Search results for: extreme weather
1564 Climate Change and Extreme Weather: Understanding Interconnections and Implications
Authors: Johnstone Walubengo Wangusi
Abstract:
Climate change is undeniably altering the frequency, intensity, and geographic distribution of extreme weather events worldwide. In this paper, we explore the complex interconnections between climate change and extreme weather phenomena, drawing upon research from atmospheric science, geology, and climatology. We examine the underlying mechanisms driving these changes, the impacts on natural ecosystems and human societies, and strategies for adaptation and mitigation. By synthesizing insights from interdisciplinary research, this paper aims to provide a comprehensive understanding of the multifaceted relationship between climate change and extreme weather, informing efforts to address the challenges posed by a changing climate.Keywords: climate change, extreme weather, atmospheric science, geology, climatology, impacts, adaptation, mitigation
Procedia PDF Downloads 621563 Evaluation of the Durability of a Low Carbon Asphalt Pavement Containing Carbonated Aggregates in Extreme Weather Conditions
Authors: Ka-lok Kan, Oluwatoyin Ajibade, Issa Chaer
Abstract:
Climate change’s extreme weather patterns significantly affect the durability and maintenance costs of existing asphalt Road Pavement Systems (RPS). Moreover, the current RPS imposes a considerable environmental burden, as its production involves the large-scale extraction of bitumen and the dredging of Virgin Sand and Gravel (VSG). Recent studies suggest that more sustainable alternatives, such as incorporating carbonated aggregates to reduce the use of virgin materials content in asphalt, can enhance asphalt performance while offering an effective cost management strategy. However, the impact of extreme weather conditions on the durability and maintenance requirements of these green solutions remains unexplored. This paper reports on the results of comprehensive durability tests conducted on a novel asphalt pavement to assess the effects of anticipated extreme winter and summer weather conditions. Preliminary findings indicate that the new asphalt pavement system made from carbonated aggregates demonstrates greater stability and fatigue resistance in comparison to traditional asphalt mixes.Keywords: climate change, carbonated aggregates, green solution, asphalt
Procedia PDF Downloads 181562 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China
Abstract:
Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation
Procedia PDF Downloads 241561 Assessing Missouri State Park Employee Perceptions of Vulnerability and Resilience to Extreme Weather Events
Authors: Ojetunde Ojewola, Mark Morgan, Sonja Wilhelm-Stanis
Abstract:
State parks and historic sites are vulnerable to extreme weather events which can affect visitor experiences, management priorities, and legislative requests for disaster relief funds. Recently, global attention has been focused on the perceptions of global warming and how the presence of extreme weather events might impact protected areas, both now and in the future. The effects of climate change are not equally distributed across the United States, leading to varied perceptions based on personal experience with extreme weather events. This study describes employee perceptions of vulnerability and resilience in Missouri State Parks & Historic Sites due to extreme weather events that occur across the state but grouped according to physiographic provinces. Using a four-point rating scale, perceptions of vulnerability and resilience were divided into high and low sub-groups, thus allowing researchers to construct a two by two typology of employee responses. Subsequently, this data was used to develop a three-point continuum of environmental concern (higher scores meant more concern). Employee scores were then compared against a statewide assessment which combined social, economic, infrastructural and environmental indicators of vulnerability and resilience. State park employees thought the system was less vulnerable and more resilient to climate change than data found in statewide assessment This result was also consistent in three out of five physiographic regions across Missouri. Implications suggest that Missouri state park should develop a climate change adaptation strategy for emergency preparedness.Keywords: extreme weather events, resilience, state parks, vulnerability
Procedia PDF Downloads 1221560 Evaluating the Impact of Extreme Weather (Flooding) Experience on Climate Change Perceptions in Accra, Ghana
Authors: Bright Annang Baah
Abstract:
Evaluating public perceptions of climate change risk and the elements that impact them has been shown to be critical in developing support for climate change action. Previous research has found a variety of elements, including the experience of extreme weather events, that impact public perceptions and worries about climate change. However, little is known about the public's perception of climate change risks and the variables that influence them in developing countries. Using a household survey, this study attempted to evaluate respondents' risk perceptions of climate change, as well as the impact of flooding experience on such beliefs. The findings demonstrate that flood victims have a greater risk perception and are more concerned about climate change than non-victims. Concerns regarding the effects of climate change, on the other hand, were found to be the lowest when compared to other pressing challenges confronting the country. This study's findings contribute to the understanding of climate change risk perception and the impact of extreme weather events from the perspective of a developing nation.Keywords: climate change risk perception, harsh weather, perceived concern, Accra, Ghana
Procedia PDF Downloads 471559 Identifying Critical Links of a Transport Network When Affected by a Climatological Hazard
Authors: Beatriz Martinez-Pastor, Maria Nogal, Alan O'Connor
Abstract:
During the last years, the number of extreme weather events has increased. A variety of extreme weather events, including river floods, rain-induced landslides, droughts, winter storms, wildfire, and hurricanes, have threatened and damaged many different regions worldwide. These events have a devastating impact on critical infrastructure systems resulting in high social, economical and environmental costs. These events have a huge impact in transport systems. Since, transport networks are completely exposed to every kind of climatological perturbations, and its performance is closely related with these events. When a traffic network is affected by a climatological hazard, the quality of its service is threatened, and the level of the traffic conditions usually decreases. With the aim of understanding this process, the concept of resilience has become most popular in the area of transport. Transport resilience analyses the behavior of a traffic network when a perturbation takes place. This holistic concept studies the complete process, from the beginning of the perturbation until the total recovery of the system, when the perturbation has finished. Many concepts are included in the definition of resilience, such as vulnerability, redundancy, adaptability, and safety. Once the resilience of a transport network can be evaluated, in this case, the methodology used is a dynamic equilibrium-restricted assignment model that allows the quantification of the concept, the next step is its improvement. Through the improvement of this concept, it will be possible to create transport networks that are able to withstand and have a better performance under the presence of climatological hazards. Analyzing the impact of a perturbation in a traffic network, it is observed that the response of the different links, which are part of the network, can be completely different from one to another. Consequently and due to this effect, many questions arise, as what makes a link more critical before an extreme weather event? or how is it possible to identify these critical links? With this aim, and knowing that most of the times the owners or managers of the transport systems have limited resources, the identification of the critical links of a transport network before extreme weather events, becomes a crucial objective. For that reason, using the available resources in the areas that will generate a higher improvement of the resilience, will contribute to the global development of the network. Therefore, this paper wants to analyze what kind of characteristic makes a link a critical one when an extreme weather event damages a transport network and finally identify them.Keywords: critical links, extreme weather events, hazard, resilience, transport network
Procedia PDF Downloads 2851558 Variable Renewable Energy Droughts in the Power Sector – A Model-based Analysis and Implications in the European Context
Authors: Martin Kittel, Alexander Roth
Abstract:
The continuous integration of variable renewable energy sources (VRE) in the power sector is required for decarbonizing the European economy. Power sectors become increasingly exposed to weather variability, as the availability of VRE, i.e., mainly wind and solar photovoltaic, is not persistent. Extreme events, e.g., long-lasting periods of scarce VRE availability (‘VRE droughts’), challenge the reliability of supply. Properly accounting for the severity of VRE droughts is crucial for designing a resilient renewable European power sector. Energy system modeling is used to identify such a design. Our analysis reveals the sensitivity of the optimal design of the European power sector towards VRE droughts. We analyze how VRE droughts impact optimal power sector investments, especially in generation and flexibility capacity. We draw upon work that systematically identifies VRE drought patterns in Europe in terms of frequency, duration, and seasonality, as well as the cross-regional and cross-technological correlation of most extreme drought periods. Based on their analysis, the authors provide a selection of relevant historical weather years representing different grades of VRE drought severity. These weather years will serve as input for the capacity expansion model for the European power sector used in this analysis (DIETER). We additionally conduct robustness checks varying policy-relevant assumptions on capacity expansion limits, interconnections, and level of sector coupling. Preliminary results illustrate how an imprudent selection of weather years may cause underestimating the severity of VRE droughts, flawing modeling insights concerning the need for flexibility. Sub-optimal European power sector designs vulnerable to extreme weather can result. Using relevant weather years that appropriately represent extreme weather events, our analysis identifies a resilient design of the European power sector. Although the scope of this work is limited to the European power sector, we are confident that our insights apply to other regions of the world with similar weather patterns. Many energy system studies still rely on one or a limited number of sometimes arbitrarily chosen weather years. We argue that the deliberate selection of relevant weather years is imperative for robust modeling results.Keywords: energy systems, numerical optimization, variable renewable energy sources, energy drought, flexibility
