Search results for: energy efficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11773

Search results for: energy efficient

2293 Turmeric Mediated Synthesis and Characterization of Cerium Oxide Nanoparticles

Authors: Nithin Krisshna Gunasekaran, Prathima Prabhu Tumkur, Nicole Nazario Bayon, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Cerium oxide and turmeric have antioxidant properties, which have gained interest among researchers to study their applications in the field of biomedicine, such asanti-inflammatory, anticancer, and antimicrobial applications. In this study, the turmeric extract was prepared and mixed with cerium nitrate hexahydrate, stirred continuously to obtain a homogeneous solution and then heated on a hot plate to get the supernatant evaporated, then calcinated at 600°C to obtain the cerium oxide nanoparticles. Characterization of synthesized cerium oxide nanoparticles through Scanning Electron Microscopy determined the particle size to be in the range of 70 nm to 250 nm. Energy Dispersive X-Ray Spectroscopy determined the elemental composition of cerium and oxygen. Individual particles were identified through the characterization of cerium oxide nanoparticles using Field Emission Scanning Electron Microscopy, in which the particles were determined to be spherical and in the size of around 70 nm. The presence of cerium oxide was assured by analyzing the spectrum obtained through the characterization of cerium oxide nanoparticles by Fourier Transform Infrared Spectroscopy. The crystal structure of cerium oxide nanoparticles was determined to be face-centered cubic by analyzing the peaks obtained through theX-Ray Diffraction method. The crystal size of cerium oxide nanoparticles was determined to be around 13 nm by using the Debye Scherer equation. This study confirmed the synthesis of cerium oxide nanoparticles using turmeric extract.

Keywords: antioxidant, characterization, cerium oxide, synthesis, turmeric

Procedia PDF Downloads 129
2292 Preparation and CO2 Permeation Properties of Carbonate-Ceramic Dual-Phase Membranes

Authors: H. Ishii, S. Araki, H. Yamamoto

Abstract:

In recent years, the carbon dioxide (CO2) separation technology is required in terms of the reduction of emission of global warming gases and the efficient use of fossil fuels. Since the emission amount of CO2 gas occupies the large part of greenhouse effect gases, it is considered that CO2 have the most influence on global warming. Therefore, we need to establish the CO2 separation technologies with high efficiency at low cost. In this study, we focused on the membrane separation compared with conventional separation technique such as distillation or cryogenic separation. In this study, we prepared carbonate-ceramic dual-phase membranes to separate CO2 at high temperature. As porous ceramic substrate, the (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+σ, La0.6Sr0.4Ti0.3 Fe0.7O3 and Ca0.8Sr0.2Ti0.7Fe0.3O3-α (PLNCG, LSTF and CSTF) were examined. PLNCG, LSTF and CSTF have the perovskite structure. The perovskite structure has high stability and shows ion-conducting doped by another metal ion. PLNCG, LSTF and CSTF have perovskite structure and has high stability and high oxygen ion diffusivity. PLNCG, LSTF and CSTF powders were prepared by a solid-phase process using the appropriate carbonates or oxides. To prepare porous substrates, these powders mixed with carbon black (20 wt%) and a few drops of polyvinyl alcohol (5 wt%) aqueous solution. The powder mixture were packed into stainless steel mold (13 mm) and uniaxially pressed into disk shape under a pressure of 20 MPa for 1 minute. PLNCG, LSTF and CSTF disks were calcined in air for 6 h at 1473, 1573 and 1473 K, respectively. The carbonate mixture (Li2CO3/Na2CO3/K2CO3: 42.5/32.5/25 in mole percent ratio) was placed inside a crucible and heated to 793 K. Porous substrates were infiltrated with the molten carbonate mixture at 793 K. Crystalline structures of the fresh membranes and after the infiltration with the molten carbonate mixtures were determined by X-ray diffraction (XRD) measurement. We confirmed the crystal structure of PLNCG and CSTF slightly changed after infiltration with the molten carbonate mixture. CO2 permeation experiments with PLNCG-carbonate, LSTF-carbonate and CSTF-carbonate membranes were carried out at 773-1173 K. The gas mixture of CO2 (20 mol%) and He was introduced at the flow rate of 50 ml/min to one side of membrane. The permeated CO2 was swept by N2 (50 ml/min). We confirmed the effect of ceramic materials and temperature on the CO2 permeation at high temperature.

Keywords: membrane, perovskite structure, dual-phase, carbonate

Procedia PDF Downloads 344
2291 Physicochemical and Biological Characterization of Fine Particulate Matter in Ambient Air in Capital City of Pakistan

Authors: Sabir Hussain, Mujtaba Hassan, Kashif Rasool, Asif Shahzad

Abstract:

Fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) was collected in Islamabad from November 2022 to January 2023, at urban sites. The average mass concentrations of PM2.5 varied, ranging from 90.5 to 133 μg m−3 in urban areas. Environmental scanning electron microscopy (ESEM) analysis revealed that Islamabad's PM2.5 comprised soot aggregates, ashes, minerals, bio-particles, and unidentified particles. Results from inductively coupled plasma atomic emission spectroscopy (ICP-OES) indicated a gradual increase in total elemental concentrations in Islamabad PM2.5 in winter, with relatively high levels in December. Significantly different elemental compositions were observed in urban PM2.5. Enrichment factor (EF) analysis suggested that elements such as K, Na, Ca, Mg, Al, Fe, Ba, and Sr were of natural origin, while As, Cu, Zn, Pb, Cd, Mn, Ni, and Se originated from anthropogenic sources. Plasmid DNA assays demonstrated varying levels of potential toxicity in Islamabad PM2.5 collected from urban sites, as well as across different seasons. Notably, the urban winter PM2.5 sample exhibited much stronger toxicity compared to other samples. The presence of heavy metals in Islamabad PM2.5, including Cu, Zn, Pb, Cd, Cr, Mn, and Ni, may have synergistic effects on human health.

Keywords: islamabad particulate matter pm2.5, scanning electron microscopy with energy-dispersive x-ray spectroscopy(sem-eds), fourier transform infrared spectroscopy(ftir), inductively coupled plasma optical emission spectroscopy(icp-oes)

Procedia PDF Downloads 33
2290 Concept of Using an Indicator to Describe the Quality of Fit of Clothing to the Body Using a 3D Scanner and CAD System

Authors: Monika Balach, Iwona Frydrych, Agnieszka Cichocka

Abstract:

The objective of this research is to develop an algorithm, taking into account material type and body type that will describe the fabric properties and quality of fit of a garment to the body. One of the objectives of this research is to develop a new algorithm to simulate cloth draping within CAD/CAM software. Existing virtual fitting does not accurately simulate fabric draping behaviour. Part of the research into virtual fitting will focus on the mechanical properties of fabrics. Material behaviour depends on many factors including fibre, yarn, manufacturing process, fabric weight, textile finish, etc. For this study, several different fabric types with very different mechanical properties will be selected and evaluated for all of the above fabric characteristics. These fabrics include woven thick cotton fabric which is stiff and non-bending, woven with elastic content, which is elastic and bends on the body. Within the virtual simulation, the following mechanical properties can be specified: shear, bending, weight, thickness, and friction. To help calculate these properties, the KES system (Kawabata) can be used. This system was originally developed to calculate the mechanical properties of fabric. In this research, the author will focus on three properties: bending, shear, and roughness. This study will consider current research using the KES system to understand and simulate fabric folding on the virtual body. Testing will help to determine which material properties have the largest impact on the fit of the garment. By developing an algorithm which factors in body type, material type, and clothing function, it will be possible to determine how a specific type of clothing made from a particular type of material will fit on a specific body shape and size. A fit indicator will display areas of stress on the garment such as shoulders, chest waist, hips. From this data, CAD/CAM software can be used to develop garments that fit with a very high degree of accuracy. This research, therefore, aims to provide an innovative solution for garment fitting which will aid in the manufacture of clothing. This research will help the clothing industry by cutting the cost of the clothing manufacturing process and also reduce the cost spent on fitting. The manufacturing process can be made more efficient by virtual fitting of the garment before the real clothing sample is made. Fitting software could be integrated into clothing retailer websites allowing customers to enter their biometric data and determine how the particular garment and material type would fit their body.

Keywords: 3D scanning, fabric mechanical properties, quality of fit, virtual fitting

Procedia PDF Downloads 148
2289 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies

Authors: Sam Bahreini, Payam Hayati

Abstract:

Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.

Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)

Procedia PDF Downloads 136
2288 Structural, Magnetic, Dielectric and Electrical Properties of Gd3+ Doped Cobalt Ferrite Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jarmila Vilcakova, Jaromir Havlica, Lukas Kalina, Pavel Urbánek, Michal Machovsky, Milan Masař, Martin Holek

Abstract:

In this work, CoFe₂₋ₓGdₓO₄ (x=0.00, 0.05, 0.10, 0.15, 0.20) spinel ferrite nanoparticles are synthesized by sonochemical method. The structural properties and cation distribution are investigated using X-ray Diffraction (XRD), Raman Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray photoelectron spectroscopy. The morphology and elemental analysis are screened using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy, respectively. The particle size measured by FE-SEM and XRD analysis confirm the formation of nanoparticles in the range of 7-10 nm. The electrical properties show that the Gd³⁺ doped cobalt ferrite (CoFe₂₋ₓGdₓO₄; x= 0.20) exhibit enhanced dielectric constant (277 at 100 Hz) and ac conductivity (20.17 x 10⁻⁹ S/cm at 100 Hz). The complex impedance measurement study reveals that as Gd³⁺ doping concentration increases, the impedance Z’ and Z’ ’ decreases. The influence of Gd³⁺ doping in cobalt ferrite nanoparticles on the magnetic property is examined by using vibrating sample magnetometer. Magnetic property measurement reveal that the coercivity decreases with Gd³⁺ substitution from 234.32 Oe (x=0.00) to 12.60 Oe (x=0.05) and further increases from 12.60 Oe (x=0.05) to 68.62 Oe (x=0.20). The saturation magnetization decreases with Gd³⁺ substitution from 40.19 emu/g (x=0.00) to 21.58 emu/g (x=0.20). This decrease follows the three-sublattice model suggested by Yafet-Kittel (Y-K). The Y-K angle increases with the increase of Gd³⁺ doping in cobalt ferrite nanoparticles.

Keywords: sonochemical method, nanoparticles, magnetic property, dielectric property, electrical property

Procedia PDF Downloads 326
2287 Stems of Prunus avium: An Unexplored By-product with Great Bioactive Potential

Authors: Luís R. Silva, Fábio Jesus, Catarina Bento, Ana C. Gonçalves

Abstract:

Over the last few years, the traditional medicine has gained ground at nutritional and pharmacological level. The natural products and their derivatives have great importance in several drugs used in modern therapeutics. Plant-based systems continue to play an essential role in primary healthcare. Additionally, the utilization of their plant parts, such as leaves, stems and flowers as nutraceutical and pharmaceutical products, can add a high value in the natural products market, not just by the nutritional value due to the significant levels of phytochemicals, but also by to the high benefit for the producers and manufacturers business. Stems of Prunus avium L. are a byproduct resulting from the processing of cherry, and have been consumed over the years as infusions and decoctions due to its bioactive properties, being used as sedative, diuretic and draining, to relief of renal stones, edema and hypertension. In this work, we prepared a hydroethanolic and infusion extracts from stems of P. avium collected in Fundão Region (Portugal), and evaluate the phenolic profile by LC/DAD, antioxidant capacity, α-glucosidase inhibitory activity and protection of human erythrocytes against oxidative damage. The LC-DAD analysis allowed to the identification of 19 phenolic compounds, catechin and 3-O-caffolquinic acid were the main ones. In a general way, hydroethanolic extract proved to be more active than infusion. This extract had the best antioxidant activity against DPPH• (IC50=22.37 ± 0.28 µg/mL) and superoxide radical (IC50=13.93 ± 0.30 µg/mL). Furthermore, it was the most active concerning inhibition of hemoglobin oxidation (IC50=13.73 ± 0.67 µg/mL), hemolysis (IC50=1.49 ± 0.18 µg/mL) and lipid peroxidation (IC50=26.20 ± 0.38 µg/mL) on human erythrocytes. On the other hand, infusion revealed to be more efficient towards α-glucosidase inhibitory activity (IC50=3.18 ± 0.23 µg/mL) and against nitric oxide radical (IC50=99.99 ± 1.89 µg/mL). The Sweet cherry sector is very important in Fundão Region (Portugal), and taking profit from the great wastes produced during processing of the cherry to produce added-value products, such as food supplements cannot be ignored. Our results demonstrate that P. avium stems possesses remarkable antioxidant and free radical scavenging properties. It is therefore, suggest, that P. avium stems can be used as a natural antioxidant with high potential to prevent or slow the progress of human diseases mediated by oxidative stress.

