Search results for: engine exhaust system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17652

Search results for: engine exhaust system

17562 Particle Concentration Distribution under Idling Conditions in a Residential Underground Garage

Authors: Yu Zhao, Shinsuke Kato, Jianing Zhao

Abstract:

Particles exhausted from cars have an adverse impacts on human health. The study developed a three-dimensional particle dispersion numerical model including particle coagulation to simulate the particle concentration distribution under idling conditions in a residential underground garage. The simulation results demonstrate that particle disperses much faster in the vertical direction than that in horizontal direction. The enhancement of particle dispersion in the vertical direction due to the increase of cars with engine running is much stronger than that in the car exhaust direction. Particle dispersion from each pair of adjacent cars has little influence on each other in the study. Average particle concentration after 120 seconds exhaust is 1.8-4.5 times higher than the initial total particles at ambient environment. Particle pollution in the residential underground garage is severe.

Keywords: dispersion, idling conditions, particle concentration, residential underground garage

Procedia PDF Downloads 511
17561 Compressed Natural Gas (CNG) Injector Research for Dual Fuel Engine

Authors: Adam Majczak, Grzegorz Barański, Marcin Szlachetka

Abstract:

Environmental considerations necessitate the search for new energy sources. One of the available solutions is a partial replacement of diesel fuel by compressed natural gas (CNG) in the compression ignition engines. This type of the engines is used mainly in vans and trucks. These units are also gaining more and more popularity in the passenger car market. In Europe, this part of the market share reaches 50%. Diesel engines are also used in industry in such vehicles as ship or locomotives. Diesel engines have higher emissions of nitrogen oxides in comparison to spark ignition engines. This can be currently limited by optimizing the combustion process and the use of additional systems such as exhaust gas recirculation or AdBlue technology. As a result of the combustion process of diesel fuel also particulate matter (PM) that are harmful to the human health are emitted. Their emission is limited by the use of a particulate filter. One of the method for toxic components emission reduction may be the use of liquid gas fuel such as propane and butane (LPG) or compressed natural gas (CNG). In addition to the environmental aspects, there are also economic reasons for the use of gaseous fuels to power diesel engines. A total or partial replacement of diesel gas is possible. Depending on the used technology and the percentage of diesel fuel replacement, it is possible to reduce the content of nitrogen oxides in the exhaust gas even by 30%, particulate matter (PM) by 95 % carbon monoxide and by 20%, in relation to original diesel fuel. The research object is prototype gas injector designed for direct injection of compressed natural gas (CNG) in compression ignition engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose, an injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

Keywords: CNG, diesel engine, gas flow, gas injector

Procedia PDF Downloads 464
17560 Multidisciplinary Approach to the Effects of Generator Exhaust Fumes on Air: Case Study of Onitsha

Authors: U. V. Okpala, C. C. Okpala

Abstract:

The effect of generator exhaust fumes on air, a case study of Onitsha was considered in this work. A sample of 400 respondents was randomly chosen in the study area based on the population. Questionnaire was designed and administered to inhabitants of the study area to enable the researchers ascertain information on the effect of generator exhaust fumes on air and possible remedies. The issue of the types of generators owned by residents, quantity of fuel products purchased per day and the number of years of generator ownership were discussed. The Pearson’s product moment analysis correlation and Chi-square test were applied in the hypothesis testing. The result shows that huge amount of effluents are discharged on the environment thereby polluting the air. This leads to radiative forcing, depletion of ozone layer and precipitation of acid rain. This has untold effect on the climate system. To ensure proper recovery, the study recommends that government makes available alternative energy sources in addition to the conventional power to save the environment; with this, waste becomes wealth towards a sustainable economy in Nigeria.

Keywords: Onitsha, generator, fuel products, exhaust fumes and remedies, energy systems

Procedia PDF Downloads 198
17559 Performance of an Automotive Engine Running on Gasoline-Condensate Blends

Authors: Md. Ehsan, Cyrus Ashok Arupratan Atis

Abstract:

Significantly lower cost, bulk availability, absence of identification color additives and relative ease of mixing with fuels have made gas-field condensates a lucrative option as adulterant for gasoline in Bangladesh. Widespread adulteration of fuels with gas-field condensates being a problem existing mainly in developing countries like Bangladesh, Nigeria etc., research works regarding the effect of such fuel adulteration are very limited. Since the properties of the gas-field condensate vary widely depending on geographical location, studies need to be based on local condensate feeds. This study quantitatively evaluates the effects of blending of gas-field condensates with gasoline(octane) in terms of - fuel properties, engine performance and exhaust emission. Condensate samples collected from Kailashtila gas field were blended with octane, ranging from 30% to 75% by volume. However for blends with above 60% condensate, cold starting of engine became difficult. Investigation revealed that the condensate samples had significantly higher distillation temperatures compared to octane, but were not far different in terms of heating value and carbon residues. Engine tests showed Kailashtila blends performing quite similar to octane in terms of power and thermal efficiency. No noticeable knocking was observed from in-cylinder pressure traces. For all the gasoline-condensate blends the test engine ran with relatively leaner air-fuel mixture delivering slightly lower CO emissions but HC and NOx emissions were similar to octane. Road trials of a test vehicle in real traffic condition and on a standard gradient using 50%(v/v) gasoline-condensate blend were also carried out. The test vehicle did not exhibit any noticeable difference in drivability compared to octane.

Keywords: condensates, engine performance, fuel adulteration, gasoline-condensate blends

Procedia PDF Downloads 223
17558 By-Product Alcohol: Fusel Oil as an Alternative Fuel in Spark Ignition Engine

Authors: Omar Awad, R. Mamat, F. Yusop, M. M. Noor, I. M. Yusri

Abstract:

Fusel oil is a by-product obtained through the fermentation of some agricultural products. The fusel oil properties are closer to other alternative combustible types and the limited number of studies on the use of fusel oil as an alcohol derivative in SI engines constitutes to the base of this study. This paper experimentally examined the impacts of a by-product of alcohol, which is fusel oil by blending it with gasoline, on engine performance, combustion characteristics, and emissions in a 4-cylinder SI engine. The test was achieved at different engine speeds and a 60 % throttle valve (load). As results, brake power, BTE, and BSFC of F10 are higher at all engine speeds. Maximum engine BTE was 33.9%, at the lowest BSFC with F10. Moreover, it is worth seeing that the F10 under rich air-fuel ratio has less variation of COVIMEP compared to the F20 and gasoline. F10 represents shorter combustion duration, thereby, the engine power increased. NOx emission for F10 at 4500 rpm was lower than gasoline. The highest value of HC emission is obtained with F10 compared to gasoline and F20 with an average increase of 11% over the engine speed range. CO and CO2 emissions increased when using fusel oil blends.

Keywords: fusel oil, spark ignition engine, by-product alcohol, combustion characteristics, engine emissions, alternative fuel

Procedia PDF Downloads 451
17557 Modeling Loads Applied to Main and Crank Bearings in the Compression-Ignition Two-Stroke Engine

Authors: Marcin Szlachetka, Mateusz Paszko, Grzegorz Baranski

Abstract:

This paper discusses the AVL EXCITE Designer simulation research into loads applied to main and crank bearings in the compression-ignition two-stroke engine. There was created a model of engine lubrication system which covers the part of this system related to particular nodes of a bearing system, i.e. a connection of main bearings in an engine block with a crankshaft, a connection of crank pins with a connecting rod. The analysis focused on the load given as a distribution of hydrodynamic oil film pressure corresponding different values of radial internal clearance. There was also studied the impact of gas force on minimal oil film thickness in main and crank bearings versus crankshaft rotational speed. Our model calculates oil film parameters, an oil film pressure distribution, an oil temperature change and dimensions of bearings as well as an oil temperature distribution on surfaces of bearing seats. Accordingly, it was possible to select, for example, a correct clearance for each of the node bearings. The research was performed for several values of engine crankshaft speed ranging from 800 RPM to 4000 RPM. Bearing oil pressure was changed according to engine speed ranging between 1 bar and 5 bar and an oil temperature of 90°C. The main bearing clearances made initially for the calculation and research were: 0.015 mm, 0.025 mm, 0.035 mm, 0.05 mm, 0.1 mm. The oil used for the research corresponded the SAE 5W-40 classification. The paper presents the selected research results referring to certain specific operating points and bearing radial internal clearances. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: crank bearings, diesel engine, oil film, two-stroke engine

Procedia PDF Downloads 181
17556 Variation of Stagnation Properties at Various Altitudes of an Klimov RD-33 Engine

Authors: Upamanyu Majumder, Angshuman Das

Abstract:

The Klimov RD-33 is a turbofan jet engine for a lightweight fighter jet that is the primary engine for the Mikoyan MiG-29. Its production started in 1981. The RD-33 was the first afterburning turbofan engine produced by the Klimov Company of Russia in the 8,000 to 9,000 kilograms-force (78,000 to 88,000 N; 18,000 to 20,000 lbf) thrust class. It features a modular twin-shaft design with individual parts that can be replaced separately and has a good tolerance to the environment. The RD-33 is simple to maintain and retains good performance in challenging environments. In this paper the stagnation properties(pressure and temperature) at the intake diffuser, compressor and turbine sections of the RD-33 engine are calculated using the standard atmosphere conditions at different altitudes( take-off, 5000m, 10000m, 15000m, 20000m and 22500m). The results are plotted against altitude values using MS-Excel.

Keywords: Klimov RD-33 engine, stagnation properties, various altitudes, ms-excel

Procedia PDF Downloads 328
17555 The Effect of Mean Pressure on the Performance of a Low-Grade Heat-Driven Thermoacoustic Cooler

Authors: Irna Farikhah

Abstract:

Converting low-grade waste heat into useful energy such as sound energy which can then be used to generate acoustic power in a thermoacoustic engine has become an attracting issue for researchers. The generated power in thermoacoustic engine can be used for driving a thermoacoustic cooler when they are installed in a tube. This cooler system can be called as a heat-driven thermoacoustic cooler. In this study, low heating temperature of the engine is discussed. In addition, having high efficiency of the whole cooler is also essential. To design a thermoacoustic cooler having high efficiency with using low-grade waste heat for the engine, the effect of mean pressure is investigated. By increasing the mean pressure, the heating temperature to generate acoustic power can be decreased from 557 °C to 300 °C. Moreover, the efficiency of the engine and cooler regenerators attain 67% and 47% of the upper limit values, respectively and 49% of the acoustical work generated by the engine regenerator is utilized in the cooler regenerator. As a result, the efficiency of the whole cooler becomes 15% of the upper limit value.

Keywords: cooler, mean pressure, performance, thermoacoustic

Procedia PDF Downloads 230
17554 Investigation of Soot Regeneration Behavior in the DPF Cleaning Device

Authors: Won Jun Jo, Man Young Kim

Abstract:

To meet stringent diesel particulate matter regulations, DPF system is essential after treatment technology providing exceptional reliability and filtration performance. At low load driving conditions, the passive type of DPF system is ineffective for regeneration method due to the inadequate of engine exhaust heat in removing accumulated soot from the filter. Therefore, DPF cleaning device is necessary to remove the soot particles. In this work, the numerical analysis on the active regeneration of DPF in DPF cleaning device is performed to find the optimum operating conditions. In order to find the DPF regeneration characteristics during active regeneration, 5 different initial soot loading condition are investigated. As the initial soot mass increases, the maximum temperature of DPF and regeneration rate also increase.

Keywords: active regeneration, DPF cleaning device, pressure drop, Diesel Particulate Filter, particulate matters, computational fluid dynamics

Procedia PDF Downloads 268
17553 Modeling and Simulation of Multiphase Evaporation in High Torque Low Speed Diesel Engine

Authors: Ali Raza, Rizwan Latif, Syed Adnan Qasim, Imran Shafi

Abstract:

Diesel engines are most efficient and reliable in terms of efficiency, reliability, and adaptability. Most of the research and development up till now have been directed towards High Speed Diesel Engine, for Commercial use. In these engines, objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low speed engines, the requirement is altogether different. These types of engines are mostly used in Maritime Industry, Agriculture Industry, Static Engines Compressors Engines, etc. On the contrary, high torque low speed engines are neglected quite often and are eminent for low efficiency and high soot emissions. One of the most effective ways to overcome these issues is by efficient combustion in an engine cylinder. Fuel spray dynamics play a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process in high torque low speed diesel engine is of great importance. Evaporation in the combustion chamber has a rigorous effect on the efficiency of the engine. In this paper, multiphase evaporation of fuel is modeled for high torque low speed engine using the CFD (computational fluid dynamics) codes. Two distinct phases of evaporation are modeled using modeling soft wares. The basic model equations are derived from the energy conservation equation and Naiver-Stokes equation. O’Rourke model is used to model the evaporation phases. The results obtained showed a generous effect on the efficiency of the engine. Evaporation rate of fuel droplet is increased with the increase in vapor pressure. An appreciable reduction in size of droplet is achieved by adding the convective heat effects in the combustion chamber. By and large, an overall increase in efficiency is observed by modeling distinct evaporation phases. This increase in efficiency is due to the fact that droplet size is reduced and vapor pressure is increased in the engine cylinder.

Keywords: diesel fuel, CFD, evaporation, multiphase

Procedia PDF Downloads 311
17552 Experimental Investigation of the Performance and Emission Characteristics of a Diesel Engine Fuelled by Bio-Additives under Variable Loads

Authors: Faisal Mahroogi, Mahmoud Bady, Ahmed Alsisi

Abstract:

The Saudi Vision 2030 program is a government initiative aimed at increasing economic, social, and cultural diversification. Dedicated to clean energy, the Kingdom has been working on solutions such as the circular carbon economy (CCE) and diversifying its energy mix to address energy and climate challenges. With a goal of a Net Zero future by 2060, Saudi Arabia's Vision 2030 emphasizes sustainability. Vision 2030 approa ches today's energy and climate challenges responsibly and creatively as a model for a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas.Therefore, the present paper introduces an experimental investigation of a diesel engine's performance and exhaust emissions operating with waste cooking oil (WCO) as a diesel additive. The engine type used is a one-cylinder natural-aspirated constant-speed direct-injection diesel engine. The main variables of the study were the load and the fuel type. The engine performance and emission characteristics were investigated when fueled with three blends. The first blend (D70B10W10DD10) is composed of 70% diesel, 10% butanol,10% WCO, and 10% diethyl ether. The second blend (D60B10W20DD10) is composed of 60% diesel, 10% butanol, 20% WCO, and 10% diethyl ether. The third blend (D50B10W30DD10) comprises 50% diesel, 10% butanol, 30% WCO, and 10% diethyl ether. The study results show that the engine emissions of carbon monoxide (CO) and nitrogen oxides (NOX) vary considerably with the fuel composition and applied load. Concerning engine performance, the cylinder pressure is sensitive to the load and fuel type variation.

