Search results for: complementary treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8347

Search results for: complementary treatment

187 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 227
186 Evaluation of Antibiotic Resistance and Extended-Spectrum β-Lactamases Production Rates of Gram Negative Rods in a University Research and Practice Hospital, 2012-2015

Authors: Recep Kesli, Cengiz Demir, Onur Turkyilmaz, Hayriye Tokay

Abstract:

Objective: Gram-negative rods are a large group of bacteria, and include many families, genera, and species. Most clinical isolates belong to the family Enterobacteriaceae. Resistance due to the production of extended-spectrum β-lactamases (ESBLs) is a difficulty in the handling of Enterobacteriaceae infections, but other mechanisms of resistance are also emerging, leading to multidrug resistance and threatening to create panresistant species. We aimed in this study to evaluate resistance rates of Gram-negative rods bacteria isolated from clinical specimens in Microbiology Laboratory, Afyon Kocatepe University, ANS Research and Practice Hospital, between October 2012 and September 2015. Methods: The Gram-negative rods strains were identified by conventional methods and VITEK 2 automated identification system (bio-Mérieux, Marcy l’etoile, France). Antibiotic resistance tests were performed by both the Kirby-Bauer disk-diffusion and automated Antimicrobial Susceptibility Testing (AST, bio-Mérieux, Marcy l’etoile, France) methods. Disk diffusion results were evaluated according to the standards of Clinical and Laboratory Standards Institute (CLSI). Results: Of the totally isolated 1.701 Enterobacteriaceae strains 1434 (84,3%) were Klebsiella pneumoniae, 171 (10%) were Enterobacter spp., 96 (5.6%) were Proteus spp., and 639 Nonfermenting gram negatives, 477 (74.6%) were identified as Pseudomonas aeruginosa, 135 (21.1%) were Acinetobacter baumannii and 27 (4.3%) were Stenotrophomonas maltophilia. The ESBL positivity rate of the totally studied Enterobacteriaceae group were 30.4%. Antibiotic resistance rates for Klebsiella pneumoniae were as follows: amikacin 30.4%, gentamicin 40.1%, ampicillin-sulbactam 64.5%, cefepime 56.7%, cefoxitin 35.3%, ceftazidime 66.8%, ciprofloxacin 65.2%, ertapenem 22.8%, imipenem 20.5%, meropenem 20.5 %, and trimethoprim-sulfamethoxazole 50.1%, and for 114 Enterobacter spp were detected as; amikacin 26.3%, gentamicin 31.5%, cefepime 26.3%, ceftazidime 61.4%, ciprofloxacin 8.7%, ertapenem 8.7%, imipenem 12.2%, meropenem 12.2%, and trimethoprim-sulfamethoxazole 19.2 %. Resistance rates for Proteus spp. were: 24,3% meropenem, 26.2% imipenem, 20.2% amikacin 10.5% cefepim, 33.3% ciprofloxacin and levofloxacine, 31.6% ceftazidime, 20% ceftriaxone, 15.2% gentamicin, 26.6% amoxicillin-clavulanate, and 26.2% trimethoprim-sulfamethoxale. Resistance rates of P. aeruginosa was found as follows: Amikacin 32%, gentamicin 42 %, imipenem 43%, merpenem 43%, ciprofloxacin 50%, levofloxacin 52%, cefepim 38%, ceftazidim 63%, piperacillin/tacobactam 85%, for Acinetobacter baumannii; Amikacin 53.3%, gentamicin 56.6 %, imipenem 83%, merpenem 86%, ciprofloxacin 100%, ceftazidim 100%, piperacillin/tacobactam 85 %, colisitn 0 %, and for S. malthophilia; levofloxacin 66.6 % and trimethoprim/sulfamethoxozole 0 %. Conclusions: This study showed that resistance in Gram-negative rods was a serious clinical problem in our hospital and suggested the need to perform typification of the isolated bacteria with susceptibility testing regularly in the routine laboratory procedures. This application guided to empirical antibiotic treatment choices truly, as a consequence of the reality that each hospital shows different resistance profiles.

Keywords: antibiotic resistance, gram negative rods, ESBL, VITEK 2

Procedia PDF Downloads 303
185 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 179
184 Optimization of Perfusion Distribution in Custom Vascular Stent-Grafts Through Patient-Specific CFD Models

Authors: Scott M. Black, Craig Maclean, Pauline Hall Barrientos, Konstantinos Ritos, Asimina Kazakidi

Abstract:

Aortic aneurysms and dissections are leading causes of death in cardiovascular disease. Both inevitably lead to hemodynamic instability without surgical intervention in the form of vascular stent-graft deployment. An accurate description of the aortic geometry and blood flow in patient-specific cases is vital for treatment planning and long-term success of such grafts, as they must generate physiological branch perfusion and in-stent hemodynamics. The aim of this study was to create patient-specific computational fluid dynamics (CFD) models through a multi-modality, multi-dimensional approach with boundary condition optimization to predict branch flow rates and in-stent hemodynamics in custom stent-graft configurations. Three-dimensional (3D) thoracoabdominal aortae were reconstructed from four-dimensional flow-magnetic resonance imaging (4D Flow-MRI) and computed tomography (CT) medical images. The former employed a novel approach to generate and enhance vessel lumen contrast via through-plane velocity at discrete, user defined cardiac time steps post-hoc. To produce patient-specific boundary conditions (BCs), the aortic geometry was reduced to a one-dimensional (1D) model. Thereafter, a zero-dimensional (0D) 3-Element Windkessel model (3EWM) was coupled to each terminal branch to represent the distal vasculature. In this coupled 0D-1D model, the 3EWM parameters were optimized to yield branch flow waveforms which are representative of the 4D Flow-MRI-derived in-vivo data. Thereafter, a 0D-3D CFD model was created, utilizing the optimized 3EWM BCs and a 4D Flow-MRI-obtained inlet velocity profile. A sensitivity analysis on the effects of stent-graft configuration and BC parameters was then undertaken using multiple stent-graft configurations and a range of distal vasculature conditions. 4D Flow-MRI granted unparalleled visualization of blood flow throughout the cardiac cycle in both the pre- and postsurgical states. Segmentation and reconstruction of healthy and stented regions from retrospective 4D Flow-MRI images also generated 3D models with geometries which were successfully validated against their CT-derived counterparts. 0D-1D coupling efficiently captured branch flow and pressure waveforms, while 0D-3D models also enabled 3D flow visualization and quantification of clinically relevant hemodynamic parameters for in-stent thrombosis and graft limb occlusion. It was apparent that changes in 3EWM BC parameters had a pronounced effect on perfusion distribution and near-wall hemodynamics. Results show that the 3EWM parameters could be iteratively changed to simulate a range of graft limb diameters and distal vasculature conditions for a given stent-graft to determine the optimal configuration prior to surgery. To conclude, this study outlined a methodology to aid in the prediction post-surgical branch perfusion and in-stent hemodynamics in patient specific cases for the implementation of custom stent-grafts.

Keywords: 4D flow-MRI, computational fluid dynamics, vascular stent-grafts, windkessel

Procedia PDF Downloads 148
183 The Recommended Summary Plan for Emergency Care and Treatment (ReSPECT) Process: An Audit of Its Utilisation on a UK Tertiary Specialist Intensive Care Unit

Authors: Gokulan Vethanayakam, Daniel Aston

Abstract:

