Search results for: climate-smart agriculture
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1533

Search results for: climate-smart agriculture

93 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 120
92 Assessing the High Rate of Deforestation Caused by the Operations of Timber Industries in Ghana

Authors: Obed Asamoah

Abstract:

Forests are very vital for human survival and our well-being. During the past years, the world has taken an increasingly significant role in the modification of the global environment. The high rate of deforestation in Ghana is of primary national concern as the forests provide many ecosystem services and functions that support the country’s predominantly agrarian economy and foreign earnings. Ghana forest is currently major source of carbon sink that helps to mitigate climate change. Ghana forests, both the reserves and off-reserves, are under pressure of deforestation. The causes of deforestation are varied but can broadly be categorized into anthropogenic and natural factors. For the anthropogenic factors, increased wood fuel collection, clearing of forests for agriculture, illegal and poorly regulated timber extraction, social and environmental conflicts, increasing urbanization and industrialization are the primary known causes for the loss of forests and woodlands. Mineral exploitation in the forest areas is considered as one of the major causes of deforestation in Ghana. Mining activities especially mining of gold by both the licensed mining companies and illegal mining groups who are locally known as "gallantly mining" also cause damage to the nation's forest reserves. Several works have been conducted regarding the causes of the high rate of deforestation in Ghana, major attention has been placed on illegal logging and using forest lands for illegal farming and mining activities. Less emphasis has been placed on the timber production companies on their harvesting methods in the forests in Ghana and other activities that are carried out in the forest. The main objective of the work is to find out the harvesting methods and the activities of the timber production companies and their effects on the forests in Ghana. Both qualitative and quantitative research methods were engaged in the research work. The study population comprised of 20 Timber industries (Sawmills) forest areas of Ghana. These companies were selected randomly. The cluster sampling technique was engaged in selecting the respondents. Both primary and secondary data were employed. In the study, it was observed that most of the timber production companies do not know the age, the weight, the distance covered from the harvesting to the loading site in the forest. It was also observed that old and heavy machines are used by timber production companies in their operations in the forest, which makes the soil compact prevents regeneration and enhances soil erosion. It was observed that timber production companies do not abide by the rules and regulations governing their operations in the forest. The high rate of corruption on the side of the officials of the Ghana forestry commission makes the officials relax and do not embark on proper monitoring on the operations of the timber production companies which makes the timber companies to cause more harm to the forest. In other to curb this situation the Ghana forestry commission with the ministry of lands and natural resources should monitor the activities of the timber production companies and sanction all the companies that make foul play in their activities in the forest. The commission should also pay more attention to the policy “fell one plant 10” to enhance regeneration in both reserves and off-reserves forest.

Keywords: companies, deforestation, forest, Ghana, timber

Procedia PDF Downloads 162
91 Network Impact of a Social Innovation Initiative in Rural Areas of Southern Italy

Authors: A. M. Andriano, M. Lombardi, A. Lopolito, M. Prosperi, A. Stasi, E. Iannuzzi

Abstract:

In according to the scientific debate on the definition of Social Innovation (SI), the present paper identifies SI as new ideas (products, services, and models) that simultaneously meet social needs and create new social relationships or collaborations. This concept offers important tools to unravel the difficult condition for the agricultural sector in marginalized areas, characterized by the abandonment of activities, low level of farmer education, and low generational renewal, hampering new territorial strategies addressed at and integrated and sustainable development. Models of SI in agriculture, starting from bottom up approach or from the community, are considered to represent the driving force of an ecological and digital revolution. A system based on SI may be able to grasp and satisfy individual and social needs and to promote new forms of entrepreneurship. In this context, Vazapp ('Go Hoeing') is an emerging SI model in southern Italy that promotes solutions for satisfying needs of farmers and facilitates their relationships (creation of network). The Vazapp’s initiative, considered in this study, is the Contadinners ('Farmer’s dinners'), a dinner held at farmer’s house where stakeholders living in the surrounding area know each other and are able to build a network for possible future professional collaborations. The aim of the paper is to identify the evolution of farmers’ relationships, both quantitatively and qualitatively, because of the Contadinner’s initiative organized by Vazapp. To this end, the study adopts the Social Network Analysis (SNA) methodology by using UCINET (Version 6.667) software to analyze the relational structure. Data collection was realized through a questionnaire distributed to 387 participants in the twenty 'Contadinners', held from February 2016 to June 2018. The response rate to the survey was about 50% of farmers. The elaboration data was focused on different aspects, such as: a) the measurement of relational reciprocity among the farmers using the symmetrize method of answers; b) the measurement of the answer reliability using the dichotomize method; c) the description of evolution of social capital using the cohesion method; d) the clustering of the Contadinners' participants in followers and not-followers of Vazapp to evaluate its impact on the local social capital. The results concern the effectiveness of this initiative in generating trustworthy relationships within the rural area of southern Italy, typically affected by individualism and mistrust. The number of relationships represents the quantitative indicator to define the dimension of the network development; while the typologies of relationships (from simple friendship to formal collaborations, for branding new cooperation initiatives) represents the qualitative indicator that offers a diversified perspective of the network impact. From the analysis carried out, Vazapp’s initiative represents surely a virtuous SI model to catalyze the relationships within the rural areas and to develop entrepreneurship based on the real needs of the community.

Keywords:

Procedia PDF Downloads 85
90 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract

Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna

Abstract:

In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.

Keywords: barley, functional foods, olive leaf, polyphenols, shelf life

Procedia PDF Downloads 277
89 Analysis of Lesotho Wool Production and Quality Trends 2008-2018

Authors: Papali Maqalika

Abstract:

Lesotho farmers produce significant quantities of Merino wool of a quality competitive on the global market and make a substantial impact on the economy of Lesotho. However, even with the economic contribution, the production and quality information and trends of this fibre has been recognised nor documented. This is a sombre shortcoming as Lesotho wool is unknown on international markets. The situation is worsened by the fact that Lesotho wool is auction together with South African wool, trading and benchmarking Lesotho wool are difficult not to mