Search results for: computational electromagnetic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2393

Search results for: computational electromagnetic

2303 Induction Heating and Electromagnetic Stirring of Bi-Phasic Metal/Glass Molten Bath for Mixed Nuclear Waste Treatment

Authors: P. Charvin, R. Bourrou, F. Lemont, C. Lafon, A. Russello

Abstract:

For nuclear waste treatment and confinement, a specific IN-CAN melting module based on low-frequency induction heating have been designed. The frequency of 50Hz has been chosen to improve penetration length through metal. In this design, the liquid metal, strongly stirred by electromagnetic effects, presents shape of a dome caused by strong Laplace forces developing in the bulk of bath. Because of a lower density, the glass phase is located above the metal phase and is heated and stirred by metal through interface. Electric parameters (Intensity, frequency) give precious information about metal load and composition (resistivity of alloy) through impedance modification. Then, power supply can be adapted to energy transfer efficiency for suitable process supervision. Modeling of this system allows prediction of metal dome shape (in agreement with experimental measurement with a specific device), glass and metal velocity, heat and motion transfer through interface. MHD modeling is achieved with COMSOL and Fluent. First, a simplified model is used to obtain the shape of the metal dome. Then the shape is fixed to calculate the fluid flow and the thermal part.

Keywords: electromagnetic stirring, induction heating, interface modeling, metal load

Procedia PDF Downloads 236
2302 Influence of 50 Hz, 1m Tesla Electromagnetic Fields on Serum Male Sex Hormones of Male Rats

Authors: Randa M. Mostafa, Y. Moustafa

Abstract:

During our daily life, we are continuously exposed to the extremely low frequency electromagnetic fields (ELF-EMFs) generated by electric appliances. The possible relation between exposure to (ELF-MFs) and adverse health effects has attracted and passed through long debate sessions. Extremely low frequency is a term used to describe radiation frequencies below 300 Hertz (Hz).It is very important for public health because of the widespread use of electrical power at 50-60 Hz in most countries. This study set out to investigate the impact of chronic exposure of male rats to 50- Hz, 1 mTesla (ELF-EMF) of over periods of 1, 2, and 4 weeks on concentration of serum FSH, LH, and testosterone hormones. 60 male albino rats were divided into 6 groups and were continuously exposed to 50-Hz, 1 m Tesla (ELF-EMF) generated by magnetic field chamber for periods of 1, 2, and 4 weeks. For each experimental point, sham treated group was used as a control. Assay of serum testosterone LH, and FSHwere performed. Serum testosterone showed no significant changes. FSH showed significant increase than sham exposed group after 1 week of field exposure. LH showed significant increase than sham exposed group only after 4 weeks of field exposure. A future detailed molecular studies must be carried out to figure out and may be able to explain the possible interactions between ELF-EMF and hypothalamic-pituitary gonadal axis.

Keywords: extremely low frequency electromagnetic fields, testosterone, follicular stimulating hormone, LH

Procedia PDF Downloads 430
2301 Flexible PVC Based Nanocomposites With the Incorporation of Electric and Magnetic Nanofillers for the Shielding Against EMI and Thermal Imaging Signals

Authors: H. M. Fayzan Shakir, Khadija Zubair, Tingkai Zhao

Abstract:

Electromagnetic (EM) waves are being used widely now a days. Cell phone signals, WIFI signals, wireless telecommunications etc everything uses EM waves which then create EM pollution. EM pollution can cause serious effects on both human health and nearby electronic devices. EM waves have electric and magnetic components that disturb the flow of charged particles in both human nervous system and electronic devices. The shielding of both humans and electronic devices are a prime concern today. EM waves can cause headaches, anxiety, suicide and depression, nausea, fatigue and loss of libido in humans and malfunctioning in electronic devices. Polyaniline (PANI) and polypyrrole (PPY) were successfully synthesized using chemical polymerizing using ammonium persulfate and DBSNa as oxidant respectively. Barium ferrites (BaFe) were also prepared using co-precipitation method and calcinated at 10500C for 8h. Nanocomposite thin films with various combinations and compositions of Polyvinylchloride, PANI, PPY and BaFe were prepared. X-ray diffraction technique was first used to confirm the successful fabrication of all nano fillers and particle size analyzer to measure the exact size and scanning electron microscopy is used for the shape. According to Electromagnetic Interference theory, electrical conductivity is the prime property required for the Electromagnetic Interference shielding. 4-probe technique is then used to evaluate DC conductivity of all samples. Samples with high concentration of PPY and PANI exhibit remarkable increased electrical conductivity due to fabrication of interconnected network structure inside the Polyvinylchloride matrix that is also confirmed by SEM analysis. Less than 1% transmission was observed in whole NIR region (700 nm – 2500 nm). Also, less than -80 dB Electromagnetic Interference shielding effectiveness was observed in microwave region (0.1 GHz to 20 GHz).

Keywords: nanocomposites, polymers, EMI shielding, thermal imaging

Procedia PDF Downloads 73
2300 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications

Authors: S. Koul, Joshua Adedamola

Abstract:

Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.

Keywords: ICP, dopant, EMI, shielding

Procedia PDF Downloads 42
2299 The Light-Effect in Cylindrical Quantum Wire with an Infinite Potential for the Case of Electrons: Optical Phonon Scattering

Authors: Hoang Van Ngoc, Nguyen Vu Nhan, Nguyen Quang Bau

Abstract:

The light-effect in cylindrical quantum wire with an infinite potential for the case of electrons, optical phonon scattering, is studied based on the quantum kinetic equation. The density of the direct current in a cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field, and an intense laser field is calculated. Analytic expressions for the density of the direct current are studied as a function of the frequency of the laser radiation field, the frequency of the linearly polarized electromagnetic wave, the temperature of system, and the size of quantum wire. The density of the direct current in cylindrical quantum wire with an infinite potential for the case of electrons – optical phonon scattering is nonlinearly dependent on the frequency of the linearly polarized electromagnetic wave. The analytic expressions are numerically evaluated and plotted for a specific quantum wire, GaAs/GaAsAl.

Keywords: the light–effect, cylindrical quantum wire with an infinite potential, the density of the direct current, electrons-optical phonon scattering

Procedia PDF Downloads 307
2298 Modeling and Simulation for 3D Eddy Current Testing in Conducting Materials

Authors: S. Bennoud, M. Zergoug

Abstract:

The numerical simulation of electromagnetic interactions is still a challenging problem, especially in problems that result in fully three dimensional mathematical models. The goal of this work is to use mathematical modeling to characterize the reliability and capacity of eddy current technique to detect and characterize defects embedded in aeronautical in-service pieces. The finite element method is used for describing the eddy current technique in a mathematical model by the prediction of the eddy current interaction with defects. However, this model is an approximation of the full Maxwell equations. In this study, the analysis of the problem is based on a three dimensional finite element model that computes directly the electromagnetic field distortions due to defects.

Keywords: eddy current, finite element method, non destructive testing, numerical simulations

Procedia PDF Downloads 413
2297 Application of Ground-Penetrating Radar in Environmental Hazards

Authors: Kambiz Teimour Najad

Abstract:

The basic methodology of GPR involves the use of a transmitting antenna to send electromagnetic waves into the subsurface, which then bounce back to the surface and are detected by a receiving antenna. The transmitter and receiver antennas are typically placed on the ground surface and moved across the area of interest to create a profile of the subsurface. The GPR system consists of a control unit that powers the antennas and records the data, as well as a display unit that shows the results of the survey. The control unit sends a pulse of electromagnetic energy into the ground, which propagates through the soil or rock until it encounters a change in material or structure. When the electromagnetic wave encounters a buried object or structure, some of the energy is reflected back to the surface and detected by the receiving antenna. The GPR data is then processed using specialized software that analyzes the amplitude and travel time of the reflected waves. By interpreting the data, GPR can provide information on the depth, location, and nature of subsurface features and structures. GPR has several advantages over other geophysical survey methods, including its ability to provide high-resolution images of the subsurface and its non-invasive nature, which minimizes disruption to the site. However, the effectiveness of GPR depends on several factors, including the type of soil or rock, the depth of the features being investigated, and the frequency of the electromagnetic waves used. In environmental hazard assessments, GPR can be used to detect buried structures, such as underground storage tanks, pipelines, or utilities, which may pose a risk of contamination to the surrounding soil or groundwater. GPR can also be used to assess soil stability by identifying areas of subsurface voids or sinkholes, which can lead to the collapse of the surface. Additionally, GPR can be used to map the extent and movement of groundwater contamination, which is critical in designing effective remediation strategies. the methodology of GPR in environmental hazard assessments involves the use of electromagnetic waves to create high of the subsurface, which are then analyzed to provide information on the depth, location, and nature of subsurface features and structures. This information is critical in identifying and mitigating environmental hazards, and the non-invasive nature of GPR makes it a valuable tool in this field.

Keywords: GPR, hazard, landslide, rock fall, contamination

Procedia PDF Downloads 48
2296 Electromagnetic Assessment of Submarine Power Cable Degradation Using Finite Element Method and Sensitivity Analysis

Authors: N. Boutra, N. Ravot, J. Benoit, O. Picon

Abstract:

Submarine power cables used for offshore wind farms electric energy distribution and transmission are subject to numerous threats. Some of the risks are associated with transport, installation and operating in harsh marine environment. This paper describes the feasibility of an electromagnetic low frequency sensing technique for submarine power cable failure prediction. The impact of a structural damage shape and material variability on the induced electric field is evaluated. The analysis is performed by modeling the cable using the finite element method, we use sensitivity analysis in order to identify the main damage characteristics affecting electric field variation. Lastly, we discuss the results obtained.

Keywords: electromagnetism, finite element method, sensitivity analysis, submarine power cables

Procedia PDF Downloads 314
2295 Development of High-Performance Conductive Polybenzoxazine/Graphite-Copper Nanoomposite for Electromagnetic Interference Shielding Applications

Authors: Noureddine Ramdani

Abstract:

In recent years, extensive attention has been given to the study of conductive nanocomposites due to their unique properties, which are dependent on their size and shape. The potential applications of these materials include electromagnetic interference shielding, energy storage, photovoltaics, and others. These outstanding properties have led to increased interest and research in this field. In this work, a conductive poly benzoxazine nanocomposite, PBZ/Gr-Cu, was synthesized through a compression molding technique to achieve a high-performance material suitable for electromagnetic interference (EMI) shielding applications. The microstructure of the nanocomposites was analyzed using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The thermal stability, electrical conductivity, and EMI shielding properties of the nanocomposites were evaluated using thermogravimetric analysis, a four-point probe, and a VNA analyzer, respectively. The TGA results revealed that the thermal stability and electrical conductivity of the nanocomposites were significantly enhanced by the incorporation of Gr/Cu nanoparticles. The nanocomposites exhibited a low percolation threshold of about 3.5 wt.% and an increase in carrier concentration and mobility of the carriers with increasing hybrid nanofiller content, causing the composites to behave as n-type semiconductors. These nanocomposites also displayed a high dielectric constant and a high dissipation factor in the frequency range of 8-12 GHz, resulting in higher EMI shielding effectiveness (SE) of 25-44 dB. These characteristics make them promising candidates for lightweight EMI shielding materials in aerospace and radar evasion applications.

Keywords: polybenzoxazine matrix, conductive nanocomposites, electrical conductivity, EMI shielding

Procedia PDF Downloads 55
2294 Numerical Analysis of 3D Electromagnetic Fields in Annular Induction Plasma

Authors: Abderazak Guettaf

Abstract:

The mathematical models of the physical phenomena interacting in inductive plasma were described by the physics equations of the continuous mediums. A 3D model based on magnetic potential vector and electric scalar potential (A, V) formulation is used. The finished volume method is applied to electromagnetic equation, to obtain the field distribution inside the plasma. The numerical results of the method developed on a basic model designed starting from a real three-dimensional model were exposed. From the mathematical model 3D spreading assumptions and boundary conditions, we evaluated the electric field in the load and we have developed a numerical code made under the MATLAB environment, all verifying the effectiveness and validity of this code.

Keywords: electric field, 3D magnetic potential vector and electric scalar potential (A, V) formulation, finished volumes, annular plasma

Procedia PDF Downloads 465
2293 Denoising Transient Electromagnetic Data

Authors: Lingerew Nebere Kassie, Ping-Yu Chang, Hsin-Hua Huang, , Chaw-Son Chen

Abstract:

Transient electromagnetic (TEM) data plays a crucial role in hydrogeological and environmental applications, providing valuable insights into geological structures and resistivity variations. However, the presence of noise often hinders the interpretation and reliability of these data. Our study addresses this issue by utilizing a FASTSNAP system for the TEM survey, which operates at different modes (low, medium, and high) with continuous adjustments to discretization, gain, and current. We employ a denoising approach that processes the raw data obtained from each acquisition mode to improve signal quality and enhance data reliability. We use a signal-averaging technique for each mode, increasing the signal-to-noise ratio. Additionally, we utilize wavelet transform to suppress noise further while preserving the integrity of the underlying signals. This approach significantly improves the data quality, notably suppressing severe noise at late times. The resulting denoised data exhibits a substantially improved signal-to-noise ratio, leading to increased accuracy in parameter estimation. By effectively denoising TEM data, our study contributes to a more reliable interpretation and analysis of underground structures. Moreover, the proposed denoising approach can be seamlessly integrated into existing ground-based TEM data processing workflows, facilitating the extraction of meaningful information from noisy measurements and enhancing the overall quality and reliability of the acquired data.

Keywords: data quality, signal averaging, transient electromagnetic, wavelet transform

Procedia PDF Downloads 56
2292 Rectenna Modeling Based on MoM-GEC Method for RF Energy Harvesting

Authors: Soulayma Smirani, Mourad Aidi, Taoufik Aguili

Abstract:

Energy harvesting has arisen as a prominent research area for low power delivery to RF devices. Rectennas have become a key element in this technology. In this paper, electromagnetic modeling of a rectenna system is presented. In our approach, a hybrid technique was demonstrated to associate both the method of auxiliary sources (MAS) and MoM-GEC (the method of moments combined with the generalized equivalent circuit technique). Auxiliary sources were used in order to substitute specific electronic devices. Therefore, a simple and controllable model is obtained. Also, it can easily be interconnected to form different topologies of rectenna arrays for more energy harvesting. At last, simulation results show the feasibility and simplicity of the proposed rectenna model with high precision and computation efficiency.

Keywords: computational electromagnetics, MoM-GEC method, rectennas, RF energy harvesting

Procedia PDF Downloads 137
2291 DNA and DNA-Complexes Modified with Electromagnetic Radiation

Authors: Ewelina Nowak, Anna Wisla-Swider, Krzysztof Danel

Abstract:

Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains.

Keywords: biopolymers, deoxyribonucleic acid, ionic liquids, linearly polarized visible light, ultraviolet

Procedia PDF Downloads 189
2290 Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications

Authors: Lincy Stephen, N. Yogesh, G. Vasantharajan, V. Subramanian

Abstract:

This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction.

Keywords: electromagnetic absorber, metamaterial, multi- band, polarization insensitive, wide angle receptive

Procedia PDF Downloads 310
2289 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 74
2288 Architecture of a Preliminary Course on Computational Thinking

Authors: Mintu Philip, Renumol V. G.

Abstract:

An introductory programming course is a major challenge faced in Computing Education. Many of the introductory programming courses fail because student concentrate mainly on writing programs using a programming language rather than involving in problem solving. Computational thinking is a general approach to solve problems. This paper proposes a new preliminary course that aims to develop computational thinking skills in students, which may help them to become good programmers. The proposed course is designed based on the four basic components of computational thinking - abstract thinking, logical thinking, modeling thinking and constructive thinking. In this course, students are engaged in hands-on problem solving activities using a new problem solving model proposed in this paper.

Keywords: computational thinking, computing education, abstraction, constructive thinking, modelling thinking

Procedia PDF Downloads 417
2287 The Solution of the Direct Problem of Electrical Prospecting with Direct Current Under Conditions of Ground Surface Relief

Authors: Balgaisha Mukanova, Tolkyn Mirgalikyzy

Abstract:

Theory of interpretation of electromagnetic fields studied in the electrical prospecting with direct current is mainly developed for the case of a horizontal surface observation. However in practice we often have to work in difficult terrain surface. Conducting interpretation without the influence of topography can cause non-existent anomalies on sections. This raises the problem of studying the impact of different shapes of ground surface relief on the results of electrical prospecting's research. This research examines the numerical solutions of the direct problem of electrical prospecting for two-dimensional and three-dimensional media, taking into account the terrain. The problem is solved using the method of integral equations. The density of secondary currents on the relief surface is obtained.

Keywords: ground surface relief, method of integral equations, numerical method, electromagnetic

Procedia PDF Downloads 334
2286 The MHz Frequency Range EM Induction Device Development and Experimental Study for Low Conductive Objects Detection

Authors: D. Kakulia, L. Shoshiashvili, G. Sapharishvili

Abstract:

The results of the study are related to the direction of plastic mine detection research using electromagnetic induction, the development of appropriate equipment, and the evaluation of expected results. Electromagnetic induction sensing is effectively used in the detection of metal objects in the soil and in the discrimination of unexploded ordnances. Metal objects interact well with a low-frequency alternating magnetic field. Their electromagnetic response can be detected at the low-frequency range even when they are placed in the ground. Detection of plastic things such as plastic mines by electromagnetic induction is associated with difficulties. The interaction of non-conducting bodies or low-conductive objects with a low-frequency alternating magnetic field is very weak. At the high-frequency range where already wave processes take place, the interaction increases. Interactions with other distant objects also increase. A complex interference picture is formed, and extraction of useful information also meets difficulties. Sensing by electromagnetic induction at the intermediate MHz frequency range is the subject of research. The concept of detecting plastic mines in this range can be based on the study of the electromagnetic response of non-conductive cavity in a low-conductivity environment or the detection of small metal components in plastic mines, taking into account constructive features. The detector node based on the amplitude and phase detector 'Analog Devices ad8302' has been developed for experimental studies. The node has two inputs. At one of the inputs, the node receives a sinusoidal signal from the generator, to which a transmitting coil is also connected. The receiver coil is attached to the second input of the node. The additional circuit provides an option to amplify the signal output from the receiver coil by 20 dB. The node has two outputs. The voltages obtained at the output reflect the ratio of the amplitudes and the phase difference of the input harmonic signals. Experimental measurements were performed in different positions of the transmitter and receiver coils at the frequency range 1-20 MHz. Arbitrary/Function Generator Tektronix AFG3052C and the eight-channel high-resolution oscilloscope PICOSCOPE 4824 were used in the experiments. Experimental measurements were also performed with a low-conductive test object. The results of the measurements and comparative analysis show the capabilities of the simple detector node and the prospects for its further development in this direction. The results of the experimental measurements are compared and analyzed with the results of appropriate computer modeling based on the method of auxiliary sources (MAS). The experimental measurements are driven using the MATLAB environment. Acknowledgment -This work was supported by Shota Rustaveli National Science Foundation (SRNSF) (Grant number: NFR 17_523).

Keywords: EM induction sensing, detector, plastic mines, remote sensing

Procedia PDF Downloads 120
2285 Conductivity-Depth Inversion of Large Loop Transient Electromagnetic Sounding Data over Layered Earth Models

Authors: Ravi Ande, Mousumi Hazari

Abstract:

One of the common geophysical techniques for mapping subsurface geo-electrical structures, extensive hydro-geological research, and engineering and environmental geophysics applications is the use of time domain electromagnetic (TDEM)/transient electromagnetic (TEM) soundings. A large transmitter loop for energising the ground and a small receiver loop or magnetometer for recording the transient voltage or magnetic field in the air or on the surface of the earth, with the receiver at the center of the loop or at any random point inside or outside the source loop, make up a large loop TEM system. In general, one can acquire data using one of the configurations with a large loop source, namely, with the receiver at the center point of the loop (central loop method), at an arbitrary in-loop point (in-loop method), coincident with the transmitter loop (coincidence-loop method), and at an arbitrary offset loop point (offset-loop method), respectively. Because of the mathematical simplicity associated with the expressions of EM fields, as compared to the in-loop and offset-loop systems, the central loop system (for ground surveys) and coincident loop system (for ground as well as airborne surveys) have been developed and used extensively for the exploration of mineral and geothermal resources, for mapping contaminated groundwater caused by hazardous waste and thickness of permafrost layer. Because a proper analytical expression for the TEM response over the layered earth model for the large loop TEM system does not exist, the forward problem used in this inversion scheme is first formulated in the frequency domain and then it is transformed in the time domain using Fourier cosine or sine transforms. Using the EMLCLLER algorithm, the forward computation is initially carried out in the frequency domain. As a result, the EMLCLLER modified the forward calculation scheme in NLSTCI to compute frequency domain answers before converting them to the time domain using Fourier Cosine and/or Sine transforms.

Keywords: time domain electromagnetic (TDEM), TEM system, geoelectrical sounding structure, Fourier cosine

Procedia PDF Downloads 63
2284 Exposure Analysis of GSM Base Stations in Industrial Area

Authors: A. D. Usman, W. F. Wan Ahmad, H. H. Danjuma

Abstract:

Exposure due to GSM frequencies is subject of daily debate. Though regulatory bodies provide guidelines for exposure, people still exercise fear on the possible health hazard that may result due to long term usage. In this study, exposure due to electromagnetic field emitted by GSM base stations in industrial areas was investigated. The aimed was to determine whether industrial area exposure is higher as compared to residential as well as compliance with ICNIRP guidelines. Influence of reflection and absorption with respect to inverse square law was also investigated. Measurements from GSM base stations were performed at various distances in far field region. The highest measured peak power densities as well as the calculated values at GSM 1.8 GHz were 6.05 and 90 mW/m2 respectively. This corresponds to 0.07 and 1% of ICNIRP guidelines. The highest peak power densities as well as the calculated values at GSM 0.9 GHz were 11.92 and 49.7 mW/m2 respectively. These values were 0.3 and 1.1% of ICNIRP guidelines.

Keywords: Global System for Mobile Communications (GSM), Electromagnetic Field (EMF), far field, power density, Radiofrequency (RF)

Procedia PDF Downloads 444
2283 An Empirical Study of the Effect of Robot Programming Education on the Computational Thinking of Young Children: The Role of Flowcharts

Authors: Wei Sun, Yan Dong

Abstract:

There is an increasing interest in introducing computational thinking at an early age. Computational thinking, like mathematical thinking, engineering thinking, and scientific thinking, is a kind of analytical thinking. Learning computational thinking skills is not only to improve technological literacy, but also allows learners to equip with practicable skills such as problem-solving skills. As people realize the importance of computational thinking, the field of educational technology faces a problem: how to choose appropriate tools and activities to help students develop computational thinking skills. Robots are gradually becoming a popular teaching tool, as robots provide a tangible way for young children to access to technology, and controlling a robot through programming offers them opportunities to engage in developing computational thinking. This study explores whether the introduction of flowcharts into the robotics programming courses can help children convert natural language into a programming language more easily, and then to better cultivate their computational thinking skills. An experimental study was adopted with a sample of children ages six to seven (N = 16) participated, and a one-meter-tall humanoid robot was used as the teaching tool. Results show that children can master basic programming concepts through robotic courses. Children's computational thinking has been significantly improved. Besides, results suggest that flowcharts do have an impact on young children’s computational thinking skills development, but it only has a significant effect on the "sequencing" and "correspondence" skills. Overall, the study demonstrates that the humanoid robot and flowcharts have qualities that foster young children to learn programming and develop computational thinking skills.

Keywords: robotics, computational thinking, programming, young children, flow chart

Procedia PDF Downloads 117
2282 A Study of Rapid Replication of Square-Microlens Structures

Authors: Ting-Ting Wen, Jung-Ruey Tsai

Abstract:

This paper reports a method for the replication of micro-scale structures. By using electromagnetic force-assisted imprinting system with magnetic soft stamp written square-microlens cavity, a photopolymer square-microlens structures can be rapidly fabricated. Under the proper processing conditions, the polymeric square-microlens structures with feature size of width 100.3um and height 15.2um across a large area can be successfully fabricated. Scanning electron microscopy (SEM) and surface profiler observations confirm that the micro-scale polymer structures are produced without defects or distortion and with good pattern fidelity over a 60x60mm2 area. This technique shows great potential for the efficient replication of the micro-scale structure array at room temperature and with high productivity and low cost.

Keywords: square-microlens structures, electromagnetic force-assisted imprinting, magnetic soft stamp

Procedia PDF Downloads 298
2281 Power Integrity Analysis of Power Delivery System in High Speed Digital FPGA Board

Authors: Anil Kumar Pandey

Abstract:

Power plane noise is the most significant source of signal integrity (SI) issues in a high-speed digital design. In this paper, power integrity (PI) analysis of multiple power planes in a power delivery system of a 12-layer high-speed FPGA board is presented. All 10 power planes of HSD board are analyzed separately by using 3D Electromagnetic based PI solver, then the transient simulation is performed on combined PI data of all planes along with voltage regulator modules (VRMs) and 70 current drawing chips to get the board level power noise coupling on different high-speed signals. De-coupling capacitors are placed between power planes and ground to reduce power noise coupling with signals.

Keywords: power integrity, power-aware signal integrity analysis, electromagnetic simulation, channel simulation

Procedia PDF Downloads 407
2280 Analysis of the Scattered Fields by Dielectric Sphere Inside Different Dielectric Mediums: The Case of the Source and Observation Point Is Reciprocal

Authors: Emi̇ne Avşar Aydin, Nezahat Günenç Tuncel, A. Hami̇t Serbest

Abstract:

The electromagnetic scattering from a canonical structure is an important issue in electromagnetic theory. In this study, the electromagnetic scattering from a dielectric sphere with oblique incidence is investigated. The incident field is considered as a plane wave with H polarized. The scattered and transmitted field expressions with unknown coefficients are written. The unknown coefficients are obtained by using exact boundary conditions. Then, the sphere is considered as having frequency dependent dielectric permittivity. The frequency dependence is shown by Cole-Cole model. The far scattered field expressions are found respect to different incidence angles in the 1-8 GHz frequency range. The observation point is the angular distance of pi from an incident wave. While an incident wave comes with a certain angle, observation point turns from 0 to 360 degrees. According to this, scattered field amplitude is maximum at the location of the incident wave, scattered field amplitude is minimum at the across incident wave. Also, the scattered fields are plotted versus frequency to show frequency-dependence explicitly. Graphics are shown for some incident angles compared with the Harrington's solution. Thus, the results are obtained faster and more reliable with reciprocal rotation. It is expected that when there is another sphere with different properties in the outer sphere, the presence and location of the sphere will be detected faster. In addition, this study leads to use for biomedical applications in the future.

Keywords: scattering, dielectric sphere, oblique incidence, reciprocal rotation

Procedia PDF Downloads 264
2279 Energization of the Ions by EMIC Waves using MMS Observation

Authors: Abid Ali Abid

Abstract:

Electromagnetic ion cyclotron waves have been playing a significant role in inner magnetosphere, and their proton band has been detected using the Magnetospheric-Multiscale (MMS) satellite observations in the inner magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. Thermal anisotropy of hot protons initiates the waves. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these formerly invisible protons are now visible. The EMIC waves, whose frequency ranges from 0.001 Hz to 5 Hz in the inner magnetosphere and received considerable attention for energy transport across the magnetosphere. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases.

Keywords: electromagnetic ion cyclotron waves, magnetospheric-multiscale (MMS) satellite, cold protons, inner magnetosphere

Procedia PDF Downloads 52
2278 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field

Authors: Mengqi Zhu, Chang Nyung Kim

Abstract:

This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.

Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop

Procedia PDF Downloads 260
2277 Dispersion Effects in Waves Reflected by Lossy Conductors: The Optics vs. Electromagnetics Approach

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

The study of dispersion phenomena in electromagnetic waves reflected by conductors at infrared and lower frequencies is a topic which finds a number of applications. We aim to explain in this work what are the most relevant ones and how this phenomenon is modeled from both optics and electromagnetics points of view. We also explain here how the amplitude of an electromagnetic wave reflected by a lossy conductor could depend on both the frequency of the incident wave, as well as on the electrical properties of the conductor, and we illustrate this phenomenon with a practical example. The mathematical analysis made by a specialist in electromagnetics or a microwave engineer is apparently very different from the one made by a specialist in optics. We show here how both approaches lead to the same physical result and what are the key concepts which enable one to understand that despite the differences in the equations the solution to the problem happens to be the same. Our study starts with an analysis made by using the complex refractive index and the reflectance parameter. We show how this reflectance has a dependence with the square root of the frequency when the reflecting material is a good conductor, and the frequency of the wave is low enough. Then we analyze the same problem with a less known approach, which is based on the reflection coefficient of the electric field, a parameter that is most commonly used in electromagnetics and microwave engineering. In summary, this paper presents a mathematical study illustrated with a worked example which unifies the modeling of dispersion effects made by specialists in optics and the one made by specialists in electromagnetics. The main finding of this work is that it is possible to reproduce the dependence of the Fresnel reflectance with frequency from the intrinsic impedance of the reflecting media.

Keywords: dispersion, electromagnetic waves, microwaves, optics

Procedia PDF Downloads 99
2276 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 452
2275 Time-Dependent Density Functional Theory of an Oscillating Electron Density around a Nanoparticle

Authors: Nilay K. Doshi

Abstract:

A theoretical probe describing the excited energy states of the electron density surrounding a nanoparticle (NP) is presented. An electromagnetic (EM) wave interacts with a NP much smaller than the incident wavelength. The plasmon that oscillates locally around the NP comprises of excited conduction electrons. The system is based on the Jellium model of a cluster of metal atoms. Hohenberg-Kohn (HK) equations and the variational Kohn-Sham (SK) scheme have been used to obtain the NP electron density in the ground state. Furthermore, a time-dependent density functional (TDDFT) theory is used to treat the excited states in a density functional theory (DFT) framework. The non-interacting fermionic kinetic energy is shown to be a functional of the electron density. The time dependent potential is written as the sum of the nucleic potential and the incoming EM field. This view of the quantum oscillation of the electron density is a part of the localized surface plasmon resonance.

Keywords: electron density, energy, electromagnetic, DFT, TDDFT, plasmon, resonance

Procedia PDF Downloads 288
2274 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential

Procedia PDF Downloads 379