Search results for: fire dynamics simulation (FDS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7412

Search results for: fire dynamics simulation (FDS)

1022 Development of Methods for Plastic Injection Mold Weight Reduction

Authors: Bita Mohajernia, R. J. Urbanic

Abstract:

Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.

Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction

Procedia PDF Downloads 267
1021 The Relationship between Celebrity Worship and Religiosity: A Study in Turkish Context

Authors: Saadet Taşyürek Demirel, Halide Sena Koçyiğit, Rümeysa Fatma Çetin

Abstract:

Celebrity worship, characterized by excessive admiration and devotion towards public figures, often mirrors elements of religious fervor. This study delves into the intricate connection between celebrity worship and religiosity, particularly within the Turkish cultural context, where Islamic values predominantly shape societal norms. The investigation involves the adaptation of the Celebrity Attitude Scale into Turkish and scrutinizes the interplay between young individuals' religiosity and their extreme adulation of celebrities. Additionally, the study explores potential moderating factors, such as age and gender, that might influence this relationship. A cohort of 197 young adults, aged 19 to 30, participated in this research, responding to self-administered questionnaires that assessed their attitudes towards celebrities using the adapted Celebrity Attitude Scale, along with their self-reported religiosity. The anticipated relationship between religiosity and celebrity worship is hypothesized to exhibit a non-linear pattern. Specifically, we expect religiosity to positively predict celebrity worship tendencies among individuals with minimal to moderate religiosity levels. Conversely, a negative association between religiosity and celebrity worship is expected to manifest among participants exhibiting moderate to high levels of religiosity. The findings of this study will contribute to the comprehension of the intricate dynamics between celebrity worship and religiosity, offering insights specifically within the Turkish cultural context. By shedding light on this relationship, the study aims to enhance our understanding of the multifaceted influences that shape individuals' perceptions and behaviors towards both celebrities and religious inclinations. Methodology of the study: A quantitative research will be conducted, where the factor analysis and correlational method will be used. The factor structure of the scale will be determined with exploratory and confirmatory factor analysis. The reliability, internal consistency, Objectives of the study: This study examines the relationship between religiosity and celebrity worship by young adults in the Turkish context. The other aim of the study is to assess the Turkish validity and reliability of the Celebrity Attitude Scale and contribute it to the literature. Main Contributions of the study: The study aims to introduce celebrity worship to Turkish literature, assess the Celebrity Attitude Scale's reliability in a Turkish sample, explore manifestations of celebrity worship, and examine its link to religiosity. This research addresses the lack of Turkish sources on celebrity worship and extends understanding of the concept.

Keywords: celebrity, worship, religiosity, god

Procedia PDF Downloads 50
1020 Effect of Damper Combinations in Series or Parallel on Structural Response

Authors: Ajay Kumar Sinha, Sharad Singh, Anukriti Sinha

Abstract:

Passive energy dissipation method for earthquake protection of structures is undergoing developments for improved performance. Combined use of different types of damping mechanisms has shown positive results in the near past. Different supplemental damping methods like viscous damping, frictional damping and metallic damping are being combined together for optimum performance. The conventional method of connecting passive dampers to structures is a parallel connection between the damper unit and structural member. Researchers are investigating coupling effect of different types of dampers. The most popular choice among the research community is coupling of viscous dampers and frictional dampers. The series and parallel coupling of these damping units are being studied for relative performance of the coupled system on response control of structures against earthquake. In this paper an attempt has been made to couple Fluid Viscous Dampers and Frictional Dampers in series and parallel to form a single unit of damping system. The relative performance of the coupled units has been studied on three dimensional reinforced concrete framed structure. The current theories of structural dynamics in practice for viscous damping and frictional damping have been incorporated in this study. The time history analysis of the structural system with coupled damper units, uncoupled damper units as well as of structural system without any supplemental damping has been performed in this study. The investigations reported in this study show significant improved performance of coupled system. A higher natural frequency of the system outside the forcing frequency has been obtained for structural systems with coupled damper units as against the other cases. The structural response of the structure in terms of storey displacement and storey drift show significant improvement for the case with coupled damper units as against the cases with uncoupled units or without any supplemental damping. The results are promising in terms of improved response of the structure with coupled damper units. Further investigations in this regard for a comparative performance of the series and parallel coupled systems will be carried out to study the optimum behavior of these coupled systems for enhanced response control of structural systems.

Keywords: frictional damping, parallel coupling, response control, series coupling, supplemental damping, viscous damping

Procedia PDF Downloads 419
1019 Pilot-free Image Transmission System of Joint Source Channel Based on Multi-Level Semantic Information

Authors: Linyu Wang, Liguo Qiao, Jianhong Xiang, Hao Xu

Abstract:

In semantic communication, the existing joint Source Channel coding (JSCC) wireless communication system without pilot has unstable transmission performance and can not effectively capture the global information and location information of images. In this paper, a pilot-free image transmission system of joint source channel based on multi-level semantic information (Multi-level JSCC) is proposed. The transmitter of the system is composed of two networks. The feature extraction network is used to extract the high-level semantic features of the image, compress the information transmitted by the image, and improve the bandwidth utilization. Feature retention network is used to preserve low-level semantic features and image details to improve communication quality. The receiver also is composed of two networks. The received high-level semantic features are fused with the low-level semantic features after feature enhancement network in the same dimension, and then the image dimension is restored through feature recovery network, and the image location information is effectively used for image reconstruction. This paper verifies that the proposed multi-level JSCC algorithm can effectively transmit and recover image information in both AWGN channel and Rayleigh fading channel, and the peak signal-to-noise ratio (PSNR) is improved by 1~2dB compared with other algorithms under the same simulation conditions.

Keywords: deep learning, JSCC, pilot-free picture transmission, multilevel semantic information, robustness

Procedia PDF Downloads 90
1018 Influence of Foundation Size on Seismic Response of Mid-rise Buildings Considering Soil-Structure-Interaction

Authors: Quoc Van Nguyen, Behzad Fatahi, Aslan S. Hokmabadi

Abstract:

Performance based seismic design is a modern approach to earthquake-resistant design shifting emphasis from “strength” to “performance”. Soil-Structure Interaction (SSI) can influence the performance level of structures significantly. In this paper, a fifteen storey moment resisting frame sitting on a shallow foundation (footing) with different sizes is simulated numerically using ABAQUS software. The developed three dimensional numerical simulation accounts for nonlinear behaviour of the soil medium by considering the variation of soil stiffness and damping as a function of developed shear strain in the soil elements during earthquake. Elastic-perfectly plastic model is adopted to simulate piles and structural elements. Quiet boundary conditions are assigned to the numerical model and appropriate interface elements, capable of modelling sliding and separation between the foundation and soil elements, are considered. Numerical results in terms of base shear, lateral deformations, and inter-storey drifts of the structure are compared for the cases of soil-structure interaction system with different foundation sizes as well as fixed base condition (excluding SSI). It can be concluded that conventional design procedures excluding SSI may result in aggressive design. Moreover, the size of the foundation can influence the dynamic characteristics and seismic response of the building due to SSI and should therefore be given careful consideration in order to ensure a safe and cost effective seismic design.

Keywords: soil-structure-interaction, seismic response, shallow foundation, abaqus, rayleigh damping

Procedia PDF Downloads 484
1017 Tick Infestation and its Implications on Health and Welfare of Cattle under Pastoral System in Nigeria

Authors: Alabi Olufemi, Adeyanju Taiwo, Oloruntoba Oluwasegun, Adeleye Bobola, Alabi Oyekemi

Abstract:

The pastoral system is a predominant form of cattle production in Nigeria, characterized by extensive grazing on communal lands. However, this system is challenged by various factors, including tick infestation, which significantly affects cattle health and welfare hence this investigation which aims to provide an in-depth understanding of tick infestation in the context of Nigerian pastoral systems, emphasizing its impact on cattle health and welfare. The country harbors a diverse array of tick species that affect cattle. These ticks belong to different genera, including Rhipicephalus, Amblyomma, and Hyalomma, among others. Each species has unique characteristics, life cycles, and host preferences, contributing to the complexity of tick infestation dynamics in pastoral settings. Tick infestation has numerous detrimental effects on cattle health. The direct effects include blood loss, anemia, skin damage due to feeding, and the transmission of pathogens that cause diseases such as anaplasmosis, babesiosis, and theileriosis. Indirectly, tick infestation can lead to reduced productivity, weight loss, and increased susceptibility to other diseases.The welfare of cattle in Nigerian pastoral systems is significantly impacted by tick infestation. Infested cattle often exhibit signs of distress, including restlessness, reduced grazing activity, and altered behavior. Furthermore, the discomfort caused by tick bites can lead to chronic stress, compromising the overall welfare of the animals. Effective tick control is crucial for mitigating the impact of infestation on cattle health and welfare. Strategies such as acaricide application, pasture management, genetic selection for tick resistance cattle, and vaccination against tick-borne diseases are commonly used. Tick infestation presents a significant challenge to cattle production under the pastoral system in Nigeria. It not only impacts cattle health but also compromises their welfare. Addressing the issue of tick infestation requires a multifaceted approach that integrates effective control strategies with sustainable management practices. Further research is needed to develop tailored interventions that account for the unique characteristics of Nigerian pastoral systems, ultimately ensuring the well-being and productivity of cattle in these settings.

Keywords: tick infestation, pastoral system, welfare, cattle

Procedia PDF Downloads 19
1016 Comparison of Finite Difference Schemes for Numerical Study of Ripa Model

Authors: Sidrah Ahmed

Abstract:

The river and lakes flows are modeled mathematically by shallow water equations that are depth-averaged Reynolds Averaged Navier-Stokes equations under Boussinesq approximation. The temperature stratification dynamics influence the water quality and mixing characteristics. It is mainly due to the atmospheric conditions including air temperature, wind velocity, and radiative forcing. The experimental observations are commonly taken along vertical scales and are not sufficient to estimate small turbulence effects of temperature variations induced characteristics of shallow flows. Wind shear stress over the water surface influence flow patterns, heat fluxes and thermodynamics of water bodies as well. Hence it is crucial to couple temperature gradients with shallow water model to estimate the atmospheric effects on flow patterns. The Ripa system has been introduced to study ocean currents as a variant of shallow water equations with addition of temperature variations within the flow. Ripa model is a hyperbolic system of partial differential equations because all the eigenvalues of the system’s Jacobian matrix are real and distinct. The time steps of a numerical scheme are estimated with the eigenvalues of the system. The solution to Riemann problem of the Ripa model is composed of shocks, contact and rarefaction waves. Solving Ripa model with Riemann initial data with the central schemes is difficult due to the eigen structure of the system.This works presents the comparison of four different finite difference schemes for the numerical solution of Riemann problem for Ripa model. These schemes include Lax-Friedrichs, Lax-Wendroff, MacCormack scheme and a higher order finite difference scheme with WENO method. The numerical flux functions in both dimensions are approximated according to these methods. The temporal accuracy is achieved by employing TVD Runge Kutta method. The numerical tests are presented to examine the accuracy and robustness of the applied methods. It is revealed that Lax-Freidrichs scheme produces results with oscillations while Lax-Wendroff and higher order difference scheme produce quite better results.

Keywords: finite difference schemes, Riemann problem, shallow water equations, temperature gradients

Procedia PDF Downloads 179
1015 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain

Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas

Abstract:

Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.

Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot

Procedia PDF Downloads 144
1014 Analysis on Solar Panel Performance and PV-Inverter Configuration for Tropical Region

Authors: Eko Adhi Setiawan, Duli Asih Siregar, Aiman Setiawan

Abstract:

Solar energy is abundant in nature, particularly in the tropics which have peak sun hour that can reach 8 hours per day. In the fabrication process, Photovoltaic’s (PV) performance are tested in standard test conditions (STC). It specifies a module temperature of 25°C, an irradiance of 1000 W/ m² with an air mass 1.5 (AM1.5) spectrum and zero wind speed. Thus, the results of the performance testing of PV at STC conditions cannot fully represent the performance of PV in the tropics. For example Indonesia, which has a temperature of 20-40°C. In this paper, the effect of temperature on the choice of the 5 kW AC inverter topology on the PV system such as the Central Inverter, String Inverter and AC-Module specifically for the tropics will be discussed. The proper inverter topology can be determined by analysis of the effect of temperature and irradiation on the PV panel. The effect of temperature and irradiation will be represented in the characteristics of I-V and P-V curves. PV’s characteristics on high temperature would be analyzed using Solar panel modeling through MATLAB Simulink based on mathematical equations that form Solar panel’s characteristic curve. Based on PV simulation, it is known then that temperature coefficients of short circuit current (ISC), open circuit voltage (VOC), and maximum output power (PMAX) consecutively as high as 0.56%/oC, -0.31%/oC and -0.4%/oC. Those coefficients can be used to calculate PV’s electrical parameters such as ISC, VOC, and PMAX in certain earth’s surface’s certain point. Then, from the parameters, the utility of the 5 kW AC inverter system can be determined. As the result, for tropical area, string inverter topology has the highest utility rates with 98, 80 %. On the other hand, central inverter and AC-Module Topology has utility rates of 92.69 % and 87.7 % eventually.

Keywords: Photovoltaic, PV-Inverter Configuration, PV Modeling, Solar Panel Characteristics.

Procedia PDF Downloads 354
1013 Enhancing Solar Fuel Production by CO₂ Photoreduction Using Transition Metal Oxide Catalysts in Reactors Prepared by Additive Manufacturing

Authors: Renata De Toledo Cintra, Bruno Ramos, Douglas Gouvêa

Abstract:

There is a huge global concern due to the emission of greenhouse gases, consequent environmental problems, and the increase in the average temperature of the planet, caused mainly by fossil fuels, petroleum derivatives represent a big part. One of the main greenhouse gases, in terms of volume, is CO₂. Recovering a part of this product through chemical reactions that use sunlight as an energy source and even producing renewable fuel (such as ethane, methane, ethanol, among others) is a great opportunity. The process of artificial photosynthesis, through the conversion of CO₂ and H₂O into organic products and oxygen using a metallic oxide catalyst, and incidence of sunlight, is one of the promising solutions. Therefore, this research is of great relevance. To this reaction take place efficiently, an optimized reactor was developed through simulation and prior analysis so that the geometry of the internal channel is an efficient route and allows the reaction to happen, in a controlled and optimized way, in flow continuously and offering the least possible resistance. The design of this reactor prototype can be made in different materials, such as polymers, ceramics and metals, and made through different processes, such as additive manufacturing (3D printer), CNC, among others. To carry out the photocatalysis in the reactors, different types of catalysts will be used, such as ZnO deposited by spray pyrolysis in the lighting window, probably modified ZnO, TiO₂ and modified TiO₂, among others, aiming to increase the production of organic molecules, with the lowest possible energy.

Keywords: artificial photosynthesis, CO₂ reduction, photocatalysis, photoreactor design, 3D printed reactors, solar fuels

Procedia PDF Downloads 46
1012 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.

Keywords: base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops

Procedia PDF Downloads 256
1011 Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors

Authors: Waleed K. Saib, Abdulsalam M. Alhawsawi, Essam Banoqitah

Abstract:

The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs.

Keywords: PMT, radiation, radiation detection, scintillation detectors, silicon photomultiplier, spectrometer

Procedia PDF Downloads 131
1010 Capitalizing 'Ba' in a Knowledge Creation among Medical Researchers in Malaysian Higher Education Institution

Authors: Connie Edang, Siti Arpah Noordin, Shamila Mohamed Shuhidan

Abstract:

For the past few decades, there are growing numbers of knowledge based industries in Malaysia. As competitive edge has become so important nowadays, the consideration of research and development (R&D) should be put at the highest priority. Alike other industries, HEIs are also contributors to the nation’s development and wealth. Hence, to become a hub for creating a knowledge-based society, HEIs not only responsible for producing skillful human capital, but also to get involved in R&D. With the importance of R&D in today’s modern economy and the rise of Science and Technology, it gives opportunities for researchers to explore this sector as to place Malaysia as a provider in some key strategic industries, including medical and health sciences field. Academic researchers/medical researchers possess unique tacit and skills based in accordance with their experience and professional expert areas. In completing a collaborative research work, there must be platforms to enable the conversion of their knowledge hence beneficial towards creation of new knowledge. The objectives of this study are to: i) explore the knowledge creation activities of medical researchers in the Malaysian Higher Education Institution (HEI); ii) explore the driving forces for knowledge creation activities among the researchers; and iii) explore the interpretation of medical researchers on the establishment of ‘ba’ in the creation of knowledge. Based on the SECI model was introduced by Nonaka and Takeuchi and the Japanese concept of ‘ba’, a qualitative study whereby semi structured interview was used as to gather the informants’ viewpoints and insights based on their experience capitalizing ‘ba’ to support their knowledge creation activities. A single the study was conducted at one of the HEIs located in Sabah. From this study, both face to face and the ICT-assisted tools are found to be significant to support interaction of their knowledge. ICT seems to ease their interaction with other research collaborator. However, this study revealed that interaction conducted in physical settings is still be best preferred by the medical researchers especially situations of whereby their knowledge is hard to be externalized. Moreover, it revealed that motivational factors play important roles as for driving forces affecting their knowledge creation activities. Other than that, the medical researchers addressed that the mix interaction bring forth value in terms of facilitating knowledge creation. Therefore this study would benefit the institution to highly optimize the utilization of good platform so that knowledge can be transferred and be made used by others in appropriate ways.

Keywords: ‘ba’, knowledge creation dynamics, Malaysia, higher education institution, medical researchers

Procedia PDF Downloads 187
1009 Elastoplastic Collapse Analysis of Pipe Bends Using Finite Element Analysis

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

When an external load is applied to one of its ends, a pipe’s bends cross section tends to deform significantly both in and out of its end plane. This shell type behaviour characteristic of pipe bends and mainly due to their curves geometry accounts for their greater flexibility. This added flexibility is also accompanied by stressed and strains that are much higher than those present in a straight pipe. The primary goal of this research is to study the elastic-plastic behaviour of pipe bends under out of plane moment loading. It is also required to study the effects of changing the value of the pipe bend factor and the value of the internal pressure on that behaviour and to determine the value of the limit moments in each case. The results of these analyses are presented in the form of load deflection plots for each load case belonging to each model. From the load deflection curves, the limit moments of each case are obtained. The limit loads are then compared to those computed using some of the analytical and empirical equation available in the literature. The effects of modelling parameters are also studied. The results obtained from small displacement and large displacement analyses are compared and the effects of using a strain hardened material model are also investigated. To better understand the behaviour of pipe elbows under out of plane bending and internal pressure, it was deemed important to know how the cross section deforms and to study the distribution of stresses that cause it to deform in a particular manner. An elbow with pipe bend factor h=0.1 to h=1 is considered and the results of the detailed analysis are thereof examined.

Keywords: elasto-plastic, finite element analysis, pipe bends, simulation

Procedia PDF Downloads 305
1008 Avoiding Gas Hydrate Problems in Qatar Oil and Gas Industry: Environmentally Friendly Solvents for Gas Hydrate Inhibition

Authors: Nabila Mohamed, Santiago Aparicio, Bahman Tohidi, Mert Atilhan

Abstract:

Qatar's one of the biggest problem in processing its natural resource, which is natural gas, is the often occurring blockage in the pipelines caused due to uncontrolled gas hydrate formation in the pipelines. Several millions of dollars are being spent at the process site to dehydrate the blockage safely by using chemical inhibitors. We aim to establish national database, which addresses the physical conditions that promotes Qatari natural gas to form gas hydrates in the pipelines. Moreover, we aim to design and test novel hydrate inhibitors that are suitable for Qatari natural gas and its processing facilities. From these perspectives we are aiming to provide more effective and sustainable reservoir utilization and processing of Qatari natural gas. In this work, we present the initial findings of a QNRF funded project, which deals with the natural gas hydrate formation characteristics of Qatari type gas in both experimental (PVTx) and computational (molecular simulations) methods. We present the data from the two fully automated apparatus: a gas hydrate autoclave and a rocking cell. Hydrate equilibrium curves including growth/dissociation conditions for multi-component systems for several gas mixtures that represent Qatari type natural gas with and without the presence of well known kinetic and thermodynamic hydrate inhibitors. Ionic liquids were designed and used for testing their inhibition performance and their DFT and molecular modeling simulation results were also obtained and compared with the experimental results. Results showed significant performance of ionic liquids with up to 0.5 % in volume with up to 2 to 4 0C inhibition at high pressures.

Keywords: gas hydrates, natural gas, ionic liquids, inhibition, thermodynamic inhibitors, kinetic inhibitors

Procedia PDF Downloads 1285
1007 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 173
1006 Transformation of the Institutionality of International Cooperation in Ecuador from 2007 to 2017: 2017: A Case of State Identity Affirmation through Role Performance

Authors: Natalia Carolina Encalada Castillo

Abstract:

As part of an intended radical policy change compared to former administrations in Ecuador, the transformation of the institutionality of international cooperation during the period of President Rafael Correa was considered as a key element for the construction of the state of 'Good Living'. This intention led to several regulatory changes in the reception of cooperation for development, and even the departure of some foreign cooperation agencies. Moreover, Ecuador launched the initiative to become a donor of cooperation towards other developing countries through the ‘South-South Cooperation’ approach. All these changes were institutionalized through the Ecuadorian System of International Cooperation as a new framework to establish rules and policies that guarantee a sovereign management of foreign aid. Therefore, this research project has been guided by two questions: What were the factors that motivated the transformation of the institutionality of international cooperation in Ecuador from 2007 to 2017? and, what were the implications of this transformation in terms of the international role of the country? This paper seeks to answer these questions through Role Theory within a Constructivist meta-theoretical perspective, considering that in this case, changes at the institutional level in the field of cooperation, responded not only to material motivations but also to interests built on the basis of a specific state identity. The latter was only possible to affirm through specific roles such as ‘sovereign recipient of cooperation’ as well as ‘donor of international cooperation’. However, the performance of these roles was problematic as they were not easily accepted by the other actors in the international arena or in the domestic level. In terms of methodology, these dynamics are analyzed in a qualitative way mainly through interpretive analysis of the discourse of high-level decision-makers from Ecuador and other cooperation actors. Complementary to this, document-based research of relevant information as well as interviews have been conducted. Finally, it is concluded that even if material factors such as infrastructure needs, trade and investment interests, as well as reinforcement of state control and monitoring of cooperation flows, motivated the institutional transformation of international cooperation in Ecuador; the essential basis of these changes was the search for a new identity for the country to be projected in the international arena. This identity started to be built but continues to be unstable. Therefore, it is important to potentiate the achievements of the new international cooperation policies, and review their weaknesses, so that non-reimbursable cooperation funds received as well as ‘South-South cooperation’ actions, contribute effectively to national objectives.

Keywords: Ecuador, international cooperation, Role Theory, state identity

Procedia PDF Downloads 172
1005 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems

Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat

Abstract:

Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.

Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning

Procedia PDF Downloads 93
1004 Cardiopulmonary Resuscitation Performance Efficacy While Wearing a Powered Air-Purifying Respirator

Authors: Jun Young Chong, Seung Whan Kim

Abstract:

Introduction: The use of personal protective equipment for respiratory infection control in cardiopulmonary resuscitation (CPR) is a physical burden to healthcare providers. It matters how long CPR quality according to recommended guidelines can be maintained under these circumstances. It was investigated whether chest compression time was appropriate for a 2-minute shift and how long it was maintained in accordance with the guidelines under such conditions. Methods: This prospective crossover simulation study was performed at a single center from September 2020 to October 2020. Five indicators of CPR quality were measured during the first and second sessions of the study period. All participants wore a Level D powered air-purifying respirator (PAPR), and the experiment was conducted using a Resusci Anne manikin, which can measure the quality of chest compressions. Each participant conducted two sessions. In session one, 2-minutes of chest compressions followed by a 2-minute rest was repeated twice; in session two, 1-minute of chest compressions followed by a 1-minute rest was repeated four times. Results: All 34 participants completed the study. The deep and sufficient compression rate was 65.9 ± 13.1 mm in the 1-minute shift group and 61.5 ± 30.5 mm in the 2-minute shift group. The mean depth was 52.8 ±4.3 mm in the 1-minute shift group and 51.0 ± 6.1 mm in the 2-minute shift group. In these two values, there was a statistically significant difference between the two sessions. There was no statistically significant difference in the other CPR quality values. Conclusions: It was suggested that the different standard of current 2-minute to 1-minute cycles due to a significant reduction in the quality of chest compression in cases of CPR with PAPR.

Keywords: cardiopulmonary resuscitation, chest compression, personal protective equipment, powered air-purifying respirator

Procedia PDF Downloads 95
1003 Visual Servoing for Quadrotor UAV Target Tracking: Effects of Target Information Sharing

Authors: Jason R. King, Hugh H. T. Liu

Abstract:

This research presents simulation and experimental work in the visual servoing of a quadrotor Unmanned Aerial Vehicle (UAV) to stabilize overtop of a moving target. Most previous work in the field assumes static or slow-moving, unpredictable targets. In this experiment, the target is assumed to be a friendly ground robot moving freely on a horizontal plane, which shares information with the UAV. This information includes velocity and acceleration information of the ground target to aid the quadrotor in its tracking task. The quadrotor is assumed to have a downward-facing camera which is fixed to the frame of the quadrotor. Only onboard sensing for the quadrotor is utilized for the experiment, with a VICON motion capture system in place used only to measure ground truth and evaluate the performance of the controller. The experimental platform consists of an ArDrone 2.0 and a Create Roomba, communicating using Robot Operating System (ROS). The addition of the target’s information is demonstrated to help the quadrotor in its tracking task using simulations of the dynamic model of a quadrotor in Matlab Simulink. A nested PID control loop is utilized for inner-loop control the quadrotor, similar to previous works at the Flight Systems and Controls Laboratory (FSC) at the University of Toronto Institute for Aerospace Studies (UTIAS). Experiments are performed with ground truth provided by an indoor motion capture system, and the results are analyzed. It is demonstrated that a velocity controller which incorporates the additional information is able to perform better than the controllers which do not have access to the target’s information.

Keywords: quadrotor, target tracking, unmanned aerial vehicle, UAV, UAS, visual servoing

Procedia PDF Downloads 313
1002 Visco - Plastic Transition and Transfer of Plastic Material with SGF in case of Linear Dry Friction Contact on Steel Surfaces

Authors: Lucian Capitanu, Virgil Florescu

Abstract:

Often for the laboratory studies, modeling of specific tribological processes raises special problems. One such problem is the modeling of some temperatures and extremely high contact pressures, allowing modeling of temperatures and pressures at which the injection or extrusion processing of thermoplastic materials takes place. Tribological problems occur mainly in thermoplastics materials reinforced with glass fibers. They produce an advanced wear to the barrels and screws of processing machines, in short time. Obtaining temperatures around 210 °C and higher, as well as pressures around 100 MPa is very difficult in the laboratory. This paper reports a simple and convenient solution to get these conditions, using friction sliding couples with linear contact, cylindrical liner plastic filled with glass fibers on plate steel samples, polished and super-finished. C120 steel, which is a steel for moulds and Rp3 steel, high speed steel for tools, were used. Obtaining the pressure was achieved by continuous request of the liner in rotational movement up to its elasticity limits, when the dry friction coefficient reaches or exceeds the hardness value of 0.5 HB. By dissipation of the power lost by friction on flat steel sample, are reached contact temperatures at the metal surface that reach and exceed 230 °C, being placed in the range temperature values of the injection. Contact pressures (in load and materials conditions used) ranging from 16.3-36.4 MPa were obtained depending on the plastic material used and the glass fibers content.

Keywords: plastics with glass fibers, dry friction, linear contact, contact temperature, contact pressure, experimental simulation

Procedia PDF Downloads 277
1001 Meniere's Disease and its Prevalence, Symptoms, Risk Factors and Associated Treatment Solutions for this Disease

Authors: Amirreza Razzaghipour Sorkhab

Abstract:

One of the most common disorders among humans is hearing impairment. This paper provides an evidence base that recovers understanding of Meniere’s disease and highlights the physical and mental health correlates of the disorder. Meniere's disease is more common in the elderly. The term idiopathic endolymphatic hydrops has been attributed to this disease by some in the previous. Meniere’s disease demonstrations a genetic tendency, and a family history is found in 10% of cases, with an autosomal dominant inheritance pattern. The COCH gene may be one of the hereditary factors contributing to Meniere’s disease, and the possibility of a COCH mutation should be considered in patients with Meniere’s disease symptoms. Should be considered Missense mutations in the COCH gene cause the autosomal dominant sensorineural hearing loss and vestibular disorder. Meniere’s disease is a complex, heterogeneous disorder of the inner ear and that is characterized by episodes of vertigo lasting from minutes to hours, fluctuating sensorineural hearing loss, tinnitus, and aural fullness. The existing evidence supports the suggestion that age and sleep disorder are risk factors for Meniere's disease. Many factors have been reported to precipitate the progress of Menier, including endolymphatic hydrops, immunology, viral infection, inheritance, vestibular migraine, and altered intra-labyrinthine fluid dynamics. Although there is currently no treatment that has a proven helpful effect on hearing levels or on the long-term evolution of the disease, however, in the primary stages, the hearing may improve among attacks, but a permanent hearing loss occurs in the majority of cases. Current publications have proposed a role for the intratympanic use of medicine, mostly aminoglycosides, for the control of vertigo. more than 85% of patients with Meniere's disease are helped by either changes in lifestyle and medical treatment or minimally aggressive surgical procedures such as intratympanic steroid therapy, intratympanic gentamicin therapy, and endolymphatic sac surgery. However, unilateral vestibular extirpation methods (intratympanic gentamicin, vestibular nerve section, or labyrinthectomy) are more predictable but invasive approaches to control the vertigo attacks. Medical therapy aimed at reducing endolymph volume, such as low-sodium diet, diuretic use, is the typical initial treatment.

Keywords: meniere's disease, endolymphatic hydrops, hearing loss, vertigo, tinnitus, COCH gene

Procedia PDF Downloads 63
1000 Progressive Collapse of Cooling Towers

Authors: Esmaeil Asadzadeh, Mehtab Alam

Abstract:

Well documented records of the past failures of the structures reveals that the progressive collapse of structures is one of the major reasons for dramatic human loss and economical consequences. Progressive collapse is the failure mechanism in which the structure fails gradually due to the sudden removal of the structural elements. The sudden removal of some structural elements results in the excessive redistributed loads on the others. This sudden removal may be caused by any sudden loading resulted from local explosion, impact loading and terrorist attacks. Hyperbolic thin walled concrete shell structures being an important part of nuclear and thermal power plants are always prone to such terrorist attacks. In concrete structures, the gradual failure would take place by generation of initial cracks and its propagation in the supporting columns along with the tower shell leading to the collapse of the entire structure. In this study the mechanism of progressive collapse for such high raised towers would be simulated employing the finite element method. The aim of this study would be providing clear conceptual step-by-step descriptions of various procedures for progressive collapse analysis using commercially available finite element structural analysis software’s, with the aim that the explanations would be clear enough that they will be readily understandable and will be used by practicing engineers. The study would be carried out in the following procedures: 1. Provide explanations of modeling, simulation and analysis procedures including input screen snapshots; 2. Interpretation of the results and discussions; 3. Conclusions and recommendations.