Keywords: ICE, waste cooking oil, bio additives, butanol, combustion and emission characteristics

Procedia PDF Downloads 14
17551 Indirect Genotoxicity of Diesel Engine Emission: An in vivo Study Under Controlled Conditions

Authors: Y. Landkocz, P. Gosset, A. Héliot, C. Corbière, C. Vendeville, V. Keravec, S. Billet, A. Verdin, C. Monteil, D. Préterre, J-P. Morin, F. Sichel, T. Douki, P. J. Martin

Abstract:

Air Pollution produced by automobile traffic is one of the main sources of pollutants in urban atmosphere and is largely due to exhausts of the diesel engine powered vehicles. The International Agency for Research on Cancer, which is part of the World Health Organization, classified in 2012 diesel engine exhaust as carcinogenic to humans (Group 1), based on sufficient evidence that exposure is associated with an increased risk for lung cancer. Amongst the strategies aimed at limiting exhausts in order to take into consideration the health impact of automobile pollution, filtration of the emissions and use of biofuels are developed, but their toxicological impact is largely unknown. Diesel exhausts are indeed complex mixtures of toxic substances difficult to study from a toxicological point of view, due to both the necessary characterization of the pollutants, sampling difficulties, potential synergy between the compounds and the wide variety of biological effects. Here, we studied the potential indirect genotoxicity of emission of Diesel engines through on-line exposure of rats in inhalation chambers to a subchronic high but realistic dose. Following exposure to standard gasoil +/- rapeseed methyl ester either upstream or downstream of a particle filter or control treatment, rats have been sacrificed and their lungs collected. The following indirect genotoxic parameters have been measured: (i) telomerase activity and telomeres length associated with rTERT and rTERC gene expression by RT-qPCR on frozen lungs, (ii) γH2AX quantification, representing double-strand DNA breaks, by immunohistochemistry on formalin fixed-paraffin embedded (FFPE) lung samples. These preliminary results will be then associated with global cellular response analyzed by pan-genomic microarrays, monitoring of oxidative stress and the quantification of primary DNA lesions in order to identify biological markers associated with a potential pro-carcinogenic response of diesel or biodiesel, with or without filters, in a relevant system of in vivo exposition.

Keywords: diesel exhaust exposed rats, γH2AX, indirect genotoxicity, lung carcinogenicity, telomerase activity, telomeres length

Procedia PDF Downloads 370
17550 A Study on Changing of Energy-Saving Performance of GHP Air Conditioning System with Time-Series Variation

Authors: Ying Xin, Shigeki Kametani

Abstract:

This paper deals the energy saving performance of GHP (Gas engine heat pump) air conditioning system has improved with time-series variation. There are two types of air conditioning systems, VRF (Variable refrigerant flow) and central cooling and heating system. VRF is classified as EHP (Electric driven heat pump) and GHP. EHP drives the compressor with electric motor. GHP drives the compressor with the gas engine. The electric consumption of GHP is less than one tenth of EHP does. In this study, the energy consumption data of GHP installed the junior high schools was collected. An annual and monthly energy consumption per rated thermal output power of each apparatus was calculated, and then their energy efficiency was analyzed. From these data, we investigated improvement of the energy saving of the GHP air conditioning system by the change in the generation.

Keywords: energy-saving, variable refrigerant flow, gas engine heat pump, electric driven heat pump, air conditioning system

Procedia PDF Downloads 269
17549 Nonuniformity of the Piston Motion in a Radial Aircraft Engine

Authors: K. Pietrykowski, M. Bialy, M. Duk

Abstract:

One of the main disadvantages of radial engines is non-uniformity of operating cycles of each cylinder. This paper discusses the results of the kinematic analysis of pistons motion of the ASz-62IR radial engine. The ASz-62IR engine is produced in Poland and mounted in the M-18 Dromader and the An-2. The results are shown as the courses of the motion of the pistons. The discrepancies in the courses for individual pistons can result in different masses of the charge to fill the cylinders. Besides, pistons acceleration of individual cylinders is different, which triggers an additional vibration in the engine.

Keywords: nonuniformity, kinematic analysis, piston motion, radial engine

Procedia PDF Downloads 358
17548 Individual Cylinder Ignition Advance Control Algorithms of the Aircraft Piston Engine

Authors: G. Barański, P. Kacejko, M. Wendeker

Abstract:

