal in the salt by pre heating and vacuum drying. Weight loss of the alloy samples due to corrosion was measured and corrosion rate was estimated. The surface morphology of the alloy samples was analyzed by Scanning Electron Microscopy. A significant decrease in the corrosion rate was observed for the alloys studied in moisture removed salt.

Keywords: FLiNaK, hastelloy, inconel, weight loss

Procedia PDF Downloads 454
1188 Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves

Authors: Preshanthan Moodley, E. B. Gueguim Kana

Abstract:

This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.

Keywords: lignocellulosic bioethanol, microwave pretreatment, sugarcane leaves, kinetics

Procedia PDF Downloads 87
1187 The Effect of Gamma-Aminobutyric Acid on Mechanical Properties, Water Vapor Permeability and Solubility of Pectin Films

Authors: Jitrawadee Meerasri, Rungsinee Sothornvit

Abstract:

Pectin is a structural polysaccharide from plant cell walls and can be used as a stabilizer, gelling and film-forming agents to improve many food products. Moreover, pectin film as a natural biopolymer can be a carrier of several active ingredients such as antioxidant and antimicrobial to provide an active or functional film. Gamma-aminobutyric acid (GABA) is a well-known agent to reduce neuronal excitability throughout the nervous system and it is interesting to investigate the GABA effect as a substitute of normal plasticizer (glycerol) on edible film properties. Therefore, the objective of this study was to determine the effect of GABA concentrations (5-15% of pectin) on film mechanical properties, moisture content, water vapor permeability, and solubility compared with those from glycerol (10% of pectin) plasticized pectin film including a control film (pectin film without any plasticizer). It was found that an increase in GABA concentrations decreased film tensile strength, modulus, solubility and water vapor permeability, but elongation was increased without a change in the moisture content. The smaller amount of GABA showed the equivalent film properties as using a higher amount of glycerol. Consequently, GABA can act as an alternative plasticizer substitute of glycerol at the lower amount used. Moreover, GABA provides the nutritional high value in the food products when the edible packaging material is consumed with products.

Keywords: gamma-aminobutyric acid, pectin, plasticizer, edible film

Procedia PDF Downloads 107
1186 Production of Gluten-Free Bread Using Emulsifying Salts and Rennet Casein

Authors: A. Morina, S. Ö. Muti, M. Öztürk

Abstract:

Celiac disease is a chronic intestinal disease observed in individuals with gluten intolerance. In this study, our aim was to create a protein matrix to mimic the functional properties of gluten. For this purpose, rennet casein and four emulsifying salts (disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), sodium acid pyrophosphate (SAPP), and sodium hexametaphosphate (SHMP)) were investigated in gluten-free bread manufacture. Compositional, textural, and visual properties of the gluten-free bread dough and gluten-free breads were investigated by a two–level factorial experimental design with two-star points (α = 1.414) and two replicates of the center point. Manufacturing gluten-free bread with rennet casein and SHMP significantly increased the bread volume (P < 0.0001, R² = 97.8). In general, utilization of rennet casein with DSP and SAPP increased bread hardness while no difference was observed in samples manufactured with TSPP and SHMP. Except for TSPP, bread color was improved by the utilization of rennet casein and DSP, SAPP, and SHMP combinations. In conclusion, it is possible to manufacture gluten-free bread with acceptable texture and color by rennet casein and SHMP.

Keywords: celiac disease, gluten-free bread, emulsified salts, rennet casein, rice flour

Procedia PDF Downloads 129
1185 Anatomical Adaptations of Three Astragalus Species under Salt Stress

Authors: Faycal Boughalleb, Raoudha Abdellaoui

Abstract:

The effect of NaCl stress on root and leaf anatomy was investigated in three Astragalus species grown in 0-300 mM NaCl for 30 days under greenhouse conditions. Root cross section and cortex thickness was reduced under salt stress in both species while A. tenuifolius showed thinner cortex and the root cross section was unchanged. The epidermis stele thickness was unaffected by salinity in A. armatus and A. tenuifolius and was reduced in A. mareoticus with smaller xylem vessel size. In addition, vessel density and wall thickness of xylem was increased under salt conditions in the studies species. The entire lamina and mesophyll of the three species were thinner in salt-stressed plants. A. armatus and A. tenuifolius showed the higher thickness with increased size of the lower epidermis. NaCl (300 mM) reduced leaf water content by 41.5 % in A. mareoticus while it was unchanged in the other species. The size of the vascular bundle increased under salinity in A. tenuifolius leaves and it was unchanged in the other ones. A longer distance between leaf vascular bundle was occurred in A. mareoticus. The effects of NaCl on root and leaf ultrastructure are discussed in relation to the degree of salt resistance of these species. The unchanged biomass production under salt stress confirmed the higher tolerance oft A. tenuifolius to salinity. A. armatus was moderately salt tolerant with decrease of biomass production by 14.2 % while A. mareoticus was considered as salt sensitive plant when the decrease in biomass production reached 56.8%.

Keywords: Astragalus species, leaf ultrastructure, root anatomy, salt stress

Procedia PDF Downloads 360
1184 Evaluation of Compressive Mechanical Properties of the Radial Bone Defect Treated with Selected Bone Graft Substitute Materials in Rabbit

Authors: Omid Gholipoor Bashiri, Ghafur Mosavi, Aliasghar Behnamghader, Seyed Mahmood Rabiee

Abstract:

Objective: To determine the effect of selected bone graft on the compression properties of radial bone in rabbit. Design-Experimental in vivo study. Animals: A total of 45 adult male New Zealand white rabbits. Procedures: The rabbits were anesthetized and a one-cm-full thickness piece of radial bone was removed using oscillating saw in the all rabbit. The rabbits were divided into 5 groups on the basis of the material used to fill the bone defect: group 1: the paste of bone cement calcium phosphate; group II: the paste of calcium phosphate mixture with type I collagen; group III: tricalcium phosphate mixed with hydroxyapatite (TCP & HP) with 5% porosity; group IV: the same scaffold as group III with 10% porosity; and group V: the same scaffold as group III and IV with 20% porosity, with 9 rabbits in each group. Subsequently subdivided into 3 subgroups of 3 rabbits each. Results: There was a significant increase in compression properties of radial bone in the group II and V in 2nd and 3rd months as compared with groups I, III and IV. The mean endurable crack-strength in group II and V were slightly higher than that of normal radius (P<0.05). Conclusion and clinical relevance: Application of calcium phosphate paste with type I collagen and scaffold of tricalcium phosphate with hydroxyapatite having 20% porosity indicated to have positive effect in integral formation of qualitative callus at the site of fracture and early re-organization of callus to regain mechanical strength too.

Keywords: calcium phosphate, tricalcium phosphate, hydroxyapatite, radial bone, compressive properties, porosity, type i collagen, rabbit

Procedia PDF Downloads 413
1183 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate

Procedia PDF Downloads 344
1182 Recovery of Draw Solution in Forward Osmosis by Direct Contact Membrane Distillation

Authors: Su-Thing Ho, Shiao-Shing Chen, Hung-Te Hsu, Saikat Sinha Ray

Abstract:

Forward osmosis (FO) is an emerging technology for direct and indirect potable water reuse application. However, successful implementation of FO is still hindered by the lack of draw solution recovery with high efficiency. Membrane distillation (MD) is a thermal separation process by using hydrophobic microporous membrane that is kept in sandwich mode between warm feed stream and cold permeate stream. Typically, temperature difference is the driving force of MD which attributed by the partial vapor pressure difference across the membrane. In this study, the direct contact membrane distillation (DCMD) system was used to recover diluted draw solution of FO. Na3PO4 at pH 9 and EDTA-2Na at pH 8 were used as the feed solution for MD since it produces high water flux and minimized salt leakage in FO process. At high pH, trivalent and tetravalent ions are much easier to remain at draw solution side in FO process. The result demonstrated that PTFE with pore size of 1 μm could achieve the highest water flux (12.02 L/m2h), followed by PTFE 0.45 μm (10.05 L/m2h), PTFE 0.1 μm (7.38 L/m2h) and then PP (7.17 L/m2h) while using 0.1 M Na3PO4 draw solute. The concentration of phosphate and conductivity in the PTFE (0.45 μm) permeate were low as 1.05 mg/L and 2.89 μm/cm respectively. Although PTFE with the pore size of 1 μm could obtain the highest water flux, but the concentration of phosphate in permeate was higher than other kinds of MD membranes. This study indicated that four kinds of MD membranes performed well and PTFE with the pore size of 0.45 μm was the best among tested membranes to achieve high water flux and high rejection of phosphate (99.99%) in recovery of diluted draw solution. Besides that, the results demonstrate that it can obtain high water flux and high rejection of phosphate when operated with cross flow velocity of 0.103 m/s with Tfeed of 60 ℃ and Tdistillate of 20 ℃. In addition to that, the result shows that Na3PO4 is more suitable for recovery than EDTA-2Na. Besides that, while recovering the diluted Na3PO4, it can obtain the high purity of permeate water. The overall performance indicates that, the utilization of DCMD is a promising technology to recover the diluted draw solution for FO process.

Keywords: membrane distillation, forward osmosis, draw solution, recovery

Procedia PDF Downloads 162
1181 Evolution of Mineral Nutrition in Two Species of Atriplex (halimus and canescens) under Salt Stress

Authors: Z. Mahi, L. Marousset, C. Roudaut, M. Belkhodja, R. Lemoine

Abstract:

The strong accumulation of salts in the soil as well as in irrigation water greatly disrupts the growth and development of almost all plants. The study of these disturbances in halophytes helps provide better guidance on the deteriorating effect of salinity. Evaluation of salt stress in two species of Atriplex (halimus and canescens) through the study of mineral nutrition (dosage of sodium and potassium) shows a variability of responses. The results show that the Na+ ion accumulates in the three organs whatever the applied concentration. This accumulation increases with the high salt concentrations in halimus whereas in canescens, 600 mM treatment shows a reduction of the amount of this element. A decrease in the amount of potassium is observed for all organs except halimus rods 100 mM. Unlike halimus, canescens K + accumulates in high concentrations of salt at the roots and leaves. The ratio Na+/K+ decreases the salt by halimus against it increases in levels canescens roots and treated with high concentrations of NaCl (600 mM) leaves.

Keywords: Atriplex, canescens, halimus, Na +, K +, Na Cl, tolerance

Procedia PDF Downloads 325
1180 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia

Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara

Abstract:

Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.

Keywords: dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon

Procedia PDF Downloads 245