Search results for: concentration stresses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5559

Search results for: concentration stresses

5349 Removal of Diesel by Soil Washing Technologies Using a Non-Ionic Surfactant

Authors: Carolina Guatemala, Josefina Barrera

Abstract:

A large number of soils highly polluted with recalcitrant hydrocarbons and the limitation of the current bioremediation methods continue being the drawback for an efficient recuperation of these under safe conditions. In this regard, soil washing by degradable surfactants is an alternative option knowing the capacity of surfactants to desorb oily organic compounds. The aim of this study was the establishment of the washing conditions of a soil polluted with diesel, using a nonionic surfactant. A soil polluted with diesel was used. This was collected near to a polluted railway station zone. The soil was dried at room temperature and sieved to a mesh size 10 for its physicochemical and biological characterization. Washing of the polluted soil was performed with surfactant solutions in a 1:5 ratio (5g of soil per 25 mL of the surfactant solution). This was carried out at 28±1 °C and 150 rpm for 72 hours. The factors tested were the Tween 80 surfactant concentration (1, 2, 5 and 10%) and the treatment time. Residual diesel concentration was determined every 24 h. The soil was of a sandy loam texture with a low concentration of organic matter (3.68%) and conductivity (0.016 dS.m- 1). The soil had a pH of 7.63 which was slightly alkaline and a Total Petroleum Hydrocarbon content (TPH) of 11,600 ± 1058.38 mg/kg. The high TPH content could explain the low microbial count of 1.1105 determined as UFC per gram of dried soil. Within the range of the surfactant concentration tested for washing the polluted soil under study, TPH removal increased proportionally with the surfactant concentration. 5080.8 ± 422.2 ppm (43.8 ± 3.64 %) was the maximal concentration of TPH removed after 72 h of contact with surfactant pollution at 10%. Despite the high percentage of hydrocarbons removed, it is assumed that a higher concentration of these could be removed if the washing process is extended or is carried out by stages. Soil washing through the use of surfactants as a desorbing agent was found to be a viable and effective technology for the rapid recovery of soils highly polluted with recalcitrant hydrocarbons.

Keywords: diesel, hydrocarbons, soil washing, tween 80

Procedia PDF Downloads 114
5348 Construction of Genetic Recombinant Yeasts with High Environmental Tolerance by Accumulation of Trehalose and Detoxication of Aldehyde

Authors: Yun-Chin Chung, Nileema Divate, Gen-Hung Chen, Pei-Ru Huang, Rupesh Divate

Abstract:

Many environmental factors, such as glucose concentration, ethanol, temperature, osmotic pressure and pH, decrease the production rate of ethanol using yeast as a starter. Fermentation starters with high tolerance to various stresses are always demanded for brewing industry. Trehalose, a storage carbohydrate in cell wall of yeast, plays an important role in tolerance of environmental stress by preserving integrity of plasma membrane and stabilizing proteins. Furan aldehydes are toxic to yeast and the growth rate of yeast is significantly reduced if furan aldehydes were present in the fermentation medium. In yeast, aldehyde reductase is involved in the detoxification of reactive aldehydes and consequently the growth of yeast is improved. The aims of this study were to construct a genetic recombinant Saccharomyces cerevisiae or Pichia pastoris with furfural and HMF degrading and high ethanol tolerance capacities. Yeast strains were engineered by genetic recombination for overexpression of trehalose-6-phosphate synthase gene (tps1) and aldehyde reductase gene (ari1). TPS1 gene was cloned from S. cerevisiae by reverse transcription-polymerase chain reaction (RT-PCR) and then ligated with pGAPZαC vector. The constructed vector, pGAPZC-tps1, was transformed to recombinant yeasts strain with overexpression of ari1. The transformants with pGAPZC-tps1-ari1 were generated called STA (S. cerevisiae) and PTA (P. pastoris) with overexpression of tps1, ari1. PCR with tps1-specific primers and western blot with his-tag confirmed the gene insertion and protein expression of tps1 in the transformants, respectively. The neutral trehalase gene (nth1) of STA was successfully deleted and the novel strain STAΔN will be used for further study, including the measurement of trehalose concentration and ethanol, furfural tolerance assay.

Keywords: genetic recombinant, yeast, ethanol tolerance, trehalase, aldehyde reductase

Procedia PDF Downloads 396
5347 Growth of Nitella in Response to Cesium Exposure: Implication for Phytoremediation

Authors: Harun Rashid, Keerthi S. S. Atapaththu, Takashi Asaeda

Abstract:

Cesium (Cs) induced growth and stress response of Nitella were studied after exposure to four concentration of the metal; i.e. 0 (control), 0.001, 0.01, and 0.1 ppm Cs in growth media. Each treatment with three replicates were randomly allocated to 12 glass beakers in a complete randomize design and the experiment was continued for 30 days. At the end of the experiment, shoot length, cesium content, total chlorophyll, and plant stress response were compared. Anti-oxidant enzyme activities (peroxidase, catalase, and ascorbic peroxidase) and the concentration of H2O2 were measured to check plant stress. The longest shoot was found in control treatment (0 ppm Cs) and the shoot length of plants exposed to 0.001 ppm was statistically similar to that of control. Concentration of cesium in plants grown at 0.001, 0.01, and 0.1 ppm were significantly higher than those in control treatments. The antioxidant enzymes activities of plants exposed to cesium were significantly higher than those grown without any Cs (control). An elevated level of H2O2 concentration was also observed in former groups of plants. Further, the reduction in chlorophyll concentration and chlorophyll fluorescence in response to cesium exposure indicated the chronically damaged photosynthetic efficiency in cesium stressed Nitella.