Procedia PDF Downloads 711557 Coastal Flood Mapping of Vulnerability Due to Sea Level Rise and Extreme Weather Events: A Case Study of St. Ives, UK
Authors: S. Vavias, T. R. Brewer, T. S. Farewell
Abstract:
Coastal floods have been identified as an important natural hazard that can cause significant damage to the populated built-up areas, related infrastructure and also ecosystems and habitats. This study attempts to fill the gap associated with the development of preliminary assessments of coastal flood vulnerability for compliance with the EU Directive on the Assessment and Management of Flood Risks (2007/60/EC). In this context, a methodology has been created by taking into account three major parameters; the maximum wave run-up modelled from historical weather observations, the highest tide according to historic time series, and the sea level rise projections due to climate change. A high resolution digital terrain model (DTM) derived from LIDAR data has been used to integrate the estimated flood events in a GIS environment. The flood vulnerability map created shows potential risk areas and can play a crucial role in the coastal zone planning process. The proposed method has the potential to be a powerful tool for policy and decision makers for spatial planning and strategic management.Keywords: coastal floods, vulnerability mapping, climate change, extreme weather events
Procedia PDF Downloads 3941556 A Comparative Analysis of the Performance of COSMO and WRF Models in Quantitative Rainfall Prediction
Authors: Isaac Mugume, Charles Basalirwa, Daniel Waiswa, Mary Nsabagwa, Triphonia Jacob Ngailo, Joachim Reuder, Sch¨attler Ulrich, Musa Semujju
Abstract:
The Numerical weather prediction (NWP) models are considered powerful tools for guiding quantitative rainfall prediction. A couple of NWP models exist and are used at many operational weather prediction centers. This study considers two models namely the Consortium for Small–scale Modeling (COSMO) model and the Weather Research and Forecasting (WRF) model. It compares the models’ ability to predict rainfall over Uganda for the period 21st April 2013 to 10th May 2013 using the root mean square (RMSE) and the mean error (ME). In comparing the performance of the models, this study assesses their ability to predict light rainfall events and extreme rainfall events. All the experiments used the default parameterization configurations and with same horizontal resolution (7 Km). The results show that COSMO model had a tendency of largely predicting no rain which explained its under–prediction. The COSMO model (RMSE: 14.16; ME: -5.91) presented a significantly (p = 0.014) higher magnitude of error compared to the WRF model (RMSE: 11.86; ME: -1.09). However the COSMO model (RMSE: 3.85; ME: 1.39) performed significantly (p = 0.003) better than the WRF model (RMSE: 8.14; ME: 5.30) in simulating light rainfall events. All the models under–predicted extreme rainfall events with the COSMO model (RMSE: 43.63; ME: -39.58) presenting significantly higher error magnitudes than the WRF model (RMSE: 35.14; ME: -26.95). This study recommends additional diagnosis of the models’ treatment of deep convection over the tropics.Keywords: comparative performance, the COSMO model, the WRF model, light rainfall events, extreme rainfall events
Procedia PDF Downloads 2611555 The Impact of Vertical Velocity Parameter Conditions and Its Relationship with Weather Parameters in the Hail Event
Authors: Nadine Ayasha
Abstract:
Hail happened in Sukabumi (August 23, 2020), Sekadau (August 22, 2020), and Bogor (September 23, 2020), where this extreme weather phenomenon occurred in the dry season. This study uses the ERA5 reanalysis model data, it aims to examine the vertical velocity impact on the hail occurrence in the dry season, as well as its relation to other weather parameters such as relative humidity, streamline, and wind velocity. Moreover, HCAI product satellite data is used as supporting data for the convective cloud development analysis. Based on the results of graphs, contours, and Hovmoller vertical cut from ERA5 modeling, the vertical velocity values in the 925 Mb-300 Mb layer in Sukabumi, Sekadau, and Bogor before the hail event ranged between -1.2-(-0.2), -1.5-(-0.2), -1-0 Pa/s. A negative value indicates that there is an upward motion from the air mass that trigger the convective cloud growth, which produces hail. It is evidenced by the presence of Cumulonimbus cloud on HCAI product when the hail falls. Therefore, the vertical velocity has significant effect on the hail event. In addition, the relative humidity in the 850-700 Mb layer is quite wet, which ranges from 80-90%. Meanwhile, the streamline and wind velocity in the three regions show the convergence with slowing wind velocity ranging from 2-4 knots. These results show that the upward motion of the vertical velocity is enough to form the wet atmospheric humidity and form a convergence for the growth of the convective cloud, which produce hail in the dry season.Keywords: hail, extreme weather, vertical velocity, relative humidity, streamline
Procedia PDF Downloads 1581554 Impact of Drought in Farm Level Income in the United States
Authors: Anil Giri, Kyle Lovercamp, Sankalp Sharma
Abstract:
Farm level incomes fluctuate significantly due to extreme weather events such as drought. In the light of recent extreme weather events it is important to understand the implications of extreme weather events, flood and drought, on farm level incomes. This study examines the variation in farm level incomes for the United States in drought and no- drought years. Factoring heterogeneity in different enterprises (crop, livestock) and geography this paper analyzes the impact of drought in farm level incomes at state and national level. Livestock industry seems to be affected more by the lag in production of input feed for production, crops, as preliminary results show. Furthermore, preliminary results also show that while crop producers are not affected much due to drought, as price and quantity effect worked on opposite direction with same magnitude, that was not the case for livestock and horticulture enterprises. Results also showed that even when price effect was not as high the crop insurance component helped absorb much of shock for crop producers. Finally, the effect was heterogeneous for different states more on the coastal states compared Midwest region. This study should generate a lot of interest from policy makers across the world as some countries are actively seeking to increase subsidies in their agriculture sector. This study shows how subsidies absorb the shocks for one enterprise more than others. Finally, this paper should also be able to give an insight to economists to design/recommend policies such that it is optimal given the production level of different enterprises in different countries.Keywords: farm level income, United States, crop, livestock
Procedia PDF Downloads 2801553 The Impact of Heat Waves on Human Health: State of Art in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio
Abstract:
The earth system is subject to a wide range of human activities that have changed the ecosystem more rapidly and extensively in the last five decades. These global changes have a large impact on human health. The relationship between extreme weather events and mortality are widely documented in different studies. In particular, a number of studies have investigated the relationship between climatological variations and the cardiovascular and respiratory system. The researchers have become interested in the evaluation of the effect of environmental variations on the occurrence of different diseases (such as infarction, ischemic heart disease, asthma, respiratory problems, etc.) and mortality. Among changes in weather conditions, the heat waves have been used for investigating the association between weather conditions and cardiovascular events and cerebrovascular, using thermal indices, which combine air temperature, relative humidity, and wind speed. The effects of heat waves on human health are mainly found in the urban areas and they are aggravated by the presence of atmospheric pollution. The consequences of these changes for human health are of growing concern. In particular, meteorological conditions are one of the environmental aspects because cardiovascular diseases are more common among the elderly population, and such people are more sensitive to weather changes. In addition, heat waves, or extreme heat events, are predicted to increase in frequency, intensity, and duration with climate change. In this context, are very important public health and climate change connections increasingly being recognized by the medical research, because these might help in informing the public at large. Policy experts claim that a growing awareness of the relationships of public health and climate change could be a key in breaking through political logjams impeding action on mitigation and adaptation. The aims of this study are to investigate about the importance of interactions between weather variables and your effects on human health, focusing on Italy. Also highlighting the need to define strategies and practical actions of monitoring, adaptation and mitigation of the phenomenon.Keywords: climate change, illness, Italy, temperature, weather
Procedia PDF Downloads 2461552 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1331551 Lessons from Nature: Defensive Designs for the Built Environment
Authors: Rebecca A. Deek
Abstract:
There is evidence that erratic and extreme weather is becoming a common occurrence, and even predictions that this will become even more frequent and more severe. It also appears that the severity of earthquakes is intensifying. Some observers believe that human conduct has given reasons for such change; others attribute this to environmental and geological cycles. However, as some physicists, environmental scientists, politicians, and others continue to debate the connection between weather events, seismic activities, and climate change, other scientists, engineers, and urban planners are exploring how can our habitat become more responsive and resilient to such phenomena. There are a number of recent instances of nature’s destructive events that provide basis for the development of defensive measures.Keywords: biomimicry, natural disasters, protection of human lives, resilient infrastructures
Procedia PDF Downloads 5041550 The Interaction of Climate Change and Human Health in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta
Abstract:
The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.Keywords: heat waves, Italy, local warming, temperature
Procedia PDF Downloads 2421549 Statistical Modelling of Maximum Temperature in Rwanda Using Extreme Value Analysis
Authors: Emmanuel Iyamuremye, Edouard Singirankabo, Alexis Habineza, Yunvirusaba Nelson
Abstract:
Temperature is one of the most important climatic factors for crop production. However, severe temperatures cause drought, feverish and cold spells that have various consequences for human life, agriculture, and the environment in general. It is necessary to provide reliable information related to the incidents and the probability of such extreme events occurring. In the 21st century, the world faces a huge number of threats, especially from climate change, due to global warming and environmental degradation. The rise in temperature has a direct effect on the decrease in rainfall. This has an impact on crop growth and development, which in turn decreases crop yield and quality. Countries that are heavily dependent on agriculture use to suffer a lot and need to take preventive steps to overcome these challenges. The main objective of this study is to model the statistical behaviour of extreme maximum temperature values in Rwanda. To achieve such an objective, the daily temperature data spanned the period from January 2000 to December 2017 recorded at nine weather stations collected from the Rwanda Meteorological Agency were used. The two methods, namely the block maxima (BM) method and the Peaks Over Threshold (POT), were applied to model and analyse extreme temperature. Model parameters were estimated, while the extreme temperature return periods and confidence intervals were predicted. The model fit suggests Gumbel and Beta distributions to be the most appropriate models for the annual maximum of daily temperature. The results show that the temperature will continue to increase, as shown by estimated return levels.Keywords: climate change, global warming, extreme value theory, rwanda, temperature, generalised extreme value distribution, generalised pareto distribution
Procedia PDF Downloads 1791548 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils
Authors: Muhammad Rasyid Angkotasan
Abstract:
The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions
Procedia PDF Downloads 2371547 The Effects of Extreme Precipitation Events on Ecosystem Services
Authors: Szu-Hua Wang, Yi-Wen Chen
Abstract:
Urban ecosystems are complex coupled human-environment systems. They contain abundant natural resources for producing natural assets and attract urban assets to consume natural resources for urban development. Urban ecosystems provide several ecosystem services, including provisioning services, regulating services, cultural services, and supporting services. Rapid global climate change makes urban ecosystems and their ecosystem services encountering various natural disasters. Lots of natural disasters have occurred around the world under the constant changes in the frequency and intensity of extreme weather events in the past two decades. In Taiwan, hydrological disasters have been paid more attention due to the potential high sensitivity of Taiwan’s cities to climate change, and it impacts. However, climate change not only causes extreme weather events directly but also affects the interactions among human, ecosystem services and their dynamic feedback processes indirectly. Therefore, this study adopts a systematic method, solar energy synthesis, based on the concept of the eco-energy analysis. The Taipei area, the most densely populated area in Taiwan, is selected as the study area. The changes of ecosystem services between 2015 and Typhoon Soudelor have been compared in order to investigate the impacts of extreme precipitation events on ecosystem services. The results show that the forest areas are the largest contributions of energy to ecosystem services in the Taipei area generally. Different soil textures of different subsystem have various upper limits of water contents or substances. The major contribution of ecosystem services of the study area is natural hazard regulation provided by the surface water resources areas. During the period of Typhoon Soudelor, the freshwater supply in the forest areas had become the main contribution. Erosion control services were the main ecosystem service affected by Typhoon Soudelor. The second and third main ecosystem services were hydrologic regulation and food supply. Due to the interactions among ecosystem services, fresh water supply, water purification, and waste treatment had been affected severely.Keywords: ecosystem, extreme precipitation events, ecosystem services, solar energy synthesis
Procedia PDF Downloads 1471546 The Position of Space weather in Africa-Education and Outreach
Authors: Babagana Abubakar, Alhaji Kuya
Abstract:
Although the field of Space weather science is a young field among the space sciences, but yet history has it that activities related to this science began since the year 1859 when the great solar storm happened which resulted in the disruptions of telegraphs operations around the World at that particular time subsequently making it possible for the scientist Richard Carrington to be able to connect the Solar flare observed a day earlier before the great storm and the great deflection of the Earth’s Magnetic field (geometric storm) simultaneous with the telegraph disruption. However years later as at today with the advent of and the coming into existence of the Explorer 1, the Luna 1 and the establishments of the United States International Space Weather Program, International Geophysical Year (IGY) as well as the International Center for Space Weather Sciences and Education (ICSWSE) have made us understand the Space weather better and enable us well define the field of Space weather science. Despite the successes recorded in the development of Space sciences as a whole over the last century and the coming onboard of specialized bodies/programs on space weather like the International Space Weather Program and the ICSWSE, the majority of Africans including institutions, research organizations and even some governments are still ignorant about the existence of theSpace weather science,because apart from some very few countries like South Africa, Nigeria and Egypt among some few others the majority of the African nations and their academic institutions have no knowledge or idea about the existence of this field of Space science (Space weather).Keywords: Africa, space, weather, education, science