Keywords: stems, Prunus avium, phenolic compounds, biological potential

Procedia PDF Downloads 269
2286 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 110
2285 New Variational Approach for Contrast Enhancement of Color Image

Authors: Wanhyun Cho, Seongchae Seo, Soonja Kang

Abstract:

In this work, we propose a variational technique for image contrast enhancement which utilizes global and local information around each pixel. The energy functional is defined by a weighted linear combination of three terms which are called on a local, a global contrast term and dispersion term. The first one is a local contrast term that can lead to improve the contrast of an input image by increasing the grey-level differences between each pixel and its neighboring to utilize contextual information around each pixel. The second one is global contrast term, which can lead to enhance a contrast of image by minimizing the difference between its empirical distribution function and a cumulative distribution function to make the probability distribution of pixel values becoming a symmetric distribution about median. The third one is a dispersion term that controls the departure between new pixel value and pixel value of original image while preserving original image characteristics as well as possible. Second, we derive the Euler-Lagrange equation for true image that can achieve the minimum of a proposed functional by using the fundamental lemma for the calculus of variations. And, we considered the procedure that this equation can be solved by using a gradient decent method, which is one of the dynamic approximation techniques. Finally, by conducting various experiments, we can demonstrate that the proposed method can enhance the contrast of colour images better than existing techniques.

Keywords: color image, contrast enhancement technique, variational approach, Euler-Lagrang equation, dynamic approximation method, EME measure

Procedia PDF Downloads 420
2284 The Mechanical Properties of Rammed Earth with Plastic Fibers

Authors: Majdi Al Shdifat, Juan Chiachio, Esther Puertas, María L. Jalón, Álvaro Blanca-Hoyos

Abstract:

In recent years, the world has begun to adopt more sustainable practices in response to today's environmental and climate challenges. The construction sector is one of the most resource-intensive among others, so researchers are testing different types of materials with different processes and methodologies to achieve more environmentally and sustainably friendly buildings.Plastic is one of the most harmful materials for the environment. The global production of plastics has increased dramatically in recent decades, and it is one of the most widely used materials. However, plastic waste is not biodegradable and has a chemical composition that is stable for many years in the environment, both on land and in water bodies. Recycled plastics have been tested to be used in construction in many ways to reduce the amount of plastic in the environment and the use of raw materials in construction. In this context, the main objective of this research is to test the use of plastic fibers with one of the most promising materials to replace cement, which is rammed earth. In fact, rammed earth is considered one of the most environmentally friendly materials due to its use of local raw materials, recyclability, and low embodied energy. In this research, three different types of plastic fibers were used. Then, the blends were evaluated by considering their mechanical properties, including compressive strength and tensile strength. In addition, the non-destructive ultrasonic wave velocity was measured. The result shows excellent potential for the use of plastic fibers in rammed earth, especially in terms of compressive strength.

Keywords: mechanical characterization, plastic fibers reinforcement, rammed earth, sustainable material

Procedia PDF Downloads 38
2283 Perfectly Matched Layer Boundary Stabilized Using Multiaxial Stretching Functions

Authors: Adriano Trono, Federico Pinto, Diego Turello, Marcelo A. Ceballos

Abstract:

Numerical modeling of dynamic soil-structure interaction problems requires an adequate representation of the unbounded characteristics of the ground, material non-linearity of soils, and geometrical non-linearities such as large displacements due to rocking of the structure. In order to account for these effects simultaneously, it is often required that the equations of motion are solved in the time domain. However, boundary conditions in conventional finite element codes generally present shortcomings in fully absorbing the energy of outgoing waves. In this sense, the Perfectly Matched Layers (PML) technique allows a satisfactory absorption of inclined body waves, as well as surface waves. However, the PML domain is inherently unstable, meaning that it its instability does not depend upon the discretization considered. One way to stabilize the PML domain is to use multiaxial stretching functions. This development is questionable because some Jacobian terms of the coordinate transformation are not accounted for. For this reason, the resulting absorbing layer element is often referred to as "uncorrected M-PML” in the literature. In this work, the strong formulation of the "corrected M-PML” absorbing layer is proposed using multiaxial stretching functions that incorporate all terms of the coordinate transformation. The results of the stable model are compared with reference solutions obtained from extended domain models.

Keywords: mixed finite elements, multiaxial stretching functions, perfectly matched layer, soil-structure interaction

Procedia PDF Downloads 35
2282 Community Observatory for Territorial Information Control and Management

Authors: A. Olivi, P. Reyes Cabrera

Abstract:

Ageing and urbanization are two of the main trends that characterize the twenty-first century. Its trending is especially accelerated in the emerging countries of Asia and Latin America. Chile is one of the countries in the Latin American region, where the demographic transition to ageing is becoming increasingly visible. The challenges that the new demographic scenario poses to urban administrators call for searching innovative solutions to maximize the functional and psycho-social benefits derived from the relationship between older people and the environment in which they live. Although mobility is central to people's everyday practices and social relationships, it is not distributed equitably. On the contrary, it can be considered another factor of inequality in our cities. Older people are a particularly sensitive and vulnerable group to mobility. In this context, based on the ageing in place strategy and following the social innovation approach within a spatial context, the "Community Observatory of Territorial Information Control and Management" project aims at the collective search and validation of solutions for the satisfaction of mobility and accessibility specific needs of urban aged people. Specifically, the Observatory intends to: i) promote the direct participation of the aged population in order to generate relevant information on the territorial situation and the satisfaction of the mobility needs of this group; ii) co-create dynamic and efficient mechanisms for the reporting and updating of territorial information; iii) increase the capacity of the local administration to plan and manage solutions to environmental problems at the neighborhood scale. Based on a participatory mapping methodology and on the application of digital technology, the Observatory designed and developed, together with aged people, a crowdsourcing platform for smartphones, called DIMEapp, for reporting environmental problems affecting mobility and accessibility. DIMEapp has been tested at a prototype level in two neighborhoods of the city of Valparaiso. The results achieved in the testing phase have shown high potential in order to i) contribute to establishing coordination mechanisms with the local government and the local community; ii) improve a local governance system that guides and regulates the allocation of goods and services destined to solve those problems.

Keywords: accessibility, ageing, city, digital technology, local governance

Procedia PDF Downloads 105
2281 Case Study; Drilled Shafts Installation in Difficult Site Conditions; Loose Sand and High Water Table

Authors: Anthony El Hachem, Hosam Salman

Abstract:

Selecting the most effective construction method for drilled shafts under the high phreatic surface can be a challenging task that requires effective communication between the design and construction teams. Slurry placement, temporary casing, and permanent casing are the three most commonly used installation techniques to ensure the stability of the drilled hole before casting the concrete. Each one of these methods has its implications on the installation and performance of the drilled piers. Drilled shafts were designed to support a fire wall for an Energy project in Central Texas. The subsurface consisted of interlayers of sands and clays of varying shear strengths. The design recommended that the shafts be installed with temporary casing or slurry displacement due to the anticipated groundwater seepage through granular soils. During the foundation construction, it was very difficult to maintain the stability of the hole, and the contractor requested to install the shafts using permanent casings. Therefore, the foundation design was modified to ensure that the cased shafts achieve the required load capacity. Effective and continuous communications between the owner, contractor and design team during field shaft installations to mitigate the unforeseen challenges helped the team to successfully complete the project.

Keywords: construction challenges, deep foundations, drilled shafts, loose sands underwater table, permanent casing

Procedia PDF Downloads 162
2280 Interventions for Children with Autism Using Interactive Technologies

Authors: Maria Hopkins, Sarah Koch, Fred Biasini

Abstract:

Autism is lifelong disorder that affects one out of every 110 Americans. The deficits that accompany Autism Spectrum Disorders (ASD), such as abnormal behaviors and social incompetence, often make it extremely difficult for these individuals to gain functional independence from caregivers. These long-term implications necessitate an immediate effort to improve social skills among children with an ASD. Any technology that could teach individuals with ASD necessary social skills would not only be invaluable for the individuals affected, but could also effect a massive saving to society in treatment programs. The overall purpose of the first study was to develop, implement, and evaluate an avatar tutor for social skills training in children with ASD. “Face Say” was developed as a colorful computer program that contains several different activities designed to teach children specific social skills, such as eye gaze, joint attention, and facial recognition. The children with ASD were asked to attend to FaceSay or a control painting computer game for six weeks. Children with ASD who received the training had an increase in emotion recognition, F(1, 48) = 23.04, p < 0.001 (adjusted Ms 8.70 and 6.79, respectively) compared to the control group. In addition, children who received the FaceSay training had higher post-test scored in facial recognition, F(1, 48) = 5.09, p < 0.05 (adjusted Ms: 38.11 and 33.37, respectively) compared to controls. The findings provide information about the benefits of computer-based training for children with ASD. Recent research suggests the value of also using socially assistive robots with children who have an ASD. Researchers investigating robots as tools for therapy in ASD have reported increased engagement, increased levels of attention, and novel social behaviors when robots are part of the social interaction. The overall goal of the second study was to develop a social robot designed to teach children specific social skills such as emotion recognition. The robot is approachable, with both an animal-like appearance and features of a human face (i.e., eyes, eyebrows, mouth). The feasibility of the robot is being investigated in children ages 7-12 to explore whether the social robot is capable of forming different facial expressions to accurately display emotions similar to those observed in the human face. The findings of this study will be used to create a potentially effective and cost efficient therapy for improving the cognitive-emotional skills of children with autism. Implications and study findings using the robot as an intervention tool will be discussed.

Keywords: autism, intervention, technology, emotions

Procedia PDF Downloads 348
2279 Alternative Biocides to Reduce Algal Fouling in Seawater Industrial Cooling Towers

Authors: Mohammed Al-Bloushi, Sanghyun Jeong, Torove Leiknes

Abstract:

Biofouling in the open recirculating cooling water systems may cause biological corrosion, which can reduce the performance, increase the energy consummation and lower heat exchange efficiencies of the cooling tower. Seawater cooling towers are prone to biofouling due to the presences of organic and inorganic compounds in the seawater. The availability of organic and inorganic nutrients, along with sunlight and continuous aeration of the cooling tower contributes to an environment that is ideal for microbial growth. Various microorganisms (algae, fungi, and bacteria) can grow in a cooling tower system under certain environmental conditions. The most commonly being used method to control the biofouling in the cooling tower is the addition of biocides such as chlorination. In this study, algae containing diatom and green algae were added to the cooling tower basin, and its viability was monitored in the recirculating cooling seawater loop as well as in the cooling tower basin. Continuous addition of biocides was employed in pilot-scale seawater cooling towers, and it was operated continuously for 2 months. Three different types of oxidizing biocides, namely chlorine, chlorine dioxide and ozone, were tested. The results showed that all biocides were effective in keeping the biological growth to the minimum regardless of algal addition. Amongst the biocides, ozone could reduce 99% of total live cells of bacteria and algae, followed by chlorine dioxide at 97%, while the conventional chlorine showed only 89% reduction in the bioactivities.

Keywords: algae, biocide, biofouling, seawater cooling tower

Procedia PDF Downloads 214
2278 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 289
2277 Tagging a corpus of Media Interviews with Diplomats: Challenges and Solutions

Authors: Roberta Facchinetti, Sara Corrizzato, Silvia Cavalieri

Abstract:

Increasing interconnection between data digitalization and linguistic investigation has given rise to unprecedented potentialities and challenges for corpus linguists, who need to master IT tools for data analysis and text processing, as well as to develop techniques for efficient and reliable annotation in specific mark-up languages that encode documents in a format that is both human and machine-readable. In the present paper, the challenges emerging from the compilation of a linguistic corpus will be taken into consideration, focusing on the English language in particular. To do so, the case study of the InterDiplo corpus will be illustrated. The corpus, currently under development at the University of Verona (Italy), represents a novelty in terms both of the data included and of the tag set used for its annotation. The corpus covers media interviews and debates with diplomats and international operators conversing in English with journalists who do not share the same lingua-cultural background as their interviewees. To date, this appears to be the first tagged corpus of international institutional spoken discourse and will be an important database not only for linguists interested in corpus analysis but also for experts operating in international relations. In the present paper, special attention will be dedicated to the structural mark-up, parts of speech annotation, and tagging of discursive traits, that are the innovational parts of the project being the result of a thorough study to find the best solution to suit the analytical needs of the data. Several aspects will be addressed, with special attention to the tagging of the speakers’ identity, the communicative events, and anthropophagic. Prominence will be given to the annotation of question/answer exchanges to investigate the interlocutors’ choices and how such choices impact communication. Indeed, the automated identification of questions, in relation to the expected answers, is functional to understand how interviewers elicit information as well as how interviewees provide their answers to fulfill their respective communicative aims. A detailed description of the aforementioned elements will be given using the InterDiplo-Covid19 pilot corpus. The data yielded by our preliminary analysis of the data will highlight the viable solutions found in the construction of the corpus in terms of XML conversion, metadata definition, tagging system, and discursive-pragmatic annotation to be included via Oxygen.

Keywords: spoken corpus, diplomats’ interviews, tagging system, discursive-pragmatic annotation, english linguistics

Procedia PDF Downloads 156
2276 Computer Simulation to Investigate Magnetic and Wave-Absorbing Properties of Iron Nanoparticles

Authors: Chuan-Wen Liu, Min-Hsien Liu, Chung-Chieh Tai, Bing-Cheng Kuo, Cheng-Lung Chen, Huazhen Shen

Abstract:

A recent surge in research on magnetic radar absorbing materials (RAMs) has presented researchers with new opportunities and challenges. This study was performed to gain a better understanding of the wave-absorbing phenomenon of magnetic RAMs. First, we hypothesized that the absorbing phenomenon is dependent on the particle shape. Using the Material Studio program and the micro-dot magnetic dipoles (MDMD) method, we obtained results from magnetic RAMs to support this hypothesis. The total MDMD energy of disk-like iron particles was greater than that of spherical iron particles. In addition, the particulate aggregation phenomenon decreases the wave-absorbance, according to both experiments and computational data. To conclude, this study may be of importance in terms of explaining the wave- absorbing characteristic of magnetic RAMs. Combining molecular dynamics simulation results and the theory of magnetization of magnetic dots, we investigated the magnetic properties of iron materials with different particle shapes and degrees of aggregation under external magnetic fields. The MDMD of the materials under magnetic fields of various strengths were simulated. Our results suggested that disk-like iron particles had a better magnetization than spherical iron particles. This result could be correlated with the magnetic wave- absorbing property of iron material.

Keywords: wave-absorbing property, magnetic material, micro-dot magnetic dipole, particulate aggregation

Procedia PDF Downloads 462
2275 An Impregnated Active Layer Mode of Solution Combustion Synthesis as a Tool for the Solution Combustion Mechanism Investigation

Authors: Zhanna Yermekova, Sergey Roslyakov

Abstract:

Solution combustion synthesis (SCS) is the unique method which multiple times has proved itself as an effective and efficient approach for the versatile synthesis of a variety of materials. It has significant advantages such as relatively simple handling process, high rates of product synthesis, mixing of the precursors on a molecular level, and fabrication of the nanoproducts as a result. Nowadays, an overwhelming majority of solution combustion investigations performed through the volume combustion synthesis (VCS) where the entire liquid precursor is heated until the combustion self-initiates throughout the volume. Less amount of the experiments devoted to the steady-state self-propagating mode of SCS. Under the beforementioned regime, the precursor solution is dried until the gel-like media, and later on, the gel substance is locally ignited. In such a case, a combustion wave propagates in a self-sustaining mode as in conventional solid combustion synthesis. Even less attention is given to the impregnated active layer (IAL) mode of solution combustion. An IAL approach to the synthesis is implying that the solution combustion of the precursors should be initiated on the surface of the third chemical or inside the third substance. This work is aiming to emphasize an underestimated role of the impregnated active layer mode of the solution combustion synthesis for the fundamental studies of the combustion mechanisms. It also serves the purpose of popularizing the technical terms and clarifying the difference between them. In order to do so, the solution combustion synthesis of γ-FeNi (PDF#47-1417) alloy has been accomplished within short (seconds) one-step reaction of metal precursors with hexamethylenetetramine (HTMA) fuel. An idea of the special role of the Ni in a process of alloy formation was suggested and confirmed with the particularly organized set of experiments. The first set of experiments were conducted in a conventional steady-state self-propagating mode of SCS. An alloy was synthesized as a single monophasic product. In two other experiments, the synthesis was divided into two independent processes which are possible under the IAL mode of solution combustion. The sequence of the process was changed according to the equations which are describing an Experiment A and B below: Experiment A: Step 1. Fe(NO₃)₃*9H₂O + HMTA = FeO + gas products; Step 2. FeO + Ni(NO₃)₂*6H₂O + HMTA = Ni + FeO + gas products; Experiment B: Step 1. Ni(NO₃)₂*6H₂O + HMTA = Ni + gas products; Step 2. Ni + Fe(NO₃)₃*9H₂O + HMTA = Fe₃Ni₂+ traces (Ni + FeO). Based on the IAL experiment results, one can see that combustion of the Fe(NO₃)₃9H₂O on the surface of the Ni is leading to the alloy formation while presence of the already formed FeO does not affect the Ni(NO₃)₂*6H₂O + HMTA reaction in any way and Ni is the main product of the synthesis.