Keywords: antioxidant enzymes, cesium, growth, Nitella, oxidative stress

Procedia PDF Downloads 397
5346 Impacts of CuO, TiO2, SiO2 Nanoparticles on Biological Phosphorus Removal

Authors: H. Shiu, M.S. Lu, Y.P. Tsai

Abstract:

This study explored the impacts of CuO, TiO2, SiO2 nanoparticles on biological phosphorus removal. Experimental results showed that the phosphorus removal ability of phosphorus accumulating organism (PAO) was initially inhibited when CuO nanoparticle concentration was 5 mgl-1. The inhibition of phosphorus removal for 1000 mgl-1 of TiO2 with sunlight was higher than without sunlight case. The inhibition of phosphorus removal began at 500 mgl-1 SiO2 nanoparticle concentration. Inhibition became apparent when SiO2 nanoparticle concentration was up to 1000 mgl-1.

Keywords: nano copper oxide, nano titanium dioxide, nano silica, enhanced biological phosphate removal

Procedia PDF Downloads 355
5345 Management of Fungal Diseases of Onion (Allium cepa L.) by Using Plant Extracts

Authors: Shobha U. Jadhav, R. S. Saler

Abstract:

Onion is most Important Vegetable crop grown throughout the world. Onion suffers from pest and fungal diseases but the fungicides cause pollution and disturb microbial balance of soil. Under integrated fungal disease management programme cost effective and eco- friendly component like plant extract are used to control plant pathogens. Alternaria porri, Fusarium oxysporium, Stemphylium vesicarium are soil borne pathogens of onion. Effect of three different plant extract (Datura metel, Pongamia pinnata, Ipomoea palmata) at five different concentration Viz, 10,25,50,75 and 100 percentage on these pathogens was studied by food poisoning techniquie. Detura metal gave 94.73% growth of Alternaria porri at 10% extract concentraton and 26.31% growth in 100% extract concentration. As compared to Fusarium oxysporium, and Stemphylium vesicarium, Alternaria porri give good inhibitory response. In Pongamia pinnata L. at 10% extract concentration 84.21% growth and at 100% extract concentration 36.84% growth of Stemphylium vesicarium was observed. Stemphylium vesicarium give good in inhibitory response as compared to Alternaria porri and Fusarium oxysporium. Ipomoea palmata in 10% extract concentration 92% growth and in 100% extract concentration 40% growth of Fusarium oxysporium was recorded. Fusarium oxysporium give good inhibitory response as compared to Alternaria porri and, Stemphylium vesicarium.

Keywords: pathogen, onion, plant extract, Allium cepa L.

Procedia PDF Downloads 418
5344 Experimental Study of the Fiber Dispersion of Pulp Liquid Flow in Channels with Application to Papermaking

Authors: Masaru Sumida

Abstract:

This study explored the feasibility of improving the hydraulic headbox of papermaking machines by studying the flow of wood-pulp suspensions behind a flat plate inserted in parallel and convergent channels. Pulp fiber concentrations of the wake downstream of the plate were investigated by flow visualization and optical measurements. Changes in the time-averaged and fluctuation of the fiber concentration along the flow direction were examined. In addition, the control of the flow characteristics in the two channels was investigated. The behaviors of the pulp fibers and the wake flow were found to be strongly related to the flow states in the upstream passages partitioned by the plate. The distribution of the fiber concentration was complex because of the formation of a thin water layer on the plate and the generation of Karman’s vortices at the trailing edge of the plate. Compared with the flow in the parallel channel, fluctuations in the fiber concentration decreased in the convergent channel. However, at low flow velocities, the convergent channel has a weak effect on equilibrating the time-averaged fiber concentration. This shows that a rectangular trailing edge cannot adequately disperse pulp suspensions; thus, at low flow velocities, a convergent channel is ineffective in ensuring uniform fiber concentration.

Keywords: fiber dispersion, headbox, pulp liquid, wake flow

Procedia PDF Downloads 357
5343 An Experimental Study of Low Concentration CO₂ Capture from Regenerative Thermal Oxidation Tail Gas in Rotating Packed Bed

Authors: Dang HuynhMinhTam, Kuang-Cong Lu, Yi-Hung Chen, Zhung-Yu Lin, Cheng-Siang Cheng

Abstract:

Carbon capture, utilization, and storage (CCUS) technology become a predominant technique to mitigate carbon dioxide and achieve net-zero emissions goals. This research targets to continuously capture the low concentration CO₂ from the tail gas of the regenerative thermal oxidizer (RTO) in the high technology industry. A rotating packed bed (RPB) reactor is investigated to capture the efficiency of CO₂ using a mixture of NaOH/Na₂CO₃ solutions to simulate the real absorbed solution. On a lab scale, semi-batch experiments of continuous gas flow and circulating absorbent solution are conducted to find the optimal parameters and are then examined in a continuous operation. In the semi-batch tests, the carbon capture efficiency and pH variation in the conditions of a low concentration CO₂ (about 1.13 vol%), the NaOH concentration of 1 wt% or 2 wt% mixed with 14 wt% Na₂CO₃, the rotating speed (600, 900, 1200 rpm), the gas-liquid ratio (100, 200, and 400), and the temperature of absorbent solution of 40 ºC are studied. The CO₂ capture efficiency significantly increases with higher rotating speed and smaller gas-liquid ratio, respectively, while the difference between the NaOH concentration of 1 wt% and 2 wt% is relatively small. The maximum capture efficiency is close to 80% in the conditions of the NaOH concentration of 1 wt%, the G/L ratio of 100, and the rotating speed of 1200 rpm within the first 5 minutes. Furthermore, the continuous operation based on similar conditions also demonstrates the steady efficiency of the carbon capture of around 80%.