Keywords: progressive collapse, cooling towers, finite element analysis, crack generation, reinforced concrete

Procedia PDF Downloads 455
999 Task Scheduling and Resource Allocation in Cloud-based on AHP Method

Authors: Zahra Ahmadi, Fazlollah Adibnia

Abstract:

Scheduling of tasks and the optimal allocation of resources in the cloud are based on the dynamic nature of tasks and the heterogeneity of resources. Applications that are based on the scientific workflow are among the most widely used applications in this field, which are characterized by high processing power and storage capacity. In order to increase their efficiency, it is necessary to plan the tasks properly and select the best virtual machine in the cloud. The goals of the system are effective factors in scheduling tasks and resource selection, which depend on various criteria such as time, cost, current workload and processing power. Multi-criteria decision-making methods are a good choice in this field. In this research, a new method of work planning and resource allocation in a heterogeneous environment based on the modified AHP algorithm is proposed. In this method, the scheduling of input tasks is based on two criteria of execution time and size. Resource allocation is also a combination of the AHP algorithm and the first-input method of the first client. Resource prioritization is done with the criteria of main memory size, processor speed and bandwidth. What is considered in this system to modify the AHP algorithm Linear Max-Min and Linear Max normalization methods are the best choice for the mentioned algorithm, which have a great impact on the ranking. The simulation results show a decrease in the average response time, return time and execution time of input tasks in the proposed method compared to similar methods (basic methods).

Keywords: hierarchical analytical process, work prioritization, normalization, heterogeneous resource allocation, scientific workflow

Procedia PDF Downloads 122
998 Quantification of Effects of Structure-Soil-Structure Interactions on Urban Environment under Rayleigh Wave Loading

Authors: Neeraj Kumar, J. P. Narayan

Abstract:

The effects of multiple Structure-Soil-Structure Interactions (SSSI) on the seismic wave-field is generally disregarded by earthquake engineers, particularly the surface waves which cause more damage to buildings. Closely built high rise buildings exchange substantial seismic energy with each other and act as a full-coupled dynamic system. In this paper, SSI effects on the building responses and the free field motion due to a small city consisting 25- homogenous buildings blocks of 10-storey are quantified. The rocking and translational behavior of building under Rayleigh wave loading is studied for different dimensions of the building. The obtained dynamic parameters of buildings revealed a reduction in building roof drift with an increase in number of buildings ahead of the considered building. The strain developed by vertical component of Rayleigh may cause tension in structural components of building. A matching of fundamental frequency of building for the horizontal component of Rayleigh wave with that for vertically incident SV-wave is obtained. Further, the fundamental frequency of building for the vertical vibration is approximately twice to that for horizontal vibration. The city insulation has caused a reduction of amplitude of Rayleigh wave up to 19.3% and 21.6% in the horizontal and vertical components, respectively just outside the city. Further, the insulating effect of city was very large at fundamental frequency of buildings for both the horizontal and vertical components. Therefore, it is recommended to consider the insulating effects of city falling in the path of Rayleigh wave propagation in seismic hazard assessment for an area.

Keywords: structure-soil-structure interactions, Rayleigh wave propagation, finite difference simulation, dynamic response of buildings

Procedia PDF Downloads 192
997 Perception Towards Using E-learning with Stem Students Whose Programs Require Them to Attend Practical Sections in Laboratories during Covid-19

Authors: Youssef A. Yakoub, Ramy M. Shaaban

Abstract:

Covid-19 has changed and affected the whole world dramatically in a new way that the entire world, even scientists, have not imagined before. The educational institutions around the world have been fighting since Covid-19 hit the world last December to keep the educational process unchanged for all students. E-learning was a must for almost all US universities during the pandemic. It was specifically more challenging to use eLearning instead of regular classes among students who take practical education. The aim of this study is to examine the perception of STEM students towards using eLearning instead of traditional methods during their practical study. Focus groups of STEM students studying at a western Pennsylavian, mid-size university were interviewed. Semi-structured interviews were designed to get an insight on students’ perception towards the alternative educational methods they used in the past seven months. Using convenient sampling, four students were chosen from different STEM fields: science of physics, technology, electrical engineering, and mathematics. The interview was primarily about the extent to which these students were satisfied, and their educational needs were met through distance education during the pandemic. The interviewed students were generally able to do a satisfactory performance during their virtual classes, but they were not satisfied enough with the learning methods. The main challenges they faced included the inability to have real practical experience, insufficient materials posted by the faculty, and some technical problems associated with their study. However, they reported they were satisfied with the simulation programs they had. They reported these simulations provided them with a good alternative to their traditional practical education. In conclusion, this study highlighted the challenges students face during the pandemic. It also highlighted the various learning tools students see as good alternatives to their traditional education.

Keywords: eLearning, STEM education, COVID-19 crisis, online practical training

Procedia PDF Downloads 108
996 TikTok as a Search Engine for Selecting Traveling Destinations and Its Relation to Nation’s Destinations Branding: Comparative Study Between Gen-Y and Gen-Z in the Egyptian Community

Authors: Ghadeer Aly, Yasmeen Hanafy

Abstract:

The way we research travel options and decide where to go has substantially changed in the digital age. Atypical search engines like social networking sites like TikTok have evolved, influencing the preferences of various generations. The influence of TikTok use as a search engine for choosing travel locations and its effect on a country's destination branding are both examined in this study. The study specifically focuses on the comparative preferences and actions of Generations Y and Z within the Egyptian community, shedding light on how these generations interact with travel related TikTok content and how it influences their perceptions of various destinations. It also investigates how TikTok Accounts use tourism branding techniques to promote a country's tourist destination. The investigation of how social media platforms are changing as unconventional search engines has theoretical relevance. This study can advance our knowledge of how digital platforms alter information-seeking behaviors and affect the way people make decisions. Furthermore, investigating the relationship between TikTok video and destination branding might shed light on the intricate interplay between social media, perceptions of locations, and travel preferences, enhancing theories about consumer behavior and communication in the digital age. Regarding the methodology of the research, the study is conducted in two stages: first, both generations are polled, and from the results, the top three destinations are chosen to be subjected to content analysis. As for the research's theoretical framework, it incorporates the tourism destination branding model as well as the conceptual model of nation branding. Through the use of the survey as a quantitative approach and the qualitative content analysis, the research will rely on both quantitative and qualitative methods. When it comes to the theoretical framework, both the Nation Branding Model and the Tourism Branding Model can offer useful frameworks for analyzing and comprehending the dynamics of using TikTok as a search engine to choose travel destinations, especially in the context of Generation Y and Generation Z in the Egyptian community. Additionally, the sample will be drawn specifically from both Gen-Y and Gen-Z. 100 members of Gen Z and 100 members of Gen Y will be chosen from TikTok users and followers of travel-related accounts, and the sample for the content analysis will be chosen based on the survey's results.

Keywords: tiktok, nation image, egyptian community, tourism branding

Procedia PDF Downloads 47
995 Assessment of Airtightness Through a Standardized Procedure in a Nearly-Zero Energy Demand House

Authors: Mar Cañada Soriano, Rafael Royo-Pastor, Carolina Aparicio-Fernández, Jose-Luis Vivancos

Abstract:

The lack of insulation, along with the existence of air leakages, constitute a meaningful impact on the energy performance of buildings. Both of them lead to increases in the energy demand through additional heating and/or cooling loads. Additionally, they cause thermal discomfort. In order to quantify these uncontrolled air currents, pressurization and depressurization tests can be performed. Among them, the Blower Door test is a standardized procedure to determine the airtightness of a space which characterizes the rate of air leakages through the envelope surface, calculating to this purpose an air flow rate indicator. In this sense, the low-energy buildings complying with the Passive House design criteria are required to achieve high levels of airtightness. Due to the invisible nature of air leakages, additional tools are often considered to identify where the infiltrations take place. Among them, the infrared thermography entails a valuable technique to this purpose since it enables their detection. The aim of this study is to assess the airtightness of a typical Mediterranean dwelling house located in the Valencian orchad (Spain) restored under the Passive House standard using to this purpose the blower-door test. Moreover, the building energy performance modelling tools TRNSYS (TRaNsient System Simulation program) and TRNFlow (TRaNsient Flow) have been used to determine its energy performance, and the infiltrations’ identification was carried out by means of infrared thermography. The low levels of infiltrations obtained suggest that this house may comply with the Passive House standard.

Keywords: airtightness, blower door, trnflow, infrared thermography

Procedia PDF Downloads 97
994 Central Finite Volume Methods Applied in Relativistic Magnetohydrodynamics: Applications in Disks and Jets

Authors: Raphael de Oliveira Garcia, Samuel Rocha de Oliveira

Abstract:

We have developed a new computer program in Fortran 90, in order to obtain numerical solutions of a system of Relativistic Magnetohydrodynamics partial differential equations with predetermined gravitation (GRMHD), capable of simulating the formation of relativistic jets from the accretion disk of matter up to his ejection. Initially we carried out a study on numerical methods of unidimensional Finite Volume, namely Lax-Friedrichs, Lax-Wendroff, Nessyahu-Tadmor method and Godunov methods dependent on Riemann problems, applied to equations Euler in order to verify their main features and make comparisons among those methods. It was then implemented the method of Finite Volume Centered of Nessyahu-Tadmor, a numerical schemes that has a formulation free and without dimensional separation of Riemann problem solvers, even in two or more spatial dimensions, at this point, already applied in equations GRMHD. Finally, the Nessyahu-Tadmor method was possible to obtain stable numerical solutions - without spurious oscillations or excessive dissipation - from the magnetized accretion disk process in rotation with respect to a central black hole (BH) Schwarzschild and immersed in a magnetosphere, for the ejection of matter in the form of jet over a distance of fourteen times the radius of the BH, a record in terms of astrophysical simulation of this kind. Also in our simulations, we managed to get substructures jets. A great advantage obtained was that, with the our code, we got simulate GRMHD equations in a simple personal computer.

Keywords: finite volume methods, central schemes, fortran 90, relativistic astrophysics, jet

Procedia PDF Downloads 419
993 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System

Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap

Abstract:

We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.

Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system

Procedia PDF Downloads 48