Procedia PDF Downloads 4481545 Climate Refugees In International Law – Analyzing The Legal Framework
Authors: Kristof Lukas Heidemann
Abstract:
The adverse effects of climate change, such as rising sea levels, increased temperatures, and extreme weather events are already posing a significant threat to the lives of people living in extreme weather zones all around the globe and could displace more than a billion people worldwide in the upcoming decades, causing a wave of climate-induced migration. Notwithstanding the urgency of the situation, this situation has so far not been addressed in a specific international treaty. Therefore, this paper analyses whether solutions might be found through existing legal framework. Accordingly, the investigation scrutinizes the possibilities of overcoming the conceptual challenge of combining climate law, refugee law, and human rights law. To this end, the study particularly reflects upon the example of Pacific Islanders by assessing the reasoning within the decisions Ioane Teitota v. New Zealand and Daniel Billy and Others v. Australia. The paper concludes that the differences in objective, scope, and enforcement of the three fields are too fundamental to be surmounted by overlapping concepts, e.g. state responsibility or the non-refoulement principle. Consequently, states are urged to tackle the problem with a separate international treaty in which the advantages of the different traditions are incorporated into a new protection mechanism.Keywords: climate change, climate treaties, forcibly displaced persons, human rights, improving and creating advanced knowledge of concepts, non-refoulement, state responsibility, refugee law, refugee status
Procedia PDF Downloads 41544 An Extension of the Generalized Extreme Value Distribution
Authors: Serge Provost, Abdous Saboor
Abstract:
A q-analogue of the generalized extreme value distribution which includes the Gumbel distribution is introduced. The additional parameter q allows for increased modeling flexibility. The resulting distribution can have a finite, semi-infinite or infinite support. It can also produce several types of hazard rate functions. The model parameters are determined by making use of the method of maximum likelihood. It will be shown that it compares favourably to three related distributions in connection with the modeling of a certain hydrological data set.Keywords: extreme value theory, generalized extreme value distribution, goodness-of-fit statistics, Gumbel distribution
Procedia PDF Downloads 3491543 A Nonstandard Finite Difference Method for Weather Derivatives Pricing Model
Authors: Clarinda Vitorino Nhangumbe, Fredericks Ebrahim, Betuel Canhanga
Abstract:
The price of an option weather derivatives can be approximated as a solution of the two-dimensional convection-diffusion dominant partial differential equation derived from the Ornstein-Uhlenbeck process, where one variable represents the weather dynamics and the other variable represent the underlying weather index. With appropriate financial boundary conditions, the solution of the pricing equation is approximated using a nonstandard finite difference method. It is shown that the proposed numerical scheme preserves positivity as well as stability and consistency. In order to illustrate the accuracy of the method, the numerical results are compared with other methods. The model is tested for real weather data.Keywords: nonstandard finite differences, Ornstein-Uhlenbeck process, partial differential equations approach, weather derivatives
Procedia PDF Downloads 1071542 Comparison of Different Reanalysis Products for Predicting Extreme Precipitation in the Southern Coast of the Caspian Sea
Authors: Parvin Ghafarian, Mohammadreza Mohammadpur Panchah, Mehri Fallahi
Abstract:
Synoptic patterns from surface up to tropopause are very important for forecasting the weather and atmospheric conditions. There are many tools to prepare and analyze these maps. Reanalysis data and the outputs of numerical weather prediction models, satellite images, meteorological radar, and weather station data are used in world forecasting centers to predict the weather. The forecasting extreme precipitating on the southern coast of the Caspian Sea (CS) is the main issue due to complex topography. Also, there are different types of climate in these areas. In this research, we used two reanalysis data such as ECMWF Reanalysis 5th Generation Description (ERA5) and National Centers for Environmental Prediction /National Center for Atmospheric Research (NCEP/NCAR) for verification of the numerical model. ERA5 is the latest version of ECMWF. The temporal resolution of ERA5 is hourly, and the NCEP/NCAR is every six hours. Some atmospheric parameters such