Introduction: The ReSPECT process supports healthcare professionals when making patient-centered decisions in the event of an emergency. It has been widely adopted by the NHS in England and allows patients to express thoughts and wishes about treatments and outcomes that they consider acceptable. It includes (but is not limited to) cardiopulmonary resuscitation decisions. ReSPECT conversations should ideally occur prior to ICU admission and should be documented in the eight sections of the nationally-standardised ReSPECT form. This audit evaluated the use of ReSPECT on a busy cardiothoracic ICU in an NHS Trust where established policies advocating its use exist. Methods: This audit was a retrospective review of ReSPECT forms for a sample of high-risk patients admitted to ICU at the Royal Papworth Hospital between January 2021 and March 2022. Patients all received one of the following interventions: Veno-Venous Extra-Corporeal Membrane Oxygenation (VV-ECMO) for severe respiratory failure (retrieved via the national ECMO service); cardiac or pulmonary transplantation-related surgical procedures (including organ transplants and Ventricular Assist Device (VAD) implantation); or elective non-transplant cardiac surgery. The quality of documentation on ReSPECT forms was evaluated using national standards and a graded ranking tool devised by the authors which was used to assess narrative aspects of the forms. Quality was ranked as A (excellent) to D (poor). Results: Of 230 patients (74 VV-ECMO, 104 transplant, 52 elective non-transplant surgery), 43 (18.7%) had a ReSPECT form and only one (0.43%) patient had a ReSPECT form completed prior to ICU admission. Of the 43 forms completed, 38 (88.4%) were completed due to the commencement of End of Life (EoL) care. No non-transplant surgical patients included in the audit had a ReSPECT form. There was documentation of balance of care (section 4a), CPR status (section 4c), capacity assessment (section 5), and patient involvement in completing the form (section 6a) on all 43 forms. Of the 34 patients assessed as lacking capacity to make decisions, only 22 (64.7%) had reasons documented. Other sections were variably completed; 29 (67.4%) forms had relevant background information included to a good standard (section 2a). Clinical guidance for the patient (section 4b) was given in 25 (58.1%), of which 11 stated the rationale that underpinned it. Seven forms (16.3%) contained information in an inappropriate section. In a comparison of ReSPECT forms completed ahead of an EoL trigger with those completed when EoL care began, there was a higher number of entries in section 3 (considering patient’s values/fears) that were assessed at grades A-B in the former group (p = 0.014), suggesting higher quality. Similarly, forms from the transplant group contained higher quality information in section 3 than those from the VV-ECMO group (p = 0.0005). Conclusions: Utilisation of the ReSPECT process in high-risk patients is yet to be well-adopted in this trust. Teams who meet patients before hospital admission for transplant or high-risk surgery should be encouraged to engage with the ReSPECT process at this point in the patient's journey. VV-ECMO retrieval teams should consider ReSPECT conversations with patients’ relatives at the time of retrieval.

Keywords: audit, critical care, end of life, ICU, ReSPECT, resuscitation

Procedia PDF Downloads 50
182 Unravelling Glyphosates Disruptive Effects on the Photochemical Efficiency of Amaranthus cruentus

Authors: Jacques M. Berner, Lehlogonolo Maloma

Abstract:

Context: Glyphosate, a widely used herbicide, has raised concerns about its impact on various crops. Amaranthus cruentus, an important grain crop species, is particularly susceptible to glyphosate. Understanding the specific disruptions caused by glyphosate on the photosynthetic process in Amaranthus cruentus is crucial for assessing its effects on crop productivity and ecological sustainability. Research Aim: This study aimed to investigate the dose-dependent impact of glyphosate on the photochemical efficiency of Amaranthus cruentus using the OJIP transient analysis. The goal was to assess the specific disruptions caused by glyphosate on key parameters of photosystem II. Methodology: The experiment was conducted in a controlled greenhouse environment. Amaranthus cruentus plants were exposed to different concentrations of glyphosate, including half, recommended, and double the recommended application rates. The photochemical efficiency of the plants was evaluated using non-invasive chlorophyll a fluorescence measurements and subsequent analysis of OJIP transients. Measurements were taken on 1-hour dark-adapted leaves using a Hansatech Handy PEA+ chlorophyll fluorimeter. Findings: The study's results demonstrated a significant reduction in the photochemical efficiency of Amaranthus cruentus following glyphosate treatment. The OJIP transients showed distinct alterations in the glyphosate-treated plants compared to the control group. These changes included a decrease in maximal fluorescence (FP) and a delay in the rise of the fluorescence signal, indicating impairment in the energy conversion process within the photosystem II. Glyphosate exposure also led to a substantial decrease in the maximum quantum yield efficiency of photosystem II (FV/FM) and the total performance index (PItotal), which reflects the overall photochemical efficiency of photosystem II. These reductions in photochemical efficiency were observed even at half the recommended dose of glyphosate. Theoretical Importance: The study provides valuable insights into the specific disruptions caused by glyphosate on the photochemical efficiency of Amaranthus cruentus. Data Collection and Analysis Procedures: Data collection involved non-invasive chlorophyll a fluorescence measurements using a chlorophyll fluorimeter on dark-adapted leaves. The OJIP transients were then analyzed to assess specific disruptions in key parameters of photosystem II. Statistical analysis was conducted to determine the significance of the differences observed between glyphosate-treated plants and the control group. Question Addressed: The study aimed to address the question of how glyphosate exposure affects the photochemical efficiency of Amaranthus cruentus, specifically examining disruptions in the photosynthetic electron transport chain and overall photochemical efficiency. Conclusion: The study demonstrates that glyphosate severely impairs the photochemical efficiency of Amaranthus cruentus, as indicated by the alterations in OJIP transients. Even at half the recommended dose, glyphosate caused significant reductions in photochemical efficiency. These findings highlight the detrimental effects of glyphosate on crop productivity and emphasize the need for further research to evaluate its long-term consequences and ecological implications in agriculture. The authors gratefully acknowledge the support from North-West University for making this research possible.

Keywords: glyphosate, amaranthus cruentus, ojip transient analysis, pitotal, photochemical efficiency, chlorophyll fluorescence, weeds

Procedia PDF Downloads 61
181 Contamination by Heavy Metals of Some Environmental Objects in Adjacent Territories of Solid Waste Landfill

Authors: D. Kekelidze, G. Tsotadze, G. Maisuradze, L. Akhalbedashvili, M. Chkhaidze

Abstract:

Statement of Problem: The problem of solid wastes -dangerous sources of environmental pollution,is the urgent issue for Georgia as there are no waste-treatment and waste- incineration plants. Urban peripheral and rural areas, frequently along small rivers, are occupied by landfills without any permission. The study of the pollution of some environmental objects in the adjacent territories of solid waste landfill in Tbilisi carried out in 2020-2021, within the framework of project: “Ecological monitoring of the landfills surrounding areas and population health risk assessment”. Research objects: This research had goal to assess the ecological state of environmental objects (soil cover and surface water) in the territories, adjacent of solid waste landfill, on the base of changes heavy metals' (HM) concentration with distance from landfill. An open sanitary landfill for solid domestic waste in Tbilisi locates at suburb Lilo surrounded with densely populated villages. Content of following HM was determined in soil and river water samples: Pb, Cd, Cu, Zn, Ni, Co, Mn. Methodology: The HM content in samples was measured, using flame atomic absorption spectrophotometry (spectrophotometer of firm Perkin-Elmer AAnalyst 200) in accordance with ISO 11466 and GOST Р 53218-2008. Results and discussion: Data obtained confirmed migration of HM mainly in terms of the distance from the polygon that can be explained by their areal emissions and storage in open state, they could also get into the soil cover under the influence of wind and precipitation. Concentration of Pb, Cd, Cu, Zn always increases with approaching to landfill. High concentrations of Pb, Cd are characteristic of the soil covers of the adjacent territories around the landfill at a distance of 250, 500 meters.They create a dangerous zone, since they can later migrate into plants, enter in rivers and lakes. The higher concentrations, compared to the maximum permissible concentrations (MPC) for surface waters of Georgia, are observed for Pb, Cd. One of the reasons for the low concentration of HM in river water may be high turbidity – as is known, suspended particles are good natural sorbents that causes low concentration of dissolved forms. Concentration of Cu, Ni, Mn increases in winter, since in this season the rivers are switched to groundwater feeding. Conclusion: Soil covers of the areas adjacent to the landfill in Lilo are contaminated with HM. High concentrations in soils are characteristic of lead and cadmium. Elevated concentrations in comparison with the MPC for surface waters adopted in Georgia are also observed for Pb, Cd at checkpoints along and below (1000 m) of the landfill downstream. Data obtained confirm migration of HM to the adjacent territories of the landfill and to the Lochini River. Since the migration and toxicity of metals depends also on the presence of their mobile forms in water bodies, samples of bottom sediments should be taken too. Bottom sediments reflect a long-term picture of pollution, they accumulate HM and represent a constant source of secondary pollution of water bodies. The study of the physicochemical forms of metals is one of the priority areas for further research.

Keywords: landfill, pollution, heavy metals, migration

Procedia PDF Downloads 79
180 An Odyssey to Sustainability: The Urban Archipelago of India

Authors: B. Sudhakara Reddy

Abstract:

This study provides a snapshot of the sustainability of selected Indian cities by employing 70 indicators in four dimensions to develop an overall city sustainability index. In recent years, the concept of ‘urban sustainability’ has become prominent due to its complexity. Urban areas propel growth and at the same time poses a lot of ecological, social and infrastructural problems and risks. In case of developing countries, the high population density of and the continuous in-migration run the highest risk in natural and man-made disasters. These issues combined with the inability of policy makers in providing basic services makes the cities unsustainable. To assess whether any given policy is moving towards or against urban sustainability it is necessary to consider the relationships among its various dimensions. Hence, in recent years, while preparing the sustainability index, an integral approach involving indicators of different dimensions such as ‘economic’, ‘environmental’ and 'social' is being used. It is also important for urban planners, social analysts and other related institutions to identify and understand the relationships in this complex system. The objective of the paper is to develop a city performance index (CPI) to measure and evaluate the urban regions in terms of sustainable performances. The objectives include: i) Objective assessment of a city’s performance, ii) setting achievable goals iii) prioritise relevant indicators for improvement, iv) learning from leaders, iv) assessment of the effectiveness of programmes that results in achieving high indicator values, v) Strengthening of stakeholder participation. Using the benchmark approach, a conceptual framework is developed for evaluating 25 Indian cities. We develop City Sustainability index (CSI) in order to rank cities according to their level of sustainability. The CSI is composed of four dimensions: Economic, Environment, Social, and Institutional. Each dimension is further composed of multiple indicators: (1) Economic that considers growth, access to electricity, and telephone availability; (2) environmental that includes waste water treatment, carbon emissions, (3) social that includes, equity, infant mortality, and 4) institutional that includes, voting share of population, urban regeneration policies. The CSI, consisting of four dimensions disaggregate into 12 categories and ultimately into 70 indicators. The data are obtained from public and non-governmental organizations, and also from city officials and experts. By ranking a sample of diverse cities on a set of specific dimensions the study can serve as a baseline of current conditions and a marker for referencing future results. The benchmarks and indices presented in the study provide a unique resource for the government and the city authorities to learn about the positive and negative attributes of a city and prepare plans for a sustainable urban development. As a result of our conceptual framework, the set of criteria we suggest is somewhat different to any already in the literature. The scope of our analysis is intended to be broad. Although illustrated with specific examples, it should be apparent that the principles identified are relevant to any monitoring that is used to inform decisions involving decision variables. These indicators are policy-relevant and, hence they are useful tool for decision-makers and researchers.

Keywords: benchmark, city, indicator, performance, sustainability

Procedia PDF Downloads 245
179 Assessment of Factors Influencing Adherence to Diet Guidelines among Patients with Type II Diabetes Mellitus

Authors: Mary Wangari Kamau, Agatha Christine Atieno, Louise Wanjiku Ngugi

Abstract:

Diabetes Mellitus Type 2 is a prevalent disease in Kenya, with complications often resulting from poor adherence to dietary guidelines. This study aims to identify and understand the factors influencing adherence to diet guidelines among patients with Diabetes Mellitus Type 2 at a specific clinic in Kenya. The findings will contribute to the improvement of nutrition care for diabetic patients. Research Aim: The main objective of this study was to determine the factors that influence adherence to dietary guidelines among patients with Diabetes Mellitus Type 2. Specifically, the study described the level of diet adherence, identified factors influencing adherence using the ecological approach, and determined the relationships among these factors. Methodology: A cross-sectional study design was utilized at the Cancer and Chronic Diseases Center at Moi Teaching and Referral Hospital in Kenya. The sample size consisted of 241 respondents from a target population of 412. Data was collected using food frequency questionnaires, three-day food records, and key informant interviews. Descriptive statistics were used to assess diet adherence, and chi-square and odds ratio tests were applied to identify factors at various levels of the ecological model. Multiple linear regression was employed to determine the relationship between diet adherence and ecological factors. Findings: The mean level of adherence to recommended dietary guidelines for Diabetes Mellitus Type 2 patients was 48.6%. Individual level factors, such as marital status, monthly income, duration of Diabetes Mellitus, frequency of monitoring blood sugar levels, treatment for Diabetes Mellitus, and BMI, were found to significantly influence diet adherence. However, cognitive and psychological factors at the individual level were not significantly associated with adherence. No significant associations were found between adherence and factors at small group, organizational or health care system, community, and policy levels. However, when considering all levels collectively, 43% of the variance in diet adherence could be explained. Theoretical Importance: This study highlights that while individual factors play a significant role in adherence to dietary guidelines, environmental factors also have an influence. The findings support the need for health professionals and policymakers to consider factors at multiple levels when improving adherence to dietary guidelines for diabetic patients. Data Collection and Analysis Procedures: Data was collected through questionnaires and interviews, including food frequency questionnaires and three-day food records. Descriptive statistics, chi-square tests, odds ratio tests, and multiple linear regression were used to analyze the data. Questions Addressed: The study addresses the following questions: 1. What is the level of adherence to dietary guidelines among patients with Diabetes Mellitus Type 2? 2. Which factors at individual, small group, organizational or health care system, community, and policy levels influence diet adherence? 3. What is the relationship between these factors and diet adherence? Conclusion: The study findings emphasize the need to consider both individual and environmental factors when promoting adherence to dietary guidelines among patients with Diabetes Mellitus Type 2. Health professionals and policymakers should incorporate factors at multiple levels to improve the nutrition care process for diabetic patients.

Keywords: adherence, dietary guidelines, ecological factors, type 2 diabetes mellitus

Procedia PDF Downloads 36
178 Incorporating Spatial Transcriptome Data into Ligand-Receptor Analyses to Discover Regional Activation in Cells

Authors: Eric Bang

Abstract:

Interactions between receptors and ligands are crucial for many essential biological processes, including neurotransmission and metabolism. Ligand-receptor analyses that examine cell behavior and interactions often utilize cell type-specific RNA expressions from single-cell RNA sequencing (scRNA-seq) data. Using CellPhoneDB, a public repository consisting of ligands, receptors, and ligand-receptor interactions, the cell-cell interactions were explored in a specific scRNA-seq dataset from kidney tissue and portrayed the results with dot plots and heat maps. Depending on the type of cell, each ligand-receptor pair was aligned with the interacting cell type and calculated the positori probabilities of these associations, with corresponding P values reflecting average expression values between the triads and their significance. Using single-cell data (sample kidney cell references), genes in the dataset were cross-referenced with ones in the existing CellPhoneDB dataset. For example, a gene such as Pleiotrophin (PTN) present in the single-cell data also needed to be present in the CellPhoneDB dataset. Using the single-cell transcriptomics data via slide-seq and reference data, the CellPhoneDB program defines cell types and plots them in different formats, with the two main ones being dot plots and heat map plots. The dot plot displays derived measures of the cell to cell interaction scores and p values. For the dot plot, each row shows a ligand-receptor pair, and each column shows the two interacting cell types. CellPhoneDB defines interactions and interaction levels from the gene expression level, so since the p-value is on a -log10 scale, the larger dots represent more significant interactions. By performing an interaction analysis, a significant interaction was discovered for myeloid and T-cell ligand-receptor pairs, including those between Secreted Phosphoprotein 1 (SPP1) and Fibronectin 1 (FN1), which is consistent with previous findings. It was proposed that an effective protocol would involve a filtration step where cell types would be filtered out, depending on which ligand-receptor pair is activated in that part of the tissue, as well as the incorporation of the CellPhoneDB data in a streamlined workflow pipeline. The filtration step would be in the form of a Python script that expedites the manual process necessary for dataset filtration. Being in Python allows it to be integrated with the CellPhoneDB dataset for future workflow analysis. The manual process involves filtering cell types based on what ligand/receptor pair is activated in kidney cells. One limitation of this would be the fact that some pairings are activated in multiple cells at a time, so the manual manipulation of the data is reflected prior to analysis. Using the filtration script, accurate sorting is incorporated into the CellPhoneDB database rather than waiting until the output is produced and then subsequently applying spatial data. It was envisioned that this would reveal wherein the cell various ligands and receptors are interacting with different cell types, allowing for easier identification of which cells are being impacted and why, for the purpose of disease treatment. The hope is this new computational method utilizing spatially explicit ligand-receptor association data can be used to uncover previously unknown specific interactions within kidney tissue.