The impact of the ignition advance control algorithms of the ASz-62IR-16X aircraft piston engine on a combustion process has been presented in this paper. This aircraft engine is a nine-cylinder 1000 hp engine with a special electronic control ignition system. This engine has two spark plugs per cylinder with an ignition advance angle dependent on load and the rotational speed of the crankshaft. Accordingly, in most cases, these angles are not optimal for power generated. The scope of this paper is focused on developing algorithms to control the ignition advance angle in an electronic ignition control system of an engine. For this type of engine, i.e. radial engine, an ignition advance angle should be controlled independently for each cylinder because of the design of such an engine and its crankshaft system. The ignition advance angle is controlled in an open-loop way, which means that the control signal (i.e. ignition advance angle) is determined according to the previously developed maps, i.e. recorded tables of the correlation between the ignition advance angle and engine speed and load. Load can be measured by engine crankshaft speed or intake manifold pressure. Due to a limited memory of a controller, the impact of other independent variables (such as cylinder head temperature or knock) on the ignition advance angle is given as a series of one-dimensional arrays known as corrective characteristics. The value of the ignition advance angle specified combines the value calculated from the primary characteristics and several correction factors calculated from correction characteristics. Individual cylinder control can proceed in line with certain indicators determined from pressure registered in a combustion chamber. Control is assumed to be based on the following indicators: maximum pressure, maximum pressure angle, indicated mean effective pressure. Additionally, a knocking combustion indicator was defined. Individual control can be applied to a single set of spark plugs only, which results from two fundamental ideas behind designing a control system. Independent operation of two ignition control systems – if two control systems operate simultaneously. It is assumed that the entire individual control should be performed for a front spark plug only and a rear spark plug shall be controlled with a fixed (or specific) offset relative to the front one or from a reference map. The developed algorithms will be verified by simulation and engine test sand experiments. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: algorithm, combustion process, radial engine, spark plug

Procedia PDF Downloads 265
17547 Investigating Constructions and Operation of Internal Combustion Engine Water Pumps

Authors: Michał Gęca, Konrad Pietrykowski, Grzegorz Barański

Abstract:

The water pump in the compression-ignition internal combustion engine transports a hot coolant along a system of ducts from the engine block to the radiator where coolant temperature is lowered. This part needs to maintain a constant volumetric flow rate. Its power should be regulated to avoid a significant drop in pressure if a coolant flow decreases. The internal combustion engine cooling system uses centrifugal pumps for suction. The paper investigates 4 constructions of engine pumps. The pumps are from diesel engine of a maximum power of 75 kW. Each of them has a different rotor shape, diameter and width. The test stand was created and the geometry inside the all 4 engine blocks was mapped. For a given pump speed on the inverter of the electric engine motor, the valve position was changed and volumetric flow rate, pressure, and power were recorded. Pump speed was regulated from 1200 RPM to 7000 RPM every 300 RPM. The volumetric flow rates and pressure drops for the pump speeds and efficiencies were specified. Accordingly, the operations of each pump were mapped. Our research was to select a pump for the aircraft compression-ignition engine. There was calculated a pressure drop at a given flow on the block and radiator of the designed aircraft engine. The water pump should be lightweight and have a low power demand. This fact shall affect the shape of a rotor and bearings. The pump volumetric flow rate was assumed as 3 kg/s (previous AVL BOOST research model) where the temperature difference was 5°C between the inlet (90°C) and outlet (95°C). Increasing pump speed above the boundary flow power defined by pressure and volumetric flow rate does not increase it but pump efficiency decreases. The maximum total pump efficiency (PCC) is 45-50%. When the pump is driven by low speeds with a 90% closed valve, its overall efficiency drops to 15-20%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft engine, diesel engine, flow, water pump

Procedia PDF Downloads 218
17546 Simulation Research of City Bus Fuel Consumption during the CUEDC Australian Driving Cycle

Authors: P. Kacejko, M. Wendeker

Abstract:

The fuel consumption of city buses depends on a number of factors that characterize the technical properties of the bus and driver, as well as traffic conditions. This parameter related to greenhouse gas emissions is regulated by law in many countries. This applies to both fuel consumption and exhaust emissions. Simulation studies are a way to reduce the costs of optimization studies. The paper describes simulation research of fuel consumption city bus driving. Parameters of the developed model are based on experimental results obtained on chassis dynamometer test stand and road tests. The object of the study was a city bus equipped with a compression-ignition engine. The verified model was applied to simulate the behavior of a bus during the CUEDC Australian Driving Cycle. The results of the calculations showed a direct influence of driving dynamics on fuel consumption.

Keywords: Australian Driving Cycle, city bus, diesel engine, fuel consumption

Procedia PDF Downloads 96
17545 Investigations on the Influence of Optimized Charge Air Cooling for a Diesel Passenger Car

Authors: Christian Doppler, Gernot Hirschl, Gerhard Zsiga

Abstract:

Starting from 2020, an EU-wide CO2-limitation of 95g/km is scheduled for the average of an OEMs passenger car fleet. Considering that, further measures of optimization on the diesel cycle will be necessary in order to reduce fuel consumption and emissions while keeping performance values adequate at the least. The present article deals with charge air cooling (CAC) on the basis of a diesel passenger car model in a 0D/1D-working process calculation environment. The considered engine is a 2.4 litre EURO VI diesel engine with variable geometry turbocharger (VGT) and low-pressure exhaust gas recirculation (LP EGR). The object of study was the impact of charge air cooling on the engine working process at constant boundary conditions which could have been conducted with an available and validated engine model in AVL BOOST. Part load was realized with constant power and NOx-emissions, whereas full load was accomplished with a lambda control in order to obtain maximum engine performance. The informative results were used to implement a simulation model in Matlab/Simulink which is further integrated into a full vehicle simulation environment via coupling with ICOS (Independent Co-Simulation Platform). Next, the dynamic engine behavior was validated and modified with load steps taken from the engine test bed. Due to the modular setup in the Co-Simulation, different CAC-models have been simulated quickly with their different influences on the working process. In doing so, a new cooler variation isn’t needed to be reproduced and implemented into the primary simulation model environment, but is implemented quickly and easily as an independent component into the simulation entity. By means of the association of the engine model, longitudinal dynamics vehicle model and different CAC models (air/air & water/air variants) in both steady state and transient operational modes, statements are gained regarding fuel consumption, NOx-emissions and power behavior. The fact that there is no more need of a complex engine model is very advantageous for the overall simulation volume. Beside of the simulation with the mentioned demonstrator engine, there have also been conducted several experimental investigations on the engine test bench. Here the comparison of a standard CAC with an intake-manifold-integrated CAC was executed in particular. Simulative as well as experimental tests showed benefits for the water/air CAC variant (on test bed especially the intake manifold integrated variant). The benefits are illustrated by a reduced pressure loss and a gain in air efficiency and CAC efficiency, those who all lead to minimized emission and fuel consumption for stationary and transient operation.

Keywords: air/water-charge air cooler, co-simulation, diesel working process, EURO VI fuel consumption

Procedia PDF Downloads 243
17544 Thermal Comfort and Energy Saving Evaluation of a Combined System in an Office Room Using Displacement Ventilation

Authors: A. Q. Ahmed, S. Gao

Abstract:

In this paper, the energy saving and human thermal comfort in a typical office room are investigated. The impact of a combined system of exhaust inlet air with light slots located at the ceiling level in a room served by displacement ventilation system is numerically modelled. Previous experimental data are used to validate the computational fluid dynamic (CFD) model. A case study of simulated office room includes two seating occupants, two computers, two data loggers and four lamps. The combined system is located at the ceiling level above the heat sources. A new method of calculation for the cooling coil load in stratified air distribution (STRAD) system is used in this study. The results show that 47.4 % energy saving of space cooling load can be achieved by combing the exhaust inlet air with light slots at the ceiling level above the heat sources.

Keywords: air conditioning, displacement ventilation, energy saving, thermal comfort

Procedia PDF Downloads 463
17543 Reliability Analysis of a Fuel Supply System in Automobile Engine

Authors: Chitaranjan Sharma

Abstract:

The present paper deals with the analysis of a fuel supply system in an automobile engine of a four wheeler which is having both the option of fuel i.e. PETROL and CNG. Since CNG is cheaper than petrol so the priority is given to consume CNG as compared to petrol. An automatic switch is used to start petrol supply at the time of failure of CNG supply. Using regenerative point technique with Markov renewal process, the reliability characteristics which are useful to system designers are obtained.

Keywords: reliability, redundancy, repair time, transition, probability, regenerative points, markov renewal, process

Procedia PDF Downloads 521
17542 An Experimental Comparative Study of SI Engine Performance and Emission Characteristics Fuelled with Various Gasoline-Alcohol Blends

Authors: M. Mourad, K. Abdelgawwad

Abstract:

This experimental investigation aimed to determine the influence of using different types of alcohol and gasoline blends such as ethanol - butanol - propanol on the performance of spark ignition engine. The experimental work studied the effect of various fuel blends such as ethanol – butanol/gasoline and propanol/gasoline with two rates of 15% and 20%, at different operating conditions (engine speed and loads), on engine performance emission characteristics. Laboratory experiments are carried out on a four-cylinder spark ignition (SI) engine. In this practical study, all considerations and precautions are taken into account to ensure the quality and accuracy of practical experiments and different measurements. The results show that the performance of the engine improved significantly in the case of ethanol/butanol-gasoline blends. The results also indicated that the engine emitted pollutants such as CO, hydrocarbon (HC) for alcohol fuel blends compared to base gasoline NOx emission increased for different fuel blends either ethanol/butanol-gasoline or propanol-gasoline fuel blend.

Keywords: gasoline engine, performance, emission, fuel blends

Procedia PDF Downloads 135
17541 A Computational Investigation of Knocking Tendency in a Hydrogen-Fueled SI Engine

Authors: Hammam Aljabri, Hong G. Im

Abstract:

Hydrogen is a promising future fuel to support the transition of the energy sector toward carbon neutrality. The direct utilization of H2 in Internal Combustion Engines (ICEs) is possible, and this technology faces mainly two challenges; high NOx emissions and severe knocking at mid to high loads. In this study, we numerically investigated the potential of H2 combustion in a truck-size engine operated in SI mode. To mitigate the knocking nature of H2 combustion, we have focused on studying the effects of three primary parameters; the compression ratio (CR), the air-fuel ratio, and the spark time. The baseline case was set using a CR of 16.5 and an equivalence ratio of 0.35. In simulations, the auto-ignition tendency was evaluated based on the maximum pressure rise rate and the local pressure fluctuations at the monitoring points set along the wall of the combustion chamber. To mitigate the auto-ignition tendency while enabling a wider range of engine operation, the effect of lowering the compression ratio was assessed. The results indicate that by lowering the compression ratio from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved. Aiming to restrain the auto-ignition while maintaining good efficiency, a reduction in the equivalence ratio was examined under different compression ratios. The result indicates that higher compression ratios will require lower equivalence ratios, and due to practical limitations, a lower equivalence ratio of 0.25 was set as the limit. Using a compression ratio of 13.5 combined with an equivalence ratio of 0.3 resulted in an indicated thermal efficiency of 48.6%, that is, at a fixed spark time. It is found that under such lean conditions, the incomplete combustion losses and exhaust losses were high. Thus, advancing the spark time was assessed as a possible solution. The results demonstrated the advantages of advancing the spark time, where an indicated thermal efficiency exceeding 50% was achieved using a compression ratio of 14.5:1 and an equivalence ratio of 0.25.