as mean sea level pressure, geopotential height, relative humidity, wind speed and direction, sea surface temperature, etc. were selected and analyzed. Some different type of precipitation (rain and snow) was selected. The results showed that the NCEP/NCAR has more ability to demonstrate the intensity of the atmospheric system. The ERA5 is suitable for extract the value of parameters for specific point. Also, ERA5 is appropriate to analyze the snowfall events over CS (snow cover and snow depth). Sea surface temperature has the main role to generate instability over CS, especially when the cold air pass from the CS. Sea surface temperature of NCEP/NCAR product has low resolution near coast. However, both data were able to detect meteorological synoptic patterns that led to heavy rainfall over CS. However, due to the time lag, they are not suitable for forecast centers. The application of these two data is for research and verification of meteorological models. Finally, ERA5 has a better resolution, respect to NCEP/NCAR reanalysis data, but NCEP/NCAR data is available from 1948 and appropriate for long term research.Keywords: synoptic patterns, heavy precipitation, reanalysis data, snow
Procedia PDF Downloads 1221541 Influence of Precipitation and Land Use on Extreme Flow in Prek Thnot River Basin of Mekong River in Cambodia
Authors: Chhordaneath Hen, Ty Sok, Ilan Ich, Ratboren Chan, Chantha Oeurng
Abstract:
The damages caused by hydrological extremes such as flooding have been severe globally, and several research studies indicated extreme precipitations play a crucial role. Cambodia is one of the most vulnerable countries exposed to floods and drought as consequences of climate impact. Prek Thnot River Basin in the southwest part of Cambodia, which is in the plate and plateau region and a part of the Mekong Delta, was selected to investigate the changes in extreme precipitation and hydrological extreme. Furthermore, to develop a statistical relationship between these phenomena in this basin from 1995 to 2020 using Multiple Linear Regression. The precipitation and hydrological extreme were assessed via the attributes and trends of rainfall patterns during the study periods. The extreme flow was defined as a dependent variable, while the independent variables are various extreme precipitation indices. The study showed that all extreme precipitations indices (R10, R20, R35, CWD, R95p, R99p, and PRCPTOT) had increasing decency. However, the number of rain days per year had a decreasing tendency, which can conclude that extreme rainfall was more intense in a shorter period of the year. The study showed a similar relationship between extreme precipitation and hydrological extreme and land use change association with hydrological extreme. The direct combination of land use and precipitation equals 37% of the flood causes in this river. This study provided information on these two causes of flood events and an understanding of expectations of climate change consequences for flood and water resources management.Keywords: extreme precipitation, hydrological extreme, land use, land cover, Prek Thnot river basin
Procedia PDF Downloads 1101540 Estimating The Population Mean by Using Stratified Double Extreme Ranked Set Sample
Authors: Mahmoud I. Syam, Kamarulzaman Ibrahim, Amer I. Al-Omari
Abstract:
Stratified double extreme ranked set sampling (SDERSS) method is introduced and considered for estimating the population mean. The SDERSS is compared with the simple random sampling (SRS), stratified ranked set sampling (SRSS) and stratified simple set sampling (SSRS). It is shown that the SDERSS estimator is an unbiased of the population mean and more efficient than the estimators using SRS, SRSS and SSRS when the underlying distribution of the variable of interest is symmetric or asymmetric.Keywords: double extreme ranked set sampling, extreme ranked set sampling, ranked set sampling, stratified double extreme ranked set sampling
Procedia PDF Downloads 4561539 Intelligent Fishers Harness Aquatic Organisms and Climate Change
Authors: Shih-Fang Lo, Tzu-Wei Guo, Chih-Hsuan Lee
Abstract:
Tropical fisheries are vulnerable to the physical and biogeochemical oceanic changes associated with climate change. Warmer temperatures and extreme weather have beendamaging the abundance and growth patterns of aquatic organisms. In recent year, the shrinking of fish stock and labor shortage have increased the threat to global aquacultural production. Thus, building a climate-resilient and sustainable mechanism becomes an urgent, important task for global citizens. To tackle the problem, Taiwanese fishermen applies the artificial intelligence (AI) technology. In brief, the AI system (1) measures real-time water quality and chemical parameters infish ponds; (2) monitors fish stock through segmentation, detection, and classification; and (3) implements fishermen’sprevious experiences, perceptions, and real-life practices. Applying this system can stabilize the aquacultural production and potentially increase the labor force. Furthermore, this AI technology can build up a more resilient and sustainable system for the fishermen so that they can mitigate the influence of extreme weather while maintaining or even increasing their aquacultural production. In the future, when the AI system collected and analyzed more and more data, it can be applied to different regions of the world or even adapt to the future technological or societal changes, continuously providing the most relevant and useful information for fishermen in the world.Keywords: aquaculture, artificial intelligence (AI), real-time system, sustainable fishery
Procedia PDF Downloads 1101538 Simplified Linear Regression Model to Quantify the Thermal Resilience of Office Buildings in Three Different Power Outage Day Times
Authors: Nagham Ismail, Djamel Ouahrani
Abstract:
Thermal resilience in the built environment reflects the building's capacity to adapt to extreme climate changes. In hot climates, power outages in office buildings pose risks to the health and productivity of workers. Therefore, it is of interest to quantify the thermal resilience of office buildings by developing a user-friendly simplified model. This simplified model begins with creating an assessment metric of thermal resilience that measures the duration between the power outage and the point at which the thermal habitability condition is compromised, considering different power interruption times (morning, noon, and afternoon). In this context, energy simulations of an office building are conducted for Qatar's summer weather by changing different parameters that are related to the (i) wall characteristics, (ii) glazing characteristics, (iii) load, (iv) orientation and (v) air leakage. The simulation results are processed using SPSS to derive linear regression equations, aiding stakeholders in evaluating the performance of commercial buildings during different power interruption times. The findings reveal the significant influence of glazing characteristics on thermal resilience, with the morning power outage scenario posing the most detrimental impact in terms of the shortest duration before compromising thermal resilience.Keywords: thermal resilience, thermal envelope, energy modeling, building simulation, thermal comfort, power disruption, extreme weather
Procedia PDF Downloads 731537 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1751536 Short-Term Effects of Extreme Temperatures on Cause Specific Cardiovascular Admissions in Beijing, China
Authors: Deginet Aklilu, Tianqi Wang, Endwoke Amsalu, Wei Feng, Zhiwei Li, Xia Li, Lixin Tao, Yanxia Luo, Moning Guo, Xiangtong Liu, Xiuhua Guo
Abstract:
Extreme temperature-related cardiovascular diseases (CVDs) have become a growing public health concern. However, the impact of temperature on the cause of specific CVDs has not been well studied in the study area. The objective of this study was to assess the impact of temperature on cause-specific cardiovascular hospital admissions in Beijing, China. We obtained data from 172 large general hospitals from the Beijing Public Health Information Center Cardiovascular Case Database and China. Meteorological Administration covering 16 districts in Beijing from 2013 to 2017. We used a time-stratified case crossover design with a distributed lag nonlinear model (DLNM) to derive the impact of temperature on CVD in hospitals back to 27 days on CVD admissions. The temperature data were stratified as cold (extreme and moderate ) and hot (moderate and extreme ). Within five years (January 2013-December 2017), a total of 460,938 (male 54.9% and female 45.1%) CVD admission cases were reported. The exposure-response relationship for hospitalization was described by a "J" shape for the total and cause-specific. An increase in the six-day moving average temperature from moderate hot (30.2 °C) to extreme hot (36.9 °C) resulted in a significant increase in CVD admissions of 16.1%(95% CI = 12.8%-28.9%). However, the effect of cold temperature exposure on CVD admissions over a lag time of 0-27 days was found to be non significant, with a relative risk of 0.45 (95% CI = 0.378-0.55) for extreme cold (-8.5 °C)and 0.53 (95% CI = 0.47-0.60) for moderate cold (-5.6 °C). The results of this study indicate that exposure to extremely high temperatures is highly associated with an increase in cause-specific CVD admissions. These finding may guide to create and raise awareness of the general population, government and private sectors regarding on the effects of current weather conditions on CVD.Keywords: admission, Beijing, cardiovascular diseases, distributed lag non linear model, temperature
Procedia PDF Downloads 601535 Regional Changes under Extreme Meteorological Events
Authors: Renalda El Samra, Elie Bou-Zeid, Hamza Kunhu Bangalath, Georgiy Stenchikov, Mutasem El Fadel
Abstract:
The regional-scale impact of climate change over complex terrain was examined through high-resolution dynamic downscaling conducted using the Weather Research and Forecasting (WRF) model, with initial and boundary conditions from a High-Resolution Atmospheric Model (HiRAM). The analysis was conducted over the eastern Mediterranean, with a focus on the country of Lebanon, which is characterized by a challenging complex topography that magnifies the effect of orographic precipitation. Four year-long WRF simulations, selected based on HiRAM time series, were performed to generate future climate projections of extreme temperature and precipitation over the study area under the conditions of the Representative Concentration Pathway (RCP) 4.5. One past WRF simulation year, 2008, was selected as a baseline to capture dry extremes of the system. The results indicate that the study area might be exposed to a temperature increase between 1.0 and 3ºC in summer mean values by 2050, in comparison to 2008. For extreme years, the decrease in average annual precipitation may exceed 50% at certain locations in comparison to 2008.Keywords: HiRAM, regional climate modeling, WRF, Representative Concentration Pathway (RCP)
Procedia PDF Downloads 396