Keywords: bioinformatics, Ligands, kidney tissue, receptors, spatial transcriptome

Procedia PDF Downloads 117
177 Formulation and Optimization of Self Nanoemulsifying Drug Delivery System of Rutin for Enhancement of Oral Bioavailability Using QbD Approach

Authors: Shrestha Sharma, Jasjeet K. Sahni, Javed Ali, Sanjula Baboota

Abstract:

Introduction: Rutin is a naturally occurring strong antioxidant molecule belonging to bioflavonoid category. Due to its free radical scavenging properties, it has been found to be beneficial in the treatment of various diseases including inflammation, cancer, diabetes, allergy, cardiovascular disorders and various types of microbial infections. Despite its beneficial effects, it suffers from the problem of low aqueous solubility which is responsible for low oral bioavailability. The aim of our study was to optimize and characterize self-nanoemulsifying drug delivery system (SNEDDS) of rutin using Box-Behnken design (BBD) combined with a desirability function. Further various antioxidant, pharmacokinetic and pharmacodynamic studies were performed for the optimized rutin SNEDDS formulation. Methodologies: Selection of oil, surfactant and co-surfactant was done on the basis of solubility/miscibility studies. Sefsol+ Vitamin E, Solutol HS 15 and Transcutol P were selected as oil phase, surfactant and co-surfactant respectively. Optimization of SNEDDS formulations was done by a three-factor, three-level (33)BBD. The independent factors were Sefsol+ Vitamin E, Solutol HS15, and Transcutol P. The dependent variables were globule size, self emulsification time (SEF), % transmittance and cumulative percentage drug released. Various response surface graphs and contour plots were constructed to understand the effect of different factor, their levels and combinations on the responses. The optimized Rutin SNEDDS formulation was characterized for various parameters such as globule size, zeta potential, viscosity, refractive index , % Transmittance and in vitro drug release. Ex vivo permeation studies and pharmacokinetic studies were performed for optimized formulation. Antioxidant activity was determined by DPPH and reducing power assays. Anti-inflammatory activity was determined by using carrageenan induced rat paw oedema method. Permeation of rutin across small intestine was assessed using confocal laser scanning microscopy (CLSM). Major findings:The optimized SNEDDS formulation consisting of Sefsol+ Vitamin E - Solutol HS15 -Transcutol HP at proportions of 25:35:17.5 (w/w) was prepared and a comparison of the predicted values and experimental values were found to be in close agreement. The globule size and PDI of optimized SNEDDS formulation was found to be 16.08 ± 0.02 nm and 0.124±0.01 respectively. Significant (p˂0.05) increase in percentage drug release was achieved in the case of optimized SNEDDS formulation (98.8 %) as compared to rutin suspension. Furthermore, pharmacokinetic study showed a 2.3-fold increase in relative oral bioavailability compared with that of the suspension. Antioxidant assay results indicated better efficacy of the developed formulation than the pure drug and it was found to be comparable with ascorbic acid. The results of anti-inflammatory studies showed 72.93 % inhibition for the SNEDDS formulation which was significantly higher than the drug suspension 46.56%. The results of CLSM indicated that the absorption of SNEDDS formulation was considerably higher than that from rutin suspension. Conclusion: Rutin SNEDDS have been successfully prepared and they can serve as an effective tool in enhancing oral bioavailability and efficacy of Rutin.

Keywords: rutin, oral bioavilability, pharamacokinetics, pharmacodynamics

Procedia PDF Downloads 475
176 Expression of Fibrogenesis Markers after Mesenchymal Stem Cells Therapy for Experimental Liver Cirrhosis

Authors: Tatsiana Ihnatovich, Darya Nizheharodava, Mikalai Halabarodzka, Tatsiana Savitskaya, Marina Zafranskaya

Abstract:

Liver fibrosis is a complex of histological changes resulting from chronic liver disease accompanied by an excessive production and deposition of extracellular matrix components in the hepatic parenchyma. Liver fibrosis is a serious medical and social problem. Hepatic stellate cells (HSCs) make a significant contribution to the extracellular matrix deposition due to liver injury. Mesenchymal stem cells (MSCs) have a pronounced anti-inflammatory, regenerative and immunomodulatory effect; they are able to differentiate into hepatocytes and induce apoptosis of activated HSCs that opens the prospect of their use for preventing the excessive fibro-formation and the development of liver cirrhosis. The aim of the study is to evaluate the effect of MSCs therapy on the expression of fibrogenesis markers genes in liver tissue and HSCs cultures of rats with experimental liver cirrhosis (ELC). Materials and methods: ELC was induced by the common bile duct ligation (CBDL) in female Wistar rats (n = 19) with an average body weight of 250 (220 ÷ 270) g. Animals from the control group (n = 10) were sham-operated. On the 56th day after the CBDL, the rats of the experimental (n = 12) and the control (n = 5) groups received intraportal MSCs in concentration of 1×106 cells/animal (previously obtained from rat’s bone marrow) or saline, respectively. The animals were taken out of the experiment on the 21st day. HSCs were isolated by sequential liver perfusion in situ with following disaggregation, enzymatic treatment and centrifugation of cell suspension on a two-stage density gradient. The expression of collagen type I (Col1a1) and type III (Col3a1), matrix metalloproteinase type 2 (MMP2) and type 9 (MMP9), tissue inhibitor of matrix metalloproteinases type 1 (TIMP1), transforming growth factor β type 1 (TGFβ1) and type 3 (TGFβ3) was determined by real-time polymerase chain reaction. Statistical analysis was performed using Statistica 10.0. Results: In ELC rats compared to sham-operated animals, a significant increase of all studied markers expression was observed. The administration of MSCs led to a significant decrease of all detectable markers in the experimental group compared to rats without cell therapy. In ELC rats, an increased MMP9/TIMP1 ratio after cell therapy was also detected. The infusion of MSCs in the sham-operated animals did not lead to any changes. In the HSCs from ELC animals, the expression of Col1a1 and Col3a1 exceeded the similar parameters of the control group (p <0.05) and statistically decreased after the MSCs administration. The correlation between Col3a1 (Rs = 0.51, p <0.05), TGFβ1 (Rs = 0.6, p <0.01), and TGFβ3 (Rs = 0.75, p <0.001) expression in HSCs cultures and liver tissue has been found. Conclusion: Intraportal administration of MSCs to rats with ELC leads to a decreased Col1a1 and Col3a1, MMP2 and MMP9, TIMP1, TGFβ1 and TGFβ3 expression. The correlation between the expression of Col3a1, TGFβ1 and TGFβ3 in liver tissue and in HSCs cultures indicates the involvement of activated HSCs in the fibrogenesis that allows considering HSCs to be the main cell therapy target in ELC.

Keywords: cell therapy, experimental liver cirrhosis, hepatic stellate cells, mesenchymal stem cells

Procedia PDF Downloads 141
175 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes

Authors: Marie Guittonny-LarchevêQue

Abstract:

In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.

Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies

Procedia PDF Downloads 225
174 Assessment of Biofilm Production Capacity of Industrially Important Bacteria under Electroinductive Conditions

Authors: Omolola Ojetayo, Emmanuel Garuba, Obinna Ajunwa, Abiodun A. Onilude

Abstract:

Introduction: Biofilm is a functional community of microorganisms that are associated with a surface or an interface. These adherent cells become embedded within an extracellular matrix composed of polymeric substances, i.e., biofilms refer to biological deposits consisting of both microbes and their extracellular products on biotic and abiotic surfaces. Despite their detrimental effects in medicine, biofilms as natural cell immobilization have found several applications in biotechnology, such as in the treatment of wastewater, bioremediation and biodegradation, desulfurization of gas, and conversion of agro-derived materials into alcohols and organic acids. The means of enhancing immobilized cells have been chemical-inductive, and this affects the medium composition and final product. Physical factors including electrical, magnetic, and electromagnetic flux have shown potential for enhancing biofilms depending on the bacterial species, nature, and intensity of emitted signals, the duration of exposure, and substratum used. However, the concept of cell immobilisation by electrical and magnetic induction is still underexplored. Methods: To assess the effects of physical factors on biofilm formation, six American typed culture collection (Acetobacter aceti ATCC15973, Pseudomonas aeruginosa ATCC9027, Serratia marcescens ATCC14756, Gluconobacter oxydans ATCC19357, Rhodobacter sphaeroides ATCC17023, and Bacillus subtilis ATCC6633) were used. Standard culture techniques for bacterial cells were adopted. Natural autoimmobilisation potentials of test bacteria were carried out by simple biofilms ring formation on tubes, while crystal violet binding assay techniques were adopted in the characterisation of biofilm quantity. Electroinduction of bacterial cells by direct current (DC) application in cell broth, static magnetic field exposure, and electromagnetic flux were carried out, and autoimmobilisation of cells in a biofilm pattern was determined on various substrata tested, including wood, glass, steel, polyvinylchloride (PVC) and polyethylene terephthalate. Biot Savart law was used in quantifying magnetic field intensity, and statistical analyses of data obtained were carried out using the analyses of variance (ANOVA) as well as other statistical tools. Results: Biofilm formation by the selected test bacteria was enhanced by the physical factors applied. Electromagnetic induction had the greatest effect on biofilm formation, with magnetic induction producing the least effect across all substrata used. Microbial cell-cell communication could be a possible means via which physical signals affected the cells in a polarisable manner. Conclusion: The enhancement of biofilm formation by bacteria using physical factors has shown that their inherent capability as a cell immobilization method can be further optimised for industrial applications. A possible relationship between the presence of voltage-dependent channels, mechanosensitive channels, and bacterial biofilms could shed more light on this phenomenon.

Keywords: bacteria, biofilm, cell immobilization, electromagnetic induction, substrata

Procedia PDF Downloads 158
173 Enhancing Police Accountability through the Malawi Independent Police Complaints Commission: Prospects and Challenges That Lie Ahead

Authors: Esther Gumboh

Abstract:

The police play a critical role in society and are an integral aspect of the rule of law. Equally, respect for human rights is an integral part of professional policing. In view of the vast powers that the police enjoy and the attendant risk of abuse and resulting human rights violations, the need for police accountability and civilian police oversight is internationally and regionally recognised. Policing oversight springs from the duty to investigate human rights violations. Those implicated in perpetrating or covering up violations must be disciplined or prosecuted to ensure effective accountability. Police accountability is particularly important in Malawi given the dark history of policing in the country during the 30-year dictatorial era under President Kamuzu Banda. Described as one of the most repressive regimes in Africa, the Banda administration was characterised by gross state-sponsored violence, repressive policing and human rights violations. Indeed, the police were involved in various forms of human rights abuse including arbitrary arrests and unlawful detentions, torture, and excessive use of force in conducting arrests and public order policing. This situation flourished within a culture of police impunity bolstered in part by the absence of clear oversight mechanisms for police accountability. In turn, there was immense public mistrust of the police. Unsurprisingly, the criminal justice system was one of the priority areas for reform when Malawi adopted its first democratic Constitution in 1994. Section 153 of the Constitution envisions a police service that is, for all intents and purposes, there to provide for the protection of public safety and the rights of persons in Malawi according to the prescriptions of the Constitution and any other law. This position reflects the view that the duty to protect and promote human rights is not incompatible with effective policing. Despite this, the police continue to engage in questionable behaviour in public order policing, excessive use of force, deaths in police custody, ill-treatment, torture and other forms of abuse including sexual abuse. Perpetrators of abuses are occasionally punished, but investigations are often delayed, abandoned, or remain inconclusive. Police accountability remains largely elusive. Commendably, the law does subject the police to significant oversight both internally and externally. However, until 2010, Malawi lacked a wholly independent civilian oversight mechanism specifically mandated to monitor the activities of the Malawi Police Service and held it accountable. This void has since been filled by the Independent Complaints Commission established under the Police Act. This is a positive development that reiterates Malawi’s commitment to the investigation of human rights violations by the police and to ending police impunity. This contribution examines the legal framework for this Commission to project the effectiveness of the Commission. While the framework looks promising on various fronts, there are potential challenges that lie ahead. Malawi must pre-emptively deal with these challenges carefully if the Commission is to have any practical significance in transforming police accountability in the country. Drawing on lessons from other jurisdictions like South Africa, the paper makes recommendations for legislative reform to strengthen the Commission’s framework.

Keywords: civilian policing oversight, Malawi, police, police accountability, policing, policing oversight

Procedia PDF Downloads 191
172 Aerofloral Studies and Allergenicity Potentials of Dominant Atmospheric Pollen Types at Some Locations in Northwestern Nigeria

Authors: Olugbenga S. Alebiosu, Olusola H. Adekanmbi, Oluwatoyin T. Ogundipe

Abstract:

Pollen and spores have been identified as major airborne bio-particles inducing respiratory disorders such as asthma, allergic rhinitis and atopic dermatitis among hypersensitive individuals. An aeropalynological study was conducted within a one year sampling period with a view to investigating the monthly depositional rate of atmospheric pollen and spores; influence of the immediate vegetation on airborne pollen distribution; allergenic potentials of dominant atmospheric pollen types at selected study locations in Bauchi and Taraba states, Northwestern Nigeria. A tauber-like pollen trap was employed in aerosampling with the sampler positioned at a height of 5 feet above the ground, followed by a monthly collection of the recipient solution for the sampling period. The collected samples were subjected to acetolysis treatment, examined microscopically with the identification of pollen grains and spores using reference materials and published photomicrographs. Plants within the surrounding vegetation were enumerated. Crude protein contents extracted from pollen types found to be commonly dominant at both study locations; Senna siamea, Terminalia cattapa, Panicum maximum and Zea mays were used to sensitize Musmusculus. Histopathological studies of bronchi and lung sections from certain dead M.musculus in the test groups was conducted. Blood samples were collected from the pre-orbital vein of M.musculus and processed for serological and haematological (differential and total white blood cell counts) studies. ELISA was used in determining the levels of serological parameters: IgE and cytokines (TNF-, IL-5, and IL-13). Statistical significance was observed in the correlation between the levels of serological and haematological parameters elicited by each test group, differences between the levels of serological and haematological parameters elicited by each test group and those of the control, as well as at varying sensitization periods. The results from this study revealed dominant airborne pollen types across the study locations; Syzygiumguineense, Tridaxprocumbens, Elaeisguineensis, Mimosa sp., Borreria sp., Terminalia sp., Senna sp. and Poaceae. Nephrolepis sp., Pteris sp. and a trilete fern also produced spores. This study also revealed that some of the airborne pollen types were produced by local plants at the study locations. Bronchi sections of M.musculus after first and second sensitizations, as well as lung section after first sensitization with Senna siamea, showed areas of necrosis. Statistical significance was recorded in the correlation between the levels of some serological and haematological parameters produced by each test group and those of the control, as well as at certain sensitization periods. The study revealed some candidate pollen allergens at the study locations allergy sufferers and also established a complexity of interaction between immune cells, IgE and cytokines at varied periods of mice sensitization and forming a paradigm of human immune response to different pollen allergens. However, it is expedient that further studies should be conducted on these candidate pollen allergens for their allergenicity potential in humans within their immediate environment.

Keywords: airborne, hypersensitive, mus musculus, pollen allergens, respiratory, tauber-like

Procedia PDF Downloads 109
171 Migrant Women’s Rights “with Chinese Characteristics: The State of Migrant Women in the People’s Republic of China

Authors: Leigha C. Crout

Abstract:

This paper will investigate the categorical disregard of the People’s Republic of China (PRC) in establishing and maintaining a baseline standard of civil guarantees for economic migrant women and their dependents. In light of the relative forward strides in terms of policy facilitating the ascension of female workers in China, this oft-invisible subgroup of women remains neglected from the modern-day “iron rice bowl” of the self-identified communist state. This study is being undertaken to rectify the absence of data on this subject and provide a baseline for future studies on the matter, as the human rights of migrants has become an established facet of transnational dialogue and debate. The basic methodology of this research will consist of the evaluation of China’s compliance with its own national guidelines, and the eight international human rights law treaties it has ratified. Data will be extracted and cross-checked from a number of relevant sources to monitor the extent of compliance, including but by no means limited to the United Nations Human Rights Council (UNHRC) Universal Periodic Review (UPR) reports and responses, submissions and responses of international human rights treaty bodies, local and international nongovernmental organizations (NGOs) and their annual reports, and articles and commentaries authored by specialists on the modern state and implementation of Chinese law. Together, these data will illuminate the vast network of compliance that has forced many migrant women to work within situations of extreme economic precarity. The structure will proceed as follows: first, an outline of the current status of migrant workers and the enforcement of stipulated protections will be provided; next, the analysis of the oft-debated regulations directing and the outline of mandatory services guaranteed to external and internal migrants; and finally, a conclusion incorporating various recommendations to improve transparency and gradually decrease the amount of migrant work turned forced labor that typifies the economic migrant experience, especially in the case of women. The internal and international migrant workers in China are bound by different and uncomplimentary systems. The first, which governs Chinese citizens moving to different regions or provinces to find more sustainable employment (internal migrants), is called the hukou (or huji) residency system. This law enforces strict regulation of the movement of peoples, while ensuring that residents of urban areas receive preferential benefits to those received by their so-called “agricultural” resident counterparts. Given the overwhelming presence of the Communist Party of China throughout the vast state, the management of internal migrants and the disregard for foreign domestic workers is, at minimum, a surprising oversight. This paper endeavors to provide a much-needed foundation for future commentary and discussion on the treatment of female migrant workers and their families in the People’s Republic of China.