Keywords: hydrogen, combustion, engine knock, SI engine

Procedia PDF Downloads 104
17540 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units

Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey

Abstract:

This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.

Keywords: stirling engine, solar-thermal, power inverter, alternator

Procedia PDF Downloads 249
17539 Effect of Swirling Mixer on the Exhaust Flow in a Diesel SCR Aftertreatment System

Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim, In Jae Song

Abstract:

The widespread utilization of mixer in selective catalytic reduction (SCR) system marks a remarkable advantage in diesel engines. In the automotive selective catalytic reduction (SCR) system, the de-NOX efficiency can be improved by highly uniform flow with effective turbulent mixing. In this paper, the exhaust pipe is complemented with the swirling mixers of three different vane angles installed at the upstream of the SCR reactor. The attributes of the mixer are established by the variation in flow behavior followed by the drawback owing to the absence of mixer. In particular, the information pertaining to the selection of proper static mixer is provided based on the correlation between the uniformity index (UI) and the pressure drop. The uniform distribution of the flow at the entrance of the SCR reactor aids to determine the configuration which gives high mixing performance and comprehend the function of the mixer.

Keywords: pressure drop, selective catalytic reduction, static mixer, turbulent mixing, uniformity index

Procedia PDF Downloads 909
17538 The Verification Study of Computational Fluid Dynamics Model of the Aircraft Piston Engine

Authors: Lukasz Grabowski, Konrad Pietrykowski, Michal Bialy

Abstract:

This paper presents the results of the research to verify the combustion in aircraft piston engine Asz62-IR. This engine was modernized and a type of ignition system was developed. Due to the high costs of experiments of a nine-cylinder 1,000 hp aircraft engine, a simulation technique should be applied. Therefore, computational fluid dynamics to simulate the combustion process is a reasonable solution. Accordingly, the tests for varied ignition advance angles were carried out and the optimal value to be tested on a real engine was specified. The CFD model was created with the AVL Fire software. The engine in the research had two spark plugs for each cylinder and ignition advance angles had to be set up separately for each spark. The results of the simulation were verified by comparing the pressure in the cylinder. The courses of the indicated pressure of the engine mounted on a test stand were compared. The real course of pressure was measured with an optical sensor, mounted in a specially drilled hole between the valves. It was the OPTRAND pressure sensor, which was designed especially to engine combustion process research. The indicated pressure was measured in cylinder no 3. The engine was running at take-off power. The engine was loaded by a propeller at a special test bench. The verification of the CFD simulation results was based on the results of the test bench studies. The course of the simulated pressure obtained is within the measurement error of the optical sensor. This error is 1% and reflects the hysteresis and nonlinearity of the sensor. The real indicated pressure measured in the cylinder and the pressure taken from the simulation were compared. It can be claimed that the verification of CFD simulations based on the pressure is a success. The next step was to research on the impact of changing the ignition advance timing of spark plugs 1 and 2 on a combustion process. Moving ignition timing between 1 and 2 spark plug results in a longer and uneven firing of a mixture. The most optimal point in terms of indicated power occurs when ignition is simultaneous for both spark plugs, but so severely separated ignitions are assured that ignition will occur at all speeds and loads of engine. It should be confirmed by a bench experiment of the engine. However, this simulation research enabled us to determine the optimal ignition advance angle to be implemented into the ignition control system. This knowledge allows us to set up the ignition point with two spark plugs to achieve as large power as possible.

Keywords: CFD model, combustion, engine, simulation

Procedia PDF Downloads 331
17537 Pressure Regulator Optimization in LPG Fuel Injection Systems

Authors: M. Akif Ceviz, Alirıza Kaleli, Erdoğan Güner

Abstract:

LPG pressure regulator is a device which is used to change the phase of LPG from liquid to gas by decreasing the pressure. During the phase change, it is necessary to supply the latent heat of LPG to prevent excessive low temperature. Engine coolant is circulated in the pressure regulator for this purpose. Therefore, pressure regulator is a type of heat exchanger that should be designed for different engine operating conditions. The design of the regulator should ensure that the flow of LPG is in gaseous phase to the injectors during the engine steady state and transient operating conditions. The pressure regulators in the LPG gaseous injection systems currently used can easily change the phase of LPG, however, there is no any control on the LPG temperature in conventional LPG injection systems. It is possible to increase temperature excessively. In this study, a control unit has been tested to keep the LPG temperature in a band. Result of the study showed that the engine performance characteristics can be increased by using the system.