Keywords: carbon dioxide capture, regenerative thermal oxidizer, rotating packed bed, sodium hydroxide

Procedia PDF Downloads 25
5342 Structural Optimization of Shell and Arched Structures

Authors: Mitchell Gohnert, Ryan Bradley

Abstract:

This paper reviews some fundamental concepts of structural optimization of shell structures, which is based on the type of materials used in construction and the shape of the structure. The first step of structural optimization is to break down all internal forces into fundamental principal stresses. The stress patterns direct our selection of structural shapes and the most appropriate type of construction material. In our selection of materials, it is essential to understand that all construction materials have flaws, or micro-cracks, which reduce the capacity of the material. Because of material defects, many construction materials perform significantly better when subjected to compressive forces. Structures are also more efficient if bending moments are eliminated; thus, it is essential to select natural structures, or structures where the natural flow of stress follows the axis of the shell. The shape of the structure, therefore, has a profound effect on stress levels. Stress may be reduced dramatically by simply changing the shape. Catenary, triangular and linear shapes are the fundamental structural forms to achieve optimal stress flow. If the natural flow of stress matches the shape of the structures, the most optimal shape is determined.

Keywords: arches, economy of stresses, material strength, optimization, shells

Procedia PDF Downloads 66
5341 Effect of Out-Of-Plane Deformation on Relaxation Method of Stress Concentration in a Plate with a Circular Hole

Authors: Shingo Murakami, Shinichi Enoki

Abstract:

In structures, stress concentration is a factor of fatigue fracture. Basically, the stress concentration is a phenomenon that should be avoided. However, it is difficult to avoid the stress concentration. Therefore, relaxation of the stress concentration is important. The stress concentration arises from notches and circular holes. There is a relaxation method that a composite patch covers a notch and a circular hole. This relaxation method is used to repair aerial wings, but it is not systematized. Composites are more expensive than single materials. Accordingly, we propose the relaxation method that a single material patch covers a notch and a circular hole, and aim to systematize this relaxation method. We performed FEA (Finite Element Analysis) about an object by using a three-dimensional FEA model. The object was that a patch adheres to a plate with a circular hole. And, a uniaxial tensile load acts on the patched plate with a circular hole. In the three-dimensional FEA model, it is not easy to model the adhesion layer. Basically, the yield stress of the adhesive is smaller than that of adherents. Accordingly, the adhesion layer gets to plastic deformation earlier than the adherents under the yield load of adherents. Therefore, we propose the three-dimensional FEA model which is applied a nonlinear elastic region to the adhesion layer. The nonlinear elastic region was calculated by a bilinear approximation. We compared the analysis results with the tensile test results to confirm whether the analysis model has usefulness. As a result, the analysis results agreed with the tensile test results. And, we confirmed that the analysis model has usefulness. As a result that the three-dimensional FEA model was used to the analysis, it was confirmed that an out-of-plane deformation occurred to the patched plate with a circular hole. The out-of-plane deformation causes stress increase of the patched plate with a circular hole. Therefore, we investigated that the out-of-plane deformation affects relaxation of the stress concentration in the plate with a circular hole on this relaxation method. As a result, it was confirmed that the out-of-plane deformation inhibits relaxation of the stress concentration on the plate with a circular hole.

Keywords: stress concentration, patch, out-of-plane deformation, Finite Element Analysis

Procedia PDF Downloads 276
5340 Evidence of Natural Selection Footprints among Some African Chicken Breeds and Village Ecotypes

Authors: Ahmed Elbeltagy, Francesca Bertolini, Damarius Fleming, Angelica Van Goor, Chris Ashwell, Carl Schmidt, Donald Kugonza, Susan Lamont, Max Rothschild

Abstract:

The major factor in shaping genomic variation of the African indigenous rural chicken is likely natural selection drives the development genetic footprints in the chicken genomes. To investigate such a hypothesis of a selection footprint, a total of 292 birds were randomly sampled from three indigenous ecotypes from East Africa (Uganda, Rwanda) and North Africa (Egypt) and two registered Egyptian breeds (Fayoumi and Dandarawi), and from the synthetic Kuroiler breed. Samples were genotyped using the Affymetrix 600K Axiom® Array. A total of 526,652 SNPs were utilized in the downstream analysis after quality control measures. The intra-population runs of homozygosity (ROH) that were consensuses in > 50% of individuals of an ecotype or > 75% of a breed were studied. To identify inter-population differentiation due to genetic structure, FST was calculated for North- vs. East- African populations in addition to population-pairwise combinations for overlapping windows (500Kb with an overlap of 250Kb). A total of 28,563 ROH were determined and were classified into three length categories. ROH and Fst detected sweeps were identified on several autosomes. Several genes in these regions are likely to be related to adaptation to local environmental stresses that include high altitude, diseases resistance, poor nutrition, oxidative and heat stresses and were linked to gene ontology terms (GO) related to immune response, oxygen consumption and heme binding, carbohydrate metabolism, oxidation-reduction, and behavior. Results indicated a possible effect of natural selection forces on shaping genomic structure for adaptation to local environmental stresses.

Keywords: African Chicken, runs of homozygosity, FST, selection footprints

Procedia PDF Downloads 292
5339 Fire Characteristic of Commercial Retardant Flame Polycarbonate under Different Oxygen Concentration: Ignition Time and Heat Blockage

Authors: Xuelin Zhang, Shouxiang Lu, Changhai Li

Abstract:

The commercial retardant flame polycarbonate samples as the main high speed train interior carriage material with different thicknesses were investigated in Fire Propagation Apparatus with different external heat fluxes under different oxygen concentration from 12% to 40% to study the fire characteristics and quantitatively analyze the ignition time, mass loss rate and heat blockage. The additives of commercial retardant flame polycarbonate were intumescent and maintained a steady height before ignition when heated. The results showed the transformed ignition time (1/t_ig)ⁿ increased linearly with external flux under different oxygen concentration after deducting the heat blockage due to pyrolysis products, the mass loss rate was taken on linearly with external heat fluxes and the slop of the fitting line for mass loss rate and external heat fluxes decreased with the enhanced oxygen concentration and the heat blockage independent on external heat fluxes rose with oxygen concentration increasing. The inquired data as the input of the fire simulation model was the most important to be used to evaluate the fire risk of commercial retardant flame polycarbonate.

Keywords: ignition time, mass loss rate, heat blockage, fire characteristic

Procedia PDF Downloads 257
5338 Safe Limits Concentration of Ammonia at Work Environments through CD8 Expression in Rats

Authors: Abdul Rohim Tualeka, Erick Caravan K. Betekeneng, Ramdhoni Zuhro, Reko Triyono, M. Sahri

Abstract:

It has been widely reported incidence caused by acute and chronic effects of exposure to ammonia in the working environment in Indonesia, but ammonia concentration was found to be below the threshold value. The purpose of this study was to determine the safety limit concentration of ammonia in the working environment through the expression of CD8 as a reference for determining the threshold value of ammonia in the working environment. This research was a laboratory experimental with post test only control group design using experimental animals as subjects experiment. From homogeneity test results indicated that the weight of white rats exposed and control groups had a homogeneous variant with a significant level of p (0.701) > α (0.05). Description of the average breathing rate is 0.0013 m³/h. Average weight rats based group listed exposure is 0.1405 kg. From the calculation IRS CD8, CD8 highest score in the doses contained 0.0154, with the location of the highest dose of ammonia without any effect on the lungs of rats is 0.0154 mg/kg body weight of mice. Safe Human Dose (SHD) ammonia is 0.002 mg/kg body weight workers. The conclusion of this study is the safety limit concentration of ammonia gas in the working environment of 0,025 ppm.

Keywords: ammonia, CD8, rats, safe limits concentration

Procedia PDF Downloads 186
5337 Relationship of Indoor and Outdoor Levels of Black Carbon in an Urban Environment

Authors: Daria Pashneva, Julija Pauraite, Agne Minderyte, Vadimas Dudoitis, Lina Davuliene, Kristina Plauskaite, Inga Garbariene, Steigvile Bycenkiene

Abstract:

Black carbon (BC) has received particular attention around the world, not only for its impact on regional and global climate change but also for its impact on air quality and public health. In order to study the relationship between indoor and outdoor BC concentrations, studies were carried out in Vilnius, Lithuania. The studies are aimed at determining the relationship of concentrations, identifying dependencies during the day and week with a further opportunity to analyze the key factors affecting the indoor concentration of BC. In this context, indoor and outdoor continuous real-time measurements of optical BC-related light absorption by aerosol particles were carried out during the cold season (from October to December 2020). The measurement venue was an office located in an urban background environment. Equivalent black carbon (eBC) mass concentration was measured by an Aethalometer (Magee Scientific, model AE-31). The optical transmission of carbonaceous aerosol particles was measured sequentially at seven wavelengths (λ= 370, 470, 520, 590, 660, 880, and 950 nm), where the eBC mass concentration was derived from the light absorption coefficient (σab) at 880 nm wavelength. The diurnal indoor eBC mass concentration was found to vary in the range from 0.02 to 0.08 µgm⁻³, while the outdoor eBC mass concentration - from 0.34 to 0.99 µgm⁻³. Diurnal variations of eBC mass concentration outdoor vs. indoor showed an increased contribution during 10:00 and 12:00 AM (GMT+2), with the highest indoor eBC mass concentration of 0.14µgm⁻³. An indoor/outdoor eBC ratio (I/O) was below one throughout the entire measurement period. The weekend levels of eBC mass concentration were lower than in weekdays for indoor and outdoor for 33% and 28% respectively. Hourly mean mass concentrations of eBC for weekdays and weekends show diurnal cycles, which could be explained by the periodicity of traffic intensity and heating activities. The results show a moderate influence of outdoor eBC emissions on the indoor eBC level.

Keywords: black carbon, climate change, indoor air quality, I/O ratio

Procedia PDF Downloads 162
5336 Total Lipid of Mutant Synechococcus sp. PCC 7002

Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin

Abstract:

Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30°C and 1% NaNO3.

Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. (PCC 7002), specific growth rate

Procedia PDF Downloads 306
5335 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties

Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni

Abstract:

Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.

Keywords: multiscale model, tropocollagen, fibrils, ligaments commas

Procedia PDF Downloads 128
5334 Growth and Yield Response of an Indian Wheat Cultivar (HD 2967) to Ozone and Water Stress in Open-Top Chambers with Emphasis on Its Antioxidant Status, Photosynthesis and Nutrient Allocation

Authors: Annesha Ghosh, S. B. Agrawal

Abstract:

Agricultural sector is facing a serious threat due to climate change and exacerbation of different atmospheric pollutants. Tropospheric ozone (O₃) is considered as a dynamic air pollutant imposing substantial phytotoxicity to natural vegetations and agriculture worldwide. Naturally, plants are exposed to different environmental factors and their interactions. Amongst such interactions, studies related to O₃ and water stress are still rare. In the present experiment, wheat cultivar HD2967 were grown in open top chambers (OTC) under two O₃ concentration; ambient O₃ level (A) and elevated O₃ (E) (ambient + 20 ppb O₃) along with two different water supply; well-watered (W) and 50% water stress conditions (WS), with an aim to assess the individual and interactive effect of two most prevailing stress factors in Indo-Gangetic Plains of India. Exposure to elevated O₃ dose caused early senescence symptoms and reduction in growth and biomass of the test cultivar. The adversity was more pronounced under the combined effect of EWS. Significant reduction of stomatal conductance (gs) and assimilation rate were observed under combined stress condition compared to the control (AW). However, plants grown under individual stress conditions displayed higher gs, biomass, and antioxidant defense mechanism compared to the plants grown under the presence of combined stresses. Higher induction in most of the enzyme activities of catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), peroxidase (POD) and superoxide dismutase (SOD) was displayed by HD 2967 under EW while, under the presence of combined stresses (EWS), a moderate increment of APX and CAT activity was observed only at its vegetative phase. Furthermore, variations in nutrient uptake and redistribution to different plants parts were also observed in the present study. Reduction in water availability has checked nutrient uptake (N, K, P, Ca, Cu, Mg, Zn) in above-ground parts (leaf) and below-ground parts (root). On the other hand, carbon (C) accumulation with subsequent C-N ratio was observed to be higher in the leaves under EWS. Such major nutrient check and limitation in carbon fixation due to lower gs under combined stress conditions might have weakened the defense mechanisms of the test cultivar. Grain yield was significantly reduced under EWS followed by AWS and EW as compared to their control, exhibiting an additive effect on the grain yield.

Keywords: antioxidants, open-top chambers, ozone, water stress, wheat, yield

Procedia PDF Downloads 87
5333 Study on Concentration and Temperature Measurement with 760 nm Diode Laser in Combustion System Using Tunable Diode Laser Absorption Spectroscopy

Authors: Miyeon Yoo, Sewon Kim, Changyeop Lee

Abstract:

It is important to measure the internal temperature or temperature distribution precisely in combustion system to increase energy efficiency and reduce the pollutants. Especially in case of large combustion systems such as power plant boiler and reheating furnace of steel making process, it is very difficult to measure those physical properties in detail. Tunable diode laser absorption spectroscopy measurement and analysis can be attractive method to overcome the difficulty. In this paper, TDLAS methods are used to measure the oxygen concentration and temperature distribution in various experimental conditions.

Keywords: tunable diode laser absorption Spectroscopy, temperature distribution, gas concentration

Procedia PDF Downloads 356
5332 Effect of Hydrogen Peroxide Concentration Produced by Cold Atmospheric Plasma on Inactivation of Escherichia Coli in Water

Authors: Zohreh Rashmei

Abstract:

Introduction: Plasma inactivation is one of the emerging technologies in biomedical field and has been applied to the inactivation of microorganisms in water. The inactivation effect has been attributed to the presence of active plasma species, i.e. OH, O, O3, H2O2, UV and electric fields, generated by the discharge of plasma. Material and Method: To evaluate germicidal effects of plasma, the electric spark discharge device was used. After the effect of the plasma samples were collected for culture medium agar plate count. In addition to biological experiments, the concentration of hydrogen peroxide was also measured. Results: The results showed that Plasma is able to inactivate a high concentration of E. coli. After a short period of plasma radiation on the surface of water, the amount log8 reduced the microbial load. Starting plasma radiation on the surface of the water, the measurements show of production and increasing the amount of hydrogen peroxide in water. So that at the end of the experiment, the concentration of hydrogen peroxide to about 100 mg / l increased. Conclusion: Increasing the concentration of hydrogen peroxide is directly related to the reduction of microbial load. The results of E. coli culture in media containing certain concentrations of H2O2 showed that E. coli can not to grow in a medium containing more than 2/5 mg/l of H2O2. Surely we can say that the main cause of killing bacteria is a molecule of H2O2.

Keywords: plasma, hydrogen peroxide, disinfection, E. coli

Procedia PDF Downloads 111
5331 Estimation of Cholesterol Level in Different Brands of Vegetable Oils in Iraq

Authors: Mohammed Idaan Hassan Al-Majidi

Abstract:

An analysis of twenty one assorted brands of vegetable oils in Babylon Iraq, reveals varying levels of cholesterol content. Cholesterol was found to be present in most of the oil brands sampled using three standard methods. Cholesterol was detected in seventeen of the vegetable oil brands with concentration of less than 1 mg/ml while seven of the oil brands had cholesterol concentrations ranging between 1-4 mg/ml. Low iodine values were obtained in four of the vegetable oil brands and three of them had high acid values. High performance liquid chromatography (HPLC) confirmed the presence of cholesterol at varying concentrations in all the oil brands and gave the lowest detectable cholesterol values in all the oil brands. The Laser brand made from rapeseed had the highest cholesterol concentration of 3.2 mg/ml while Grand brand made from groundnuts had the least concentration (0.12 mg/ml) of cholesterol using HPLC analysis. Leibermann-Burchard method showed that Gino brand from palm kernel had the least concentration of cholesterol (3.86 mg/ml ±0.032) and the highest concentration of 3.996 mg/ml ±0.0404 was obtained in Sesame seed oil brand. This report is important in view of health implications of cholesterol in our diets. Consequently, we have been able to show that there is no cholesterol free oil in the market as shown on the vegetable oil brand labels. Therefore, companies producing and marketing vegetable oils are enjoined to desist from misleading the public by labeling their products as “cholesterol free”. They should indicate the amount of cholesterol present in the vegetable oil, no matter how small the quantity may be.