Keywords: female migrant worker’s rights, the People’s Republic of China, forced labor, Hukou residency system

Procedia PDF Downloads 116
170 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures

Authors: Irfan Anjum Manarvi, Fawzi Aljassir

Abstract:

Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.

Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis

Procedia PDF Downloads 302
169 Oat Bran Associated with Nutritional Counseling in Treating Obesity and Other Risk Factors for Cardiovascular Disease

Authors: Simone Raimondi De Souza, Glaucia Maria Moraes De Oliveira, Ronir Raggio Luiz, Glorimar Rosa

Abstract:

Introduction: Obesity is among the main risk factors for cardiovascular disease (CVD). Genesis is multifactorial, including genetic, hormonal and environmental factors disorders, among which inadequate feeding pattern, for which nutritional counseling strategies have proven effective. The consumption of beta-glucans (soluble fibers that reportedly promote satiety) present in oat bran can be an effective strategy for preventing and treating obesity. Other benefits have been observed with oat bran consumption, such as reduction of hypercholesterolemia and hyperglycemia, two other risk factors for CVD. Objectives: To analyze the effect of oat bran consumption associated with nutritional counseling in reducing body mass index (BMI), blood cholesterol, glucose profile, waist and neck circumference in obese individuals, and to evaluate the change in eating pattern. Methods: clinical trial, randomized, double-blind, placebo-controlled, lasting 90 days with adults of both genders, with BMI ≥30kg/m2. The study was approved by the Ethics in Research involving human beings in a public institute of cardiology, in Rio de Janeiro, Brazil. Individuals were invited to participate and accepted formally by signing the Terms of Consent. Participants were randomized into oat bran group (gOB) or placebo group (gPCB) and received, respectively: morning prepared consisting of 40g oat bran, 30g of skimmed milk powder and 1g sweetener sucralose; refined flour 40g rice, 30g of milk powder and 1g sweetener sucralose. The Ten Steps to Healthy Eating, of Brazilian Ministry of Health were used to support the nutritional counseling. Variables analyzed: gender; age; BMI, waist circumference (WC) neck circumference (NC); systolic blood pressure (SBP); diastolic blood pressure (DBP); food consumption, total cholesterol (TC), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), non-HDL cholesterol (nHDLc), triglycerides (TG), fasting glucose (FG), fasting insulin (FI) and HOMA-IR. Dietary intake was assessed by 24-hour dietary recall. The Diet Quality Index revised for the Brazilian population (IQD-R) assessed quality of feeding pattern. Statistical analyzes were performed using SPSS version 21, considering statistically significant p-value less than 0.05. Results: A total of 38 participants were included, age = 50 ± 7,6years, 63% women. 19 subjects were placed in gOB and 19 in gPCB. After intervention, statistically significant reductions were observed in the following parameters: in gOB: IQD-R, TC, LDL-c, nHDL-c, FI, SBP, DBP, BMI, WC, NC; in gPCB: IQD-R, LDL-c, SBP, DBP, BMI, WC, NC. No statistically significant differences were observed in the results between groups. Conclusion: Our results reinforce nutritional counseling as important strategy for prevention and treatment of obesity and suggest that inclusion of oat bran in daily diet can bring additional benefits controlling risk factors for CVD. More studies are needed to establish all benefits of oat bran to human health as well as the ideal daily dose for consumption.

Keywords: oat bran, cardiovascular disease, nutritional counseling, obesity

Procedia PDF Downloads 203
168 Rainwater Management: A Case Study of Residential Reconstruction of Cultural Heritage Buildings in Russia

Authors: V. Vsevolozhskaia

Abstract:

Since 1990, energy-efficient development concepts have constituted both a turning point in civil engineering and a challenge for an environmentally friendly future. Energy and water currently play an essential role in the sustainable economic growth of the world in general and Russia in particular: the efficiency of the water supply system is the second most important parameter for energy consumption according to the British assessment method, while the water-energy nexus has been identified as a focus for accelerating sustainable growth and developing effective, innovative solutions. The activities considered in this study were aimed at organizing and executing the renovation of the property in residential buildings located in St. Petersburg, specifically buildings with local or federal historical heritage status under the control of the St. Petersburg Committee for the State Inspection and Protection of Historic and Cultural Monuments (KGIOP) and UNESCO. Even after reconstruction, these buildings still fall into energy efficiency class D. Russian Government Resolution No. 87 on the structure and required content of project documentation contains a section entitled ‘Measures to ensure compliance with energy efficiency and equipment requirements for buildings, structures, and constructions with energy metering devices’. Mention is made of the need to install collectors and meters, which only calculate energy, neglecting the main purpose: to make buildings more energy-efficient, potentially even energy efficiency class A. The least-explored aspects of energy-efficient technology in the Russian Federation remain the water balance and the possibility of implementing rain and meltwater collection systems. These modern technologies are used exclusively for new buildings due to a lack of government directive to create project documentation during the planning of major renovations and reconstruction that would include the collection and reuse of rainwater. Energy-efficient technology for rain and meltwater collection is currently applied only to new buildings, even though research has proved that using rainwater is safe and offers a huge step forward in terms of eco-efficiency analysis and water innovation. Where conservation is mandatory, making changes to protected sites is prohibited. In most cases, the protected site is the cultural heritage building itself, including the main walls and roof. However, the installation of a second water supply system and collection of rainwater would not affect the protected building itself. Water efficiency in St. Petersburg is currently considered only from the point of view of the installation that regulates the flow of the pipeline shutoff valves. The development of technical guidelines for the use of grey- and/or rainwater to meet the needs of residential buildings during reconstruction or renovation is not yet complete. The ideas for water treatment, collection and distribution systems presented in this study should be taken into consideration during the reconstruction or renovation of residential cultural heritage buildings under the protection of KGIOP and UNESCO. The methodology applied also has the potential to be extended to other cultural heritage sites in northern countries and lands with an average annual rainfall of over 600 mm to cover average toilet-flush needs.

Keywords: cultural heritage, energy efficiency, renovation, rainwater collection, reconstruction, water management, water supply

Procedia PDF Downloads 71
167 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 420
166 Targeting Peptide Based Therapeutics: Integrated Computational and Experimental Studies of Autophagic Regulation in Host-Parasite Interaction

Authors: Vrushali Guhe, Shailza Singh

Abstract:

Cutaneous leishmaniasis is neglected tropical disease present worldwide caused by the protozoan parasite Leishmania major, the therapeutic armamentarium for leishmaniasis are showing several limitations as drugs are showing toxic effects with increasing resistance by a parasite. Thus identification of novel therapeutic targets is of paramount importance. Previous studies have shown that autophagy, a cellular process, can either facilitate infection or aid in the elimination of the parasite, depending on the specific parasite species and host background in leishmaniasis. In the present study, our objective was to target the essential autophagy protein ATG8, which plays a crucial role in the survival, infection dynamics, and differentiation of the Leishmania parasite. ATG8 in Leishmania major and its homologue, LC3, in Homo sapiens, act as autophagic markers. Present study manifested the crucial role of ATG8 protein as a potential target for combating Leishmania major infection. Through bioinformatics analysis, we identified non-conserved motifs within the ATG8 protein of Leishmania major, which are not present in LC3 of Homo sapiens. Against these two non-conserved motifs, we generated a peptide library of 60 peptides on the basis of physicochemical properties. These peptides underwent a filtering process based on various parameters, including feasibility of synthesis and purification, compatibility with Selective Reaction Monitoring (SRM)/Multiple reaction monitoring (MRM), hydrophobicity, hydropathy index, average molecular weight (Mw average), monoisotopic molecular weight (Mw monoisotopic), theoretical isoelectric point (pI), and half-life. Further filtering criterion shortlisted three peptides by using molecular docking and molecular dynamics simulations. The direct interaction between ATG8 and the shortlisted peptides was confirmed through Surface Plasmon Resonance (SPR) experiments. Notably, these peptides exhibited the remarkable ability to penetrate the parasite membrane and exert profound effects on Leishmania major. The treatment with these peptides significantly impacted parasite survival, leading to alterations in the cell cycle and morphology. Furthermore, the peptides were found to modulate autophagosome formation, particularly under starved conditions, suggesting their involvement in disrupting the regulation of autophagy within Leishmania major. In vitro, studies demonstrated that the selected peptides effectively reduced the parasite load within infected host cells. Encouragingly, these findings were corroborated by in vivo experiments, which showed a reduction in parasite burden upon peptide administration. Additionally, the peptides were observed to affect the levels of LC3II within host cells. In conclusion, our findings highlight the efficacy of these novel peptides in targeting Leishmania major’s ATG8 and disrupting parasite survival. These results provide valuable insights into the development of innovative therapeutic strategies against leishmaniasis via targeting autophagy protein ATG8 of Leishmania major.

Keywords: ATG8, leishmaniasis, surface plasmon resonance, MD simulation, molecular docking, peptide designing, therapeutics

Procedia PDF Downloads 51
165 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds

Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca

Abstract:

Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.

Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy

Procedia PDF Downloads 227
164 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char

Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain

Abstract:

Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.

Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material

Procedia PDF Downloads 370
163 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 175
162 Conservation Challenges of Fish and Fisheries in Lake Tana, Ethiopia

Authors: Shewit Kidane, Abebe Getahun, Wassie Anteneh, Admassu Demeke, Peter Goethals

Abstract:

We have reviewed major findings of scientific studies on Lake Tana fish resources and their threats. The aim was to provide summarized information for all concerned bodies and international readers to get full and comprehensive picture about the lake’s fish resource and conservation problems. The Lake Tana watershed comprise 28 fish species, of which 21 are endemic. Moreover, Lake Tana is the one among the top 250 lake regions of global importance for biodiversity and it is world recognized migratory birds wintering site. Lake Tana together with its adjacent wetlands provide directly and indirectly a livelihood for more than 500,000 people. However, owing to anthropogenic activities, the lake ecosystem as well as fish and attributes of the fisheries sector are severely degraded. Fish species in Lake Tana are suffering due to illegal fishing, damming, habitat/breeding ground degradation, wastewater disposal, introduction of exotic species, and lack of implementing fisheries regulations. Currently, more than 98% of fishers in Lake Tana are using the most destructive monofilament. Indeed, dams, irrigation schemes and hydropower are constructed in response to the emerging development need only. Mitigation techniques such as construction of fish ladders for the migratory fishes are the most forgotten. In addition, water resource developers are likely unaware of both the importance of the fisheries and the impact of dam construction on fish. As a result, the biodiversity issue is often missed. Besides, Lake Tana wetlands, which play vital role to sustain biodiversity, are not wisely utilised in the sense of the Ramsar Convention’s definition. Wetlands are considered as unhealthy and hence wetland conversion for the purpose of recession agriculture is still seen as advanced mode of development. As a result, many wetlands in the lake watershed are shrinking drastically over time and Cyprus papyrus, one of the characteristic features of Lake Tana, has dramatically declined in its distribution with some local extinction. Furthermore, the recently introduced water hyacinth (Eichhornia crassipes) is creating immense problems on the lake ecosystem. Moreover, currently, 1.56 million tons of sediment have deposited into the lake each year and wastes from the industries and residents are directly discharged into the lake without treatment. Recently, sign of eutrophication is revealed in Lake Tana and most coarsely, the incidence of cyanobacteria genus Microcystis was reported from the Bahir Dar Gulf of Lake Tana. Thus, the direct dependency of the communities on the lake water for drinking as well as to wash their body and clothes and its fisheries make the problem worst. Indeed, since it is home to many endemic migratory fish, such kind of unregulated developmental activities could be detrimental to their stocks. This can be best illustrated by the drastic stock reduction (>75% in biomass) of the world unique Labeobarbus species. So, unless proper management is put in place, the anthropogenic impacts can jeopardize the aquatic ecosystems. Therefore, in order to sustainably use the aquatic resources and fulfil the needs of the local people, every developmental activity and resource utilization should be carried out adhering to the available policies.

Keywords: anthropogenic impacts, dams, endemic fish, wetland degradation

Procedia PDF Downloads 208
161 The Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2)-derived Oncolytic Protein Reprograms Tumor-Associated Macrophages

Authors: Farrah Putri Salmanida, Mei-Li Wu, Rika Wahyuningtyas, Wen-Bin Chung, Hso-Chi Chaung, Ko-Tung Chang

Abstract:

Within the field of immunotherapy, oncolytic virotherapy (OVT) employs dual approaches that directly eliminate tumor cells while preserving healthy ones and indirectly reprogram the tumor microenvironment (TME) to elicit antitumor responses. Within the TME, tumor associated macrophages (TAMs) manifest characteristics akin to those of anti-inflammatory M2 macrophages, thus earning the designation of M2-like TAMs. In prior research, two antigens denoted as A1 (g6Ld10T) and A3 (ORF6L5), derived from a complete sequence of ORF5 with partial sequence of ORF6 in Porcine Reproductive and Respiratory Syndrome Virus Genotype 2 (PRRSV-2), demonstrated the capacity to repolarize M2-type porcine alveolar macrophages (PAMs) into M1 phenotypes. In this study, we sought for utilizing OVT strategies by introducing A1 or A3 on TAMs to endow them with the anti-tumor traits of M1 macrophages while retaining their capacity to target cancer cells. Upon exposing human THP-1-derived M2 macrophages to a cross-species test with 2 µg/ml of either A1 or A3 for 24 hours, real time PCR revealed that A3, but not A1, treated cells exhibited upregulated gene expressions of M1 markers (CCR7, IL-1ß, CCL2, Cox2, CD80). These cells reacted to virus-derived antigen, as evidenced by increased expression of pattern-recognition receptors TLR3, TLR7, and TLR9, subsequently providing feedback in the form of type I interferon responses like IFNAR1, IFN-ß, IRF3, IRF7, OAS1, Mx1, and ISG15. Through an MTT assay, only after 15 µg/ml of A3 treatment could the cell viability decrease, with a predicted IC50 of 16.96 µg/ml. Interestingly, A3 caused dose-dependent toxicity to a rat C6 glial cancer cell line even at doses as low as 2.5 µg/ml and reached its IC50 at 9.419 µg/ml. Using Annexin V/7AAD staining and PCR test, we deduced that a significant proportion of C6 cells were undergoing the early apoptosis phase predominantly through the intrinsic apoptosis cascade involving Bcl-2 family proteins. Following this stage, we conducted a test on A3’s repolarization ability, which revealed a significant rise in M1 gene expression markers, such as TNF, CD80, and IL-1ß, in M2-like TAMs generated in vitro from murine RAW264.7 macrophages grown with conditioned medium of 4T1 breast cancer cells. This was corroborated by the results of transcriptome analysis, which revealed that the primary subset among the top 10 to top 30 significantly upregulated differentially expressed genes (DEGs) dominantly consisted of M1 macrophages profiles, including Ccl3, Ccl4, Csf3, TNF, Bcl6b, Stc1, and Dusp2. Our findings unveiled the remarkable potential of the PRRSV-derived antigen A3 to repolarize macrophages while also being capable of selectively inducing apoptosis in cancerous cells. While further in vivo study is needed for A3, it holds promise as an adjuvant by its dual effects in cancer therapy modalities.