Keywords: temperature, pressure regulator, LPG, PID

Procedia PDF Downloads 488
17536 Integrated Gas Turbine Performance Diagnostics and Condition Monitoring Using Adaptive GPA

Authors: Yi-Guang Li, Suresh Sampath

Abstract:

Gas turbine performance degrades over time, and the degradation is greatly affected by environmental, ambient, and operating conditions. The engines may degrade slowly under favorable conditions and result in a waste of engine life if a scheduled maintenance scheme is followed. They may also degrade fast and fail before a scheduled overhaul if the conditions are unfavorable, resulting in serious secondary damage, loss of engine availability, and increased maintenance costs. To overcome these problems, gas turbine owners are gradually moving from scheduled maintenance to condition-based maintenance, where condition monitoring is one of the key supporting technologies. This paper presents an integrated adaptive GPA diagnostics and performance monitoring system developed at Cranfield University for gas turbine gas path condition monitoring. It has the capability to predict the performance degradation of major gas path components of gas turbine engines, such as compressors, combustors, and turbines, using gas path measurement data. It is also able to predict engine key performance parameters for condition monitoring, such as turbine entry temperature that cannot be directly measured. The developed technology has been implemented into digital twin computer Software, Pythia, to support the condition monitoring of gas turbine engines. The capabilities of the integrated GPA condition monitoring system are demonstrated in three test cases using a model gas turbine engine similar to the GE aero-derivative LM2500 engine widely used in power generation and marine propulsion. It shows that when the compressor of the model engine degrades, the Adaptive GPA is able to predict the degradation and the changing engine performance accurately using gas path measurements. Such a presented technology and software are generic, can be applied to different types of gas turbine engines, and provide crucial engine health and performance parameters to support condition monitoring and condition-based maintenance.

Keywords: gas turbine, adaptive GPA, performance, diagnostics, condition monitoring

Procedia PDF Downloads 52
17535 Validation Study of Radial Aircraft Engine Model

Authors: Lukasz Grabowski, Tytus Tulwin, Michal Geca, P. Karpinski

Abstract:

This paper presents the radial aircraft engine model which has been created in AVL Boost software. This model is a one-dimensional physical model of the engine, which enables us to investigate the impact of an ignition system design on engine performance (power, torque, fuel consumption). In addition, this model allows research under variable environmental conditions to reflect varied flight conditions (altitude, humidity, cruising speed). Before the simulation research the identifying parameters and validating of model were studied. In order to verify the feasibility to take off power of gasoline radial aircraft engine model, some validation study was carried out. The first stage of the identification was completed with reference to the technical documentation provided by manufacturer of engine and the experiments on the test stand of the real engine. The second stage involved a comparison of simulation results with the results of the engine stand tests performed on a WSK ’PZL-Kalisz’. The engine was loaded by a propeller in a special test bench. Identifying the model parameters referred to a comparison of the test results to the simulation in terms of: pressure behind the throttles, pressure in the inlet pipe, and time course for pressure in the first inlet pipe, power, and specific fuel consumption. Accordingly, the required coefficients and error of simulation calculation relative to the real-object experiments were determined. Obtained the time course for pressure and its value is compatible with the experimental results. Additionally the engine power and specific fuel consumption tends to be significantly compatible with the bench tests. The mapping error does not exceed 1.5%, which verifies positively the model of combustion and allows us to predict engine performance if the process of combustion will be modified. The next conducted tests verified completely model. The maximum mapping error for the pressure behind the throttles and the inlet pipe pressure is 4 %, which proves the model of the inlet duct in the engine with the charging compressor to be correct.

Keywords: 1D-model, aircraft engine, performance, validation

Procedia PDF Downloads 308
17534 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 338
17533 Comparative Analysis of Internal Combustion Engine Cooling Fins Using Ansys Software

Authors: Aakash Kumar R. G., Anees K. Ahamed, Raj M. Mohan

Abstract:

Effective engine cooling can improve the engine’s life and efficacy. The design of the fin of the cylinder head and block determines the cooling mechanism of air cooled engine. The heat conduction takes place through the engine parts and convection of heat from the surface of the fins takes place with air as the heat transferring medium. The air surrounding the cooling fins helps in removal of heat built up by the air cooled engine. If the heat removal rate is inadequate, it will result in lower engine efficiency and high thermal stresses in the engine. The main drawback of the air cooled engine is the low heat transfer rate of the cooling fins .This work is based on scrutiny of previous researches that involves enhancing of heat transfer rate of cooling fins. The current research is about augmentation of heat transfer rate of longitudinal rectangular fin profiles by varying the length of the fin and diameter of holes on the fins. Thermal and flow analysis is done for two different models of fins. One is simple fin without holes and the other is perforated (consist of holes). It can be inferred from the research that the fins with holes have a higher fin efficiency than the fins without holes. The geometry of the fin is done in CREO. The heat transfer analysis is done using ANSYS software.

Keywords: fins, heat transfer, perforated fins, thermal analysis, thermal flux

Procedia PDF Downloads 348