Keywords: alloy, hexamethylenetetramine, impregnated active layer mode, mechanism, solution combustion synthesis

Procedia PDF Downloads 104
2274 Effect of Reynolds Number on Wall-normal Turbulence Intensity in a Smooth and Rough Open Channel Using both Outer and Inner Scaling

Authors: Md Abdullah Al Faruque, Ram Balachandar

Abstract:

Sudden change of bed condition is frequent in open channel flow. Change of bed condition affects the turbulence characteristics in both streamwise and wall-normal direction. Understanding the turbulence intensity in open channel flow is of vital importance to the modeling of sediment transport and resuspension, bed formation, entrainment, and the exchange of energy and momentum. A comprehensive study was carried out to understand the extent of the effect of Reynolds number and bed roughness on different turbulence characteristics in an open channel flow. Four different bed conditions (impervious smooth bed, impervious continuous rough bed, pervious rough sand bed, and impervious distributed roughness) and two different Reynolds numbers were adopted for this cause. The effect of bed roughness on different turbulence characteristics is seen to be prevalent for most of the flow depth. Effect of Reynolds number on different turbulence characteristics is also evident for flow over different bed, but the extent varies on bed condition. Although the same sand grain is used to create the different rough bed conditions, the difference in turbulence characteristics is an indication that specific geometry of the roughness has an influence on turbulence characteristics. Roughness increases the contribution of the extreme turbulent events which produces very large instantaneous Reynolds shear stress and can potentially influence the sediment transport, resuspension of pollutant from bed and alter the nutrient composition, which eventually affect the sustainability of benthic organisms.

Keywords: open channel flow, Reynolds Number, roughness, turbulence

Procedia PDF Downloads 381
2273 Designing Modified Nanocarriers Containing Selenium Nanoparticles Extracted from the Lactobacillus acidophilus and Their Anticancer Properties

Authors: Mahnoosh Aliahmadi, Akbar Esmaeili

Abstract:

This study synthesized new modified imaging nanocapsules (NCs) of gallium@deferoxamine/folic acid/chitosan/polyaniline/polyvinyl alcohol (Ga@DFA/FA/CS/PANI/PVA) containing Morus nigra extract by selenium nanoparticles prepared from Lactobacillus acidophilus. Se nanoparticles were then deposited on (Ga@DFA/FA/CS/PANI/PVA) using the impregnation method. The modified contrast agents were mixed with M. nigra extract, and their antibacterial activities were investigated by applying them to L929 cell lines. The influence of variable factors including surfactant, solvent, aqueous phase, pH, buffer, minimum Inhibitory concentration (MIC), minimum bactericidal concentration (MBC), cytotoxicity on cancer cells, antibiotic, antibiogram, release and loading, stirring effect, the concentration of nanoparticle, olive oil, and thermotical methods was investigated. The structure and morphology of the synthesized contrast agents were characterized by zeta potential sizer analysis (ZPS), X-Ray diffraction (XRD), Fourier-transform infrared (FT-IR), and energy-dispersive X-ray (EDX), ultraviolet-visible (UV-Vis) spectra, and scanning electron microscope (SEM). The experimental section was conducted and monitored by response surface methods (RSM) and MTT conversion assay. Antibiogram testing of NCs on Pseudomonas aeruginosa bacteria was successful, and the MIC=2 factor was obtained with a less harmful effect.

Keywords: imaging contrast agent, nanoparticles, response surface method, Lactobacillus acidophilus, selenium

Procedia PDF Downloads 51
2272 Shades of Violence – Risks of Male Violence Exposure for Mental and Somatic-Disorders and Risk-Taking Behavior: A Prevalence Study

Authors: Dana Cassandra Winkler, Delia Leiding, Rene Bergs, Franziska Kaiser, Ramona Kirchhart, Ute Habel

Abstract:

Background: Violence is a multidimensional phenomenon, affecting people of every age, socio-economic status and gender. Nevertheless, most studies primarily focus on men perpetrating women. Aim of the present study is to identify the likelihood of mental and somatic disorders and risk-taking behavior in male violence affected. In addition, the relationship between age of violence experience and the risk for health-related problems was analyzed. Method: On the basis of current evidence, a questionnaire was developed focusing on demographic background, health status, risk-taking behavior, and active and passive violence exposure. In total, 5221 males (Mean: 56,1 years, SD: 17,6) were consulted. To account for the time of violence experience in an efficient way, age clusters ‘0-12 years’, ‘13-20 years’, ‘21-35 years’, ‘36-65 years’ and ‘over 65 years’ were defined. A binary logistic regression was calculated to reveal differences in violence-affected and non-violence affected males regarding health and risk-taking factors. Males who experienced violence on a daily/ almost daily basis vs. males who reported violence occurrence once/ several times a month/ year were compared with respect to health factors and risk-taking behavior. Data of males, who indicated active and passive violence exposure, were analyzed by a chi²-analysis, to investigate a possible relation between the age of victimization and violence perpetration. Findings: Results imply that general violence experience, independent of active and passive violence exposure increases the likelihood in favor of somatic-, psychosomatic- and mental disorders as well as risk-taking behavior in males. Experiencing violence on a daily or almost daily basis in childhood and adolescence may serve as a predictor for increased health problems and risk-taking behavior. Furthermore, the violence experience and perpetration occur significantly within the same age cluster. This underlines the importance of a near-term intervention to minimize the risk, that victims become perpetrators later. Conclusion: The present study reveals predictors concerning health risk factors as well as risk-taking behavior in males with violence exposure. The results of this study may underscore the benefit of intervention and regular health care approaches in violence-affected males and underline the importance of acknowledging the overlap of violence experience and perpetration for further research.

Keywords: health disease, male, mental health, prevalence, risk-taking behavior, violence

Procedia PDF Downloads 187
2271 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics

Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund

Abstract:

The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.

Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer

Procedia PDF Downloads 108
2270 CRISPR-Mediated Genome Editing for Yield Enhancement in Tomato

Authors: Aswini M. S.

Abstract:

Tomato (Solanum lycopersicum L.) is one of the most significant vegetable crops in terms of its economic benefits. Both fresh and processed tomatoes are consumed. Tomatoes have a limited genetic base, which makes breeding extremely challenging. Plant breeding has become much simpler and more effective with genome editing tools of CRISPR and CRISPR-associated 9 protein (CRISPR/Cas9), which address the problems with traditional breeding, chemical/physical mutagenesis, and transgenics. With the use of CRISPR/Cas9, a number of tomato traits have been functionally distinguished and edited. These traits include plant architecture as well as flower characters (leaf, flower, male sterility, and parthenocarpy), fruit ripening, quality and nutrition (lycopene, carotenoid, GABA, TSS, and shelf-life), disease resistance (late blight, TYLCV, and powdery mildew), tolerance to abiotic stress (heat, drought, and salinity) and resistance to herbicides. This study explores the potential of CRISPR/Cas9 genome editing for enhancing yield in tomato plants. The study utilized the CRISPR/Cas9 genome editing technology to functionally edit various traits in tomatoes. The de novo domestication of elite features from wild cousins to cultivated tomatoes and vice versa has been demonstrated by the introgression of CRISPR/Cas9. The CycB (Lycopene beta someri) gene-mediated Cas9 editing increased the lycopene content in tomato. Also, Cas9-mediated editing of the AGL6 (Agamous-like 6) gene resulted in parthenocarpic fruit development under heat-stress conditions. The advent of CRISPR/Cas has rendered it possible to use digital resources for single guide RNA design and multiplexing, cloning (such as Golden Gate cloning, GoldenBraid, etc.), creating robust CRISPR/Cas constructs, and implementing effective transformation protocols like the Agrobacterium and DNA free protoplast method for Cas9-gRNAs ribonucleoproteins (RNPs) complex. Additionally, homologous recombination (HR)-based gene knock-in (HKI) via geminivirus replicon and base/prime editing (Target-AID technology) remains possible. Hence, CRISPR/Cas facilitates fast and efficient breeding in the improvement of tomatoes.

Keywords: CRISPR-Cas, biotic and abiotic stress, flower and fruit traits, genome editing, polygenic trait, tomato and trait introgression

Procedia PDF Downloads 39
2269 Postoperative Emergence Delirium in Children: An Incomprehensible Scenario For Parents’

Authors: Jenny Ringblom, Marie Proczkowska, Laura Korhonen, Ingrid Wåhlin

Abstract:

Background: Emergence delirium is a well-known behaviour of perceptual disturbances that may occur after general anaesthesia in children. Children with emergence delirium are often confused; they cry, are involuntarily physically active and are almost impossible to console. The prevalence varies considerably between about 13% and 53%. Research has mainly focused on how different medication accents affect the incidence of emergence delirium, but less is known about parents’ experiences of emergence delirium during the recovery process. Aim: The aim of this study was to describe parents’ experiences and reflections during their child's emergence delirium behaviour when recovering from anaesthesia. Method: The study has a qualitative design, and the data has been analyzed using thematic analysis. A total of 16 parents were interviewed at two county hospitals in Sweden. Results: When the parents reunited with their child at the recovering unit, they felt as if they were encountering an incomprehensible scenario. When watching their child demonstrating emergence delirium, they experienced fear and insecurity and had feelings of powerlessness and guilt. Information and previous experience turned out to offer relief and being seen by the healthcare staff when they, in their vulnerability, failed to reach or console their child gave hope and energy. Conclusion: Emergence delirium must be extensively considered in children undergoing general anaesthesia. Healthcare staff needs to be aware of the parental difficulties it may cause. There is also important to know what parents experience as relieving, such as receiving information and when staff members are being available, responsive and supportive during the wake-up period.

Keywords: emergence delirium, experiences, pediatrics, parents, postoperative care

Procedia PDF Downloads 102
2268 A Homogenized Mechanical Model of Carbon Nanotubes/Polymer Composite with Interface Debonding

Authors: Wenya Shu, Ilinca Stanciulescu

Abstract:

Carbon nanotubes (CNTs) possess attractive properties, such as high stiffness and strength, and high thermal and electrical conductivities, making them promising filler in multifunctional nanocomposites. Although CNTs can be efficient reinforcements, the expected level of mechanical performance of CNT-polymers is not often reached in practice due to the poor mechanical behavior of the CNT-polymer interfaces. It is believed that the interactions of CNT and polymer mainly result from the Van der Waals force. The interface debonding is a fracture and delamination phenomenon. Thus, the cohesive zone modeling (CZM) is deemed to give good capture of the interface behavior. The detailed, cohesive zone modeling provides an option to consider the CNT-matrix interactions, but brings difficulties in mesh generation and also leads to high computational costs. Homogenized models that smear the fibers in the ground matrix and treat the material as homogeneous are studied in many researches to simplify simulations. But based on the perfect interface assumption, the traditional homogenized model obtained by mixing rules severely overestimates the stiffness of the composite, even comparing with the result of the CZM with artificially very strong interface. A mechanical model that can take into account the interface debonding and achieve comparable accuracy to the CZM is thus essential. The present study first investigates the CNT-matrix interactions by employing cohesive zone modeling. Three different coupled CZM laws, i.e., bilinear, exponential and polynomial, are considered. These studies indicate that the shapes of the CZM constitutive laws chosen do not influence significantly the simulations of interface debonding. Assuming a bilinear traction-separation relationship, the debonding process of single CNT in the matrix is divided into three phases and described by differential equations. The analytical solutions corresponding to these phases are derived. A homogenized model is then developed by introducing a parameter characterizing interface sliding into the mixing theory. The proposed mechanical model is implemented in FEAP8.5 as a user material. The accuracy and limitations of the model are discussed through several numerical examples. The CZM simulations in this study reveal important factors in the modeling of CNT-matrix interactions. The analytical solutions and proposed homogenized model provide alternative methods to efficiently investigate the mechanical behaviors of CNT/polymer composites.

Keywords: carbon nanotube, cohesive zone modeling, homogenized model, interface debonding

Procedia PDF Downloads 98
2267 Malachite Ore Treatment with Typical Ammonium Salts and Its Mechanism to Promote the Flotation Performance

Authors: Ayman M. Ibrahim, Jinpeng Cai, Peilun Shen, Dianwen Liu

Abstract:

The difference in promoting sulfurization between different ammonium salts and its anion's effect on the sulfurization of the malachite surface was systematically studied. Therefore, this study takes malachite, a typical copper oxide mineral, as the research object, field emission scanning electron microscopy and energy-dispersive X-ray analysis (FESEM‒EDS), X-ray photoelectron spectroscopy (XPS), and other analytical and testing methods, as well as pure mineral flotation experiments, were carried out to examine the superiority of the ammonium salts as the sulfurizing reagent of malachite at the microscopic level. Additionally, the promoting effects of ammonium sulfate and ammonium phosphate on the malachite sulfurization of xanthate-flotation were compared systematically from the microstructure of sulfurized products, elemental composition, chemical state of characteristic elements, and hydrophobicity surface evolution. The FESEM and AFM results presented that after being pre-treated with ammonium salts, the adhesion of sulfurized products formed on the mineral surface was denser; thus, the flake radial dimension product was significantly greater. For malachite sulfurization flotation, the impact of ammonium phosphate in promoting sulfurization is weaker than ammonium sulfate. The reason may be that hydrolyzing phosphate consumes a substantial quantity of H+ in the solution, which hastens the formation of the copper-sulfur products, decreasing the adhesion stability of copper-sulfur species on the malachite surface.

Keywords: sulfurization flotation, adsorption characteristics, malachite, hydrophobicity

Procedia PDF Downloads 36
2266 Computationally Efficient Electrochemical-Thermal Li-Ion Cell Model for Battery Management System

Authors: Sangwoo Han, Saeed Khaleghi Rahimian, Ying Liu

Abstract:

Vehicle electrification is gaining momentum, and many car manufacturers promise to deliver more electric vehicle (EV) models to consumers in the coming years. In controlling the battery pack, the battery management system (BMS) must maintain optimal battery performance while ensuring the safety of a battery pack. Tasks related to battery performance include determining state-of-charge (SOC), state-of-power (SOP), state-of-health (SOH), cell balancing, and battery charging. Safety related functions include making sure cells operate within specified, static and dynamic voltage window and temperature range, derating power, detecting faulty cells, and warning the user if necessary. The BMS often utilizes an RC circuit model to model a Li-ion cell because of its robustness and low computation cost among other benefits. Because an equivalent circuit model such as the RC model is not a physics-based model, it can never be a prognostic model to predict battery state-of-health and avoid any safety risk even before it occurs. A physics-based Li-ion cell model, on the other hand, is more capable at the expense of computation cost. To avoid the high computation cost associated with a full-order model, many researchers have demonstrated the use of a single particle model (SPM) for BMS applications. One drawback associated with the single particle modeling approach is that it forces to use the average current density in the calculation. The SPM would be appropriate for simulating drive cycles where there is insufficient time to develop a significant current distribution within an electrode. However, under a continuous or high-pulse electrical load, the model may fail to predict cell voltage or Li⁺ plating potential. To overcome this issue, a multi-particle reduced-order model is proposed here. The use of multiple particles combined with either linear or nonlinear charge-transfer reaction kinetics enables to capture current density distribution within an electrode under any type of electrical load. To maintain computational complexity like that of an SPM, governing equations are solved sequentially to minimize iterative solving processes. Furthermore, the model is validated against a full-order model implemented in COMSOL Multiphysics.

Keywords: battery management system, physics-based li-ion cell model, reduced-order model, single-particle and multi-particle model

Procedia PDF Downloads 81
2265 Influence of Densification Process and Material Properties on Final Briquettes Quality from FastGrowing Willows

Authors: Peter Križan, Juraj Beniak, Ľubomír Šooš, Miloš Matúš

Abstract:

Biomass treatment through densification is very suitable and important technology before its effective energy recovery. Densification process of biomass is significantly influenced by various technological and also material parameters which are ultimately reflected on the final solid Biofuels quality. The paper deals with the experimental research of the relationship between technological and material parameters during densification of fast-growing trees, roundly fast-rowing willow. The main goal of presented experimental research is to determine the relationship between pressing pressure raw material fraction size from a final briquettes density point of view. Experimental research was realized by single-axis densification. The impact of fraction size with interaction of pressing pressure and stabilization time on the quality properties of briquettes was determined. These parameters interaction affects the final solid biofuels (briquettes) quality. From briquettes production point of view and also from densification machines constructions point of view is very important to know about mutual interaction of these parameters on final briquettes quality. The experimental findings presented here are showing the importance of mentioned parameters during the densification process.

Keywords: briquettes density, densification, fraction size, pressing pressure, stabilization time

Procedia PDF Downloads 331
2264 Modeling of Gas Extraction from a Partially Gas-Saturated Porous Gas Hydrate Reservoir with Respect to Thermal Interactions with Surrounding Rocks

Authors: Angelina Chiglintseva, Vladislav Shagapov

Abstract:

We know from the geological data that quite sufficient gas reserves are concentrated in hydrates that occur on the Earth and on the ocean floor. Therefore, the development of these sources of energy and the storage of large reserves of gas hydrates is an acute global problem. An advanced technology for utilizing gas is to store it in a gas-hydrate state. Under natural conditions, storage facilities can be established, e.g., in underground reservoirs, where quite large volumes of gas can be conserved compared with reservoirs of pure gas. An analysis of the available experimental data of the kinetics and the mechanism of the gas-hydrate formation process shows the self-conservation effect that allows gas to be stored at negative temperatures and low values of pressures of up to several atmospheres. A theoretical model has been constructed for the gas-hydrate reservoir that represents a unique natural chemical reactor, and the principal possibility of the full extraction of gas from a hydrate due to the thermal reserves of the reservoirs themselves and the surrounding rocks has been analyzed. The influence exerted on the evolution of a gas hydrate reservoir by the reservoir thicknesses and the parameters that determine its initial state (a temperature, pressure, hydrate saturation) has been studied. It has been established that the shortest time of exploitation required by the reservoirs with a thickness of a few meters for the total hydrate decomposition is recorded in the cyclic regime when gas extraction alternated with the subsequent conservation of the gas hydrate deposit. The study was performed by a grant from the Russian Science Foundation (project No.15-11-20022).

Keywords: conservation, equilibrium state, gas hydrate reservoir, rocks

Procedia PDF Downloads 272