Keywords: cancer cell apoptosis, interferon responses, macrophage repolarization, recombinant protein

Procedia PDF Downloads 29
160 A Clinico-Bacteriological Study and Their Risk Factors for Diabetic Foot Ulcer with Multidrug-Resistant Microorganisms in Eastern India

Authors: Pampita Chakraborty, Sukumar Mukherjee

Abstract:

This study was done to determine the bacteriological profile and antibiotic resistance of the isolates and to find out the potential risk factors for infection with multidrug-resistant organisms. Diabetic foot ulcer is a major medical, social, economic problem and a leading cause of morbidity and mortality, especially in the developing countries like India. 25 percent of all diabetic patients develop a foot ulcer at some point in their lives which is highly susceptible to infections and that spreads rapidly, leading to overwhelming tissue destruction and subsequent amputation. Infection with multidrug resistant organisms (MDRO) may increase the cost of management and may cause additional morbidity and mortality. Proper management of these infections requires appropriate antibiotic selection based on culture and antimicrobial susceptibility testing. Early diagnosis of microbial infections is aimed to institute the appropriate antibacterial therapy initiative to avoid further complications. A total of 200 Type 2 Diabetic Mellitus patients with infection were admitted at GD Hospital and Diabetes Institute, Kolkata. 60 of them who developed ulcer during the year 2013 were included in this study. A detailed clinical history and physical examination were carried out for every subject. Specimens for microbiological studies were obtained from ulcer region. Gram-negative bacilli were tested for extended spectrum Beta-lactamase (ESBL) production by double disc diffusion method. Staphylococcal isolates were tested for susceptibility to oxacillin by screen agar method and disc diffusion. Potential risk factors for MDRO-positive samples were explored. Gram-negative aerobes were most frequently isolated, followed by gram-positive aerobes. Males were predominant in the study and majority of the patients were in the age group of 41-60 years. The presence of neuropathy was observed in 80% cases followed by peripheral vascular disease (73%). Proteus spp. (22) was the most common pathogen isolated, followed by E.coli (17). Staphylococcus aureus was predominant amongst the gram-positive isolates. S.aureus showed a high rate of resistance to antibiotic tested (63.6%). Other gram-positive isolates were found to be highly resistant to erythromycin, tetracycline and ciprofloxacin, 40% each. All isolates were found to be sensitive to Vancomycin and Linezolid. ESBL production was noted in Proteus spp and E.coli. Approximately 70 % of the patients were positive for MDRO. MDRO-infected patients had poor glycemic control (HbA1c 11± 2). Infection with MDROs is common in diabetic foot ulcers and is associated with risk factors like inadequate glycemic control, the presence of neuropathy, osteomyelitis, ulcer size and increased the requirement for surgical treatment. There is a need for continuous surveillance of resistant bacteria to provide the basis for empirical therapy and reduce the risk of complications.

Keywords: diabetic foot ulcer, bacterial infection, multidrug-resistant organism, extended spectrum beta-lactamase

Procedia PDF Downloads 311
159 A Proposal of a Strategic Framework for the Development of Smart Cities: The Argentinian Case

Authors: Luis Castiella, Mariano Rueda, Catalina Palacio

Abstract:

The world’s rapid urbanisation represents an excellent opportunity to implement initiatives that are oriented towards a country’s general development. However, this phenomenon has created considerable pressure on current urban models, pushing them nearer to a crisis. As a result, several factors usually associated with underdevelopment have been steadily rising. Moreover, actions taken by public authorities have not been able to keep up with the speed of urbanisation, which has impeded them from meeting the demands of society, responding with reactionary policies instead of with coordinated, organised efforts. In contrast, the concept of a Smart City which emerged around two decades ago, in principle, represents a city that utilises innovative technologies to remedy the everyday issues of the citizen, empowering them with the newest available technology and information. This concept has come to adopt a wider meaning, including human and social capital, as well as productivity, economic growth, quality of life, environment and participative governance. These developments have also disrupted the management of institutions such as academia, which have become key in generating scientific advancements that can solve pressing problems, and in forming a specialised class that is able to follow up on these breakthroughs. In this light, the Ministry of Modernisation of the Argentinian Nation has created a model that is rooted in the concept of a ‘Smart City’. This effort considered all the dimensions that are at play in an urban environment, with careful monitoring of each sub-dimensions in order to establish the government’s priorities and improving the effectiveness of its operations. In an attempt to ameliorate the overall efficiency of the country’s economic and social development, these focused initiatives have also encouraged citizen participation and the cooperation of the private sector: replacing short-sighted policies with some that are coherent and organised. This process was developed gradually. The first stage consisted in building the model’s structure; the second, at applying the method created on specific case studies and verifying that the mechanisms used respected the desired technical and social aspects. Finally, the third stage consists in the repetition and subsequent comparison of this experiment in order to measure the effects on the ‘treatment group’ over time. The first trial was conducted on 717 municipalities and evaluated the dimension of Governance. Results showed that levels of governmental maturity varied sharply with relation to size: cities with less than 150.000 people had a strikingly lower level of governmental maturity than cities with more than 150.000 people. With the help of this analysis, some important trends and target population were made apparent, which enabled the public administration to focus its efforts and increase its probability of being successful. It also permitted to cut costs, time, and create a dynamic framework in tune with the population’s demands, improving quality of life with sustained efforts to develop social and economic conditions within the territorial structure.

Keywords: composite index, comprehensive model, smart cities, strategic framework

Procedia PDF Downloads 154
158 Development of PCL/Chitosan Core-Shell Electrospun Structures

Authors: Hilal T. Sasmazel, Seda Surucu

Abstract:

Skin tissue engineering is a promising field for the treatment of skin defects using scaffolds. This approach involves the use of living cells and biomaterials to restore, maintain, or regenerate tissues and organs in the body by providing; (i) larger surface area for cell attachment, (ii) proper porosity for cell colonization and cell to cell interaction, and (iii) 3-dimensionality at macroscopic scale. Recent studies on this area mainly focus on fabrication of scaffolds that can closely mimic the natural extracellular matrix (ECM) for creation of tissue specific niche-like environment at the subcellular scale. Scaffolds designed as ECM-like architectures incorporating into the host with minimal scarring/pain and facilitate angiogenesis. This study is related to combining of synthetic PCL and natural chitosan polymers to form 3D PCL/Chitosan core-shell structures for skin tissue engineering applications. Amongst the polymers used in tissue engineering, natural polymer chitosan and synthetic polymer poly(ε-caprolactone) (PCL) are widely preferred in the literature. Chitosan has been among researchers for a very long time because of its superior biocompatibility and structural resemblance to the glycosaminoglycan of bone tissue. However, the low mechanical flexibility and limited biodegradability properties reveals the necessity of using this polymer in a composite structure. On the other hand, PCL is a versatile polymer due to its low melting point (60°C), ease of processability, degradability with non-enzymatic processes (hydrolysis) and good mechanical properties. Nevertheless, there are also several disadvantages of PCL such as its hydrophobic structure, limited bio-interaction and susceptibility to bacterial biodegradation. Therefore, it became crucial to use both of these polymers together as a hybrid material in order to overcome the disadvantages of both polymers and combine advantages of those. The scaffolds here were fabricated by using electrospinning technique and the characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Photoelectron spectroscopy (XPS). Additionally, gas permeability test, mechanical test, thickness measurement and PBS absorption and shrinkage tests were performed for all type of scaffolds (PCL, chitosan and PCL/chitosan core-shell). By using ImageJ launcher software program (USA) from SEM photographs the average inter-fiber diameter values were calculated as 0.717±0.198 µm for PCL, 0.660±0.070 µm for chitosan and 0.412±0.339 µm for PCL/chitosan core-shell structures. Additionally, the average inter-fiber pore size values exhibited decrease of 66.91% and 61.90% for the PCL and chitosan structures respectively, compare to PCL/chitosan core-shell structures. TEM images proved that homogenous and continuous bead free core-shell fibers were obtained. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. Measured average gas permeability value of produced PCL/chitosan core-shell structure was determined 2315±3.4 g.m-2.day-1. In the future, cell-material interactions of those developed PCL/chitosan core-shell structures will be carried out with L929 ATCC CCL-1 mouse fibroblast cell line. Standard MTT assay and microscopic imaging methods will be used for the investigation of the cell attachment, proliferation and growth capacities of the developed materials.

Keywords: chitosan, coaxial electrospinning, core-shell, PCL, tissue scaffold

Procedia PDF Downloads 459