Keywords: vegetable oils, heart diseases, leibermann-burchard, cholesterol

Procedia PDF Downloads 223
5330 Optimization of Chitosan Membrane Production Parameters for Zinc Ion Adsorption

Authors: Peter O. Osifo, Hein W. J. P. Neomagus, Hein V. D. Merwe

Abstract:

Chitosan materials from different sources of raw materials were characterized in order to determine optimal preparation conditions and parameters for membrane production. The membrane parameters such as molecular weight, viscosity, and degree of deacetylation were used to evaluate the membrane performance for zinc ion adsorption. The molecular weight of the chitosan was found to influence the viscosity of the chitosan/acetic acid solution. An increase in molecular weight (60000-400000 kg.kmol-1) of the chitosan resulted in a higher viscosity (0.05-0.65 Pa.s) of the chitosan/acetic acid solution. The effect of the degree of deacetylation on the viscosity is not significant. The effect of the membrane production parameters (chitosan- and acetic acid concentration) on the viscosity is mainly determined by the chitosan concentration. For higher chitosan concentrations, a membrane with a better adsorption capacity was obtained. The membrane adsorption capacity increases from 20-130 mg Zn per gram of wet membrane for an increase in chitosan concentration from 2-7 mass %. Chitosan concentrations below 2 and above 7.5 mass % produced membranes that lack good mechanical properties. The optimum manufacturing conditions including chitosan concentration, acetic acid concentration, sodium hydroxide concentration and crosslinking for chitosan membranes within the workable range were defined by the criteria of adsorption capacity and flux. The adsorption increases (50-120 mg.g-1) as the acetic acid concentration increases (1-7 mass %). The sodium hydroxide concentration seems not to have a large effect on the adsorption characteristics of the membrane however, a maximum was reached at a concentration of 5 mass %. The adsorption capacity per gram of wet membrane strongly increases with the chitosan concentration in the acetic acid solution but remains constant per gram of dry chitosan. The optimum solution for membrane production consists of 7 mass % chitosan and 4 mass % acetic acid in de-ionised water. The sodium hydroxide concentration for phase inversion is at optimum at 5 mass %. The optimum cross-linking time was determined to be 6 hours (Percentage crosslinking of 18%). As the cross-linking time increases the adsorption of the zinc decreases (150-50 mg.g-1) in the time range of 0 to 12 hours. After a crosslinking time of 12 hours, the adsorption capacity remains constant. This trend is comparable to the effect on flux through the membrane. The flux decreases (10-3 L.m-2.hr-1) with an increase in crosslinking time range of 0 to 12 hours and reaches a constant minimum after 12 hours.

Keywords: chitosan, membrane, waste water, heavy metal ions, adsorption

Procedia PDF Downloads 354
5329 Nitrate Removal from Drinking Water Using Modified Natural Nanozeolite

Authors: T. Meftah, M. M. Zerafat, S. Sabbaghi

Abstract:

Nitrate compounds are considered as groundwater contaminants, the concentration of which has been growing in these resources during recent years. As a result, it seems necessary to use effective methods to remove nitrate from water and wastewater. Adsorption process is generally considered more economical in water treatment. Natural clinoptilolite zeolite is one of the best absorbents because of its high capacity and low cost.In this research, we are going to modify zeolite nanoparticles as a chemical modification. Zeolite nanoparticles have been modified with a kind of organosilane, like 3-aminopropyltriethoxysilane. The advantage of this modification method, in comparison with physical modification, is the good stability in various environmental conditions. In this research, absorbent properties have been analyzed by PSA, FTIR and CHN elemental analysis. Also, nitrate adsorption by modified nanoparticles was examined by UV-Vis spectroscopy. There would be 〖NH〗_2 groups on the zeolite surface as a result of organosilane modification. In order to adsorption of nitrate, we need to convert 〖NH〗_2 groups to〖NH〗_4^+, that it is possible in acidic condition. As a result, the best nitrate removal is possible in the lowest concentration and pH. We obtained 80.12% nitrate removal in pH=3 and 50 mg⁄l nitrate concentration and 4 g⁄l absorbent optimum concentration.

Keywords: nitrate removal, zeolite, surface modification, organosilane

Procedia PDF Downloads 462
5328 Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems

Authors: Yisau Adelaja Odusote, Olakanmi Felix Akinto

Abstract:

The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed.

Keywords: homo-pairs, interchange energy, enthalpy, entropy, Cd-Ga, Cd-In

Procedia PDF Downloads 411
5327 Limit State Evaluation of Bridge According to Peak Ground Acceleration

Authors: Minho Kwon, Jeonghee Lim, Yeongseok Jeong, Jongyoon Moon, Donghoon Shin, Kiyoung Kim

Abstract:

In the past, the criteria and procedures for the design of concrete structures were mainly based on the stresses allowed for structural components. However, although the frequency of earthquakes has increased and the risk has increased recently, it has been difficult to determine the safety factor for earthquakes in the safety assessment of structures based on allowable stresses. Recently, limit state design method has been introduced for reinforced concrete structures, and limit state-based approach has been recognized as a more effective technique for seismic design. Therefore, in this study, the limit state of the bridge, which is a structure requiring higher stability against earthquakes, was evaluated. The finite element program LS-DYNA and twenty ground motion were used for time history analysis. The fracture caused by tensile and compression of the pier were set to the limit state. In the concrete tensile fracture, the limit state arrival rate was 100% at peak ground acceleration 0.4g. In the concrete compression fracture, the limit state arrival rate was 100% at peak ground acceleration 0.2g.

Keywords: allowable stress, limit state, safety factor, peak ground acceleration

Procedia PDF Downloads 181
5326 FEM for Stress Reduction by Optimal Auxiliary Holes in a Loaded Plate with Elliptical Hole

Authors: Basavaraj R. Endigeri, S. G. Sarganachari

Abstract:

Steel is widely used in machine parts, structural equipment and many other applications. In many steel structural elements, holes of different shapes and orientations are made with a view to satisfy the design requirements. The presence of holes in steel elements creates stress concentration, which eventually reduce the mechanical strength of the structure. Therefore, it is of great importance to investigate the state of stress around the holes for the safety and properties design of such elements. By literature survey, it is known that till date, there is no analytical solution to reduce the stress concentration by providing auxiliary holes at a definite location and radii in a steel plate. The numerical method can be used to determine the optimum location and radii of auxiliary holes. In the present work plate with an elliptical hole, for a steel material subjected to uniaxial load is analyzed and the effect of stress concentration is graphically represented .The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 11.0 is used to analyse the steel plate. The analysis is carried out using a plane 42 element. Further the ANSYS optimization model is used to determine the location and radii for optimum values of auxiliary hole to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. The results of this study are in the form of the graphs for determining the locations and diameter of optimal auxiliary holes. The graph of stress concentration v/s central hole diameter to plate width ratio. The Finite Elements results of the study indicates that the stress concentration effect of central elliptical hole in an uniaxial loaded plate can be reduced by introducing auxiliary holes on either side of the central circular hole.

Keywords: finite element method, optimization, stress concentration factor, auxiliary holes

Procedia PDF Downloads 422
5325 The Effect of Flow Discharge on Suspended Solids Transport in the Nakhon-Nayok River

Authors: Apichote Urantinon

Abstract:

Suspended solid is one factor for water quality in open channel. It affects various problems in waterways that could cause high sedimentation in the channels, leading to shallowness in the river. It is composed of the organic and inorganic materials which can settle down anywhere along the open channel. Thus, depends on the solid amount and its composition, it occupies the water body capacity and causes the water quality problems simultaneously. However, the existing of suspended solid in the water column depends on the flow discharge (Q) and secchi depth (sec). This study aims to examine the effect of flow discharge (Q) and secchi depth (sec) on the suspended solids concentration in open channel and attempts to establish the formula that represents the relationship between flow discharges (Q), secchi depth (sec) and suspended solid concentration. The field samplings have been conducted in the Nakhon-Nayok river, during the wet season, September 15-16, 2014 and dry season, March 10-11, 2015. The samplings with five different locations are measured. The discharge has been measured onsite by floating technics, the secchi depth has been measured by secchi disc and the water samples have been collected at the center of the water column. They have been analyzed in the laboratory for the suspended solids concentration. The results demonstrate that the decrease in suspended solids concentration is dependent on flow discharge, since the natural processes in erosion consists of routing of eroded material. Finally, an empirical equation to compute the suspended solids concentration that shows an equation (SScon = 9.852 (sec)-0.759 Q0.0355) is developed. The calculated suspended solids concentration, with uses of empirical formula, show good agreement with the record data as the R2 = 0.831. Therefore, the empirical formula in this study is clearly verified.

Keywords: suspended solids concentration, the Nakhon-Nayok river, secchi depth, floating technics

Procedia PDF Downloads 226
5324 Photoluminescence in Cerium Doped Fluorides Prepared by Slow Precipitation Method

Authors: Aarti Muley, S. J. Dhoblae

Abstract:

CaF₂ and BaF₂ doped with cerium were prepared by slow precipitation method with different molar concentration and different cerium concentration. Both the samples were also prepared by direct method for comparison. The XRD of BaF₂:Ce shows that it crystallizes to BCC structure. The peak matches with JCPDS file no. 4-0452. Also, The XRD pattern of CaF₂:Ce matches well with the JCPDS file number 75- 0363 and crystallized to BCC phase. In CaF₂, the double-humped photoluminescence spectra were observed at 320nm and 340nm when the sample was prepared by the direct precipitation method, and the ratio between these peaks is unity. However when the sample prepared by slow precipitation method the double-humped emission spectra of CaF₂:Ce was observed at 323nm and 340nm. The ratio between these peaks is 0.58, and the optimum concentration is obtained for 0.1 molar CaF₂ with Ce concentration 1.5%. When the cerium concentration is increased by 2% the peak at 323nm vanishes, and the emission was observed at 342nm with the shoulder at 360nm. In this case, the intensity reduces drastically. The excitation is observed at 305nm with a small peak at 254nm. One molar BaF₂ doped with 0.1% of cerium was synthesized by direct precipitation method gives double humped spectra at 308nm and 320nm, when it is prepared with slow precipitation method with the cerium concentration 0.05m%, 0.1m%, 0.15m%, 0.2m% the broad emission is observed around 325nm with the shoulder at 350nm. The excitation spectra are narrow and observed at 290nm. As the percentage of cerium is increased further again shift is observed. The emission spectra were observed at 360nm with a small peak at 330nm. The phenomenon of shifting of emission spectra at low concentration of cerium can directly relate with the particle size and reported for nanomaterials also.

Keywords: calcium fluoride, barium fluoride, photoluminescence, slow precipitation method

Procedia PDF Downloads 82
5323 The Contribution of Experience Scapes to Building Resilience in Communities: A Comparative Case Study Approach in Germany and the Netherlands

Authors: Jorn Fricke, Frans Melissen

Abstract:

Citizens in urban areas are prone to increased levels of stress due to urbanization, inadequate and overburdened infrastructure and services, and environmental degradation. Moreover, communities are fragile and subject to shocks and stresses through various social and political processes. A loss of (a sense of) community is often seen as related to increasing political and civic disintegration. Feelings of community can manifest themselves in various ways but underlying all these manifestations is the need for trust between people. One of the main drivers of trust between individuals is (shared) experiences. It is these shared experiences that may play an important role in building resilience, i.e., the ability of a community and its members to adapt to and deal with stresses, as well as ensure the ongoing development of a community. So far, experience design, as a discipline and academic field, has mainly focused on designing products or services. However, people-to-people experiences are the ones that play a pivotal role in building inclusiveness, safety, and resilience in communities. These experiences represent challenging objects of design as they develop in an interactive space of spontaneity, serendipity, and uniqueness that is based on intuition, freedom of expression, and interaction. Therefore, there is a need for research to identify which elements are required in designing the social and physical environment (or ‘experience scape’) to increase the chance for people-to-people experiences to be successful and what elements are required for these experiences to help in building resilience in urban communities that can resist shocks and stresses. By means of a comparative case study approach in urban areas in Germany and the Netherlands, using a range of qualitative research methods such as in-depth interviews, focus groups, participant observation, storytelling techniques, and life stories, this research identifies relevant actors and their roles in creating building blocks of optimal experience scrapes for building resilience in communities.

Keywords: community development, experiences, experience scapes, resilience

Procedia PDF Downloads 156
5322 Effect of Polymer Concentration on the Rheological Properties of Polyelectrolyte Solutions

Authors: Khaled Benyounes, Abderrahmane Mellak

Abstract:

The rheology of aqueous solutions of polyelectrolyte (polyanionic cellulose, PAC) at high molecular weight was investigated using a controlled stress rheometer. Several rheological measurements; viscosity measurements, creep compliance tests at a constant low shear stress and oscillation experiments have been performed. The concentrations ranged by weight from 0.01 to 2.5% of PAC. It was found that the aqueous solutions of PAC do not exhibit a yield stress, the flow curves of PAC over a wide range of shear rate (0 to 1000 s-1) could be described by the cross model and the Williamson models. The critical concentrations of polymer c* and c** have been estimated. The dynamic moduli, i.e., storage modulus (G’) and loss modulus (G’’) of the polymer have been determined at frequency sweep from 0.01 to 10 Hz. At polymer concentration above 1%, the modulus G’ is superior to G’’. The relationships between the dynamic modulus and concentration of polymer have been established. The creep-recovery experiments demonstrated that polymer solutions show important viscoelastic properties of system water-PAC when the concentration of the polymer increases.

Keywords: polyanionic cellulose, viscosity, creep, oscillation, cross model

Procedia PDF Downloads 297
5321 Investigation the Polluting Effect of Heavy Elements on Underground Water in Behbahan Plain, South West Zagros

Authors: Zohreh Marbooti, Rezvan Khavari

Abstract:

Groundwater as an essential part of natural resources seems to be an important issue in environmental engineering, so preservation and purification of it can have a critical value for any community. This paper investigates the concentration of elements of Pb, Cd, As, Se. For ground water in Behbahan (a city on south west of Iran), to this purpose a group of 30 wells were studied to examine the concentration of the elements of Pb, Cd, As, Se, and also to determine PH, EC, TDS, temperature and the ions of HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+ for the wells. Results of the analyses show that the concentration of the elements of Pb, As and, Cd in 33,13,56 percent of the wells respectively and Se in all the samples were greater than normal range of WHO. Since there is a low correlation between Pb and major ions of (HCO32-, SO42-, Cl-, Na+, Mg2+, Ca2+, K+) it can be revealed that Pb overconcentration caused by human contamination. Relative great correlation between Se and the ions showed that Se derived from Gypsum and Dolomit. The big correlation between As and major cations and onions, imply that As can originate from dissolution and liquidation of mineral evaporation in the zone. The high rate of Cadmium concentration in urban sewagewater is due to the small industries, workshops and, mills wastewater.

Keywords: heavy elements, underground water, pollution, waste water

Procedia PDF Downloads 534
5320 The Instablity of TetM Gene Encode Tetracycline Resistance Gene in Lactobacillus casei FNCC 0090

Authors: Sarah Devi Silvian, Hanna Shobrina Iqomatul Haq, Fara Cholidatun Nabila, Agustin Krisna Wardani

Abstract:

Bacteria ability to survive in antibiotic is controlled by the presence of gene that encodes the antibiotic resistance protein. The instability of the antibiotic resistance gene can be observed by exposing the bacteria under the lethal dose of antibiotic. Low concentration of antibiotic can induce mutation, which may take a role in bacterial adaptation through the antibiotic concentration. Lactobacillus casei FNCC 0090 is one of the probiotic bacteria that has an ability to survive in tetracycline by expressing the tetM gene. The aims of this study are to observe the possibilities of mutation happened in L.casei FNCC 0090 by exposing in sub-lethal dose of tetracycline and also observing the instability of the tetM gene by comparing the sequence between the wild type and mutant. L.casei FNCC 0090 has a lethal dose in 60 µg/ml, low concentration is applied to induce the mutation, the range from 10 µg/ml, 15 µg/ml, 30 µg/ml, 45 µg/ml, and 50 µg/ml. L.casei FNCC 0090 is exposed to the low concentration from lowest to the highest concentration to induce the adaptation. Plasmid is isolated from the highest concentration culture which is 50 µg/ml by using modified alkali lysis method with the addition of lysozyme. The tetM gene is isolated by using PCR (Polymerase Chain Reaction) method, then PCR amplicon is purified and sequenced. Sequencing is done on both samples, wild type and mutant. Both sequences are compared and the mutations can be traced in the presence of nucleotides changes. The changing of the nucleotides means that the tetM gene is instable.

Keywords: L. casei FNCC 0090, probiotic, tetM, tetracycline

Procedia PDF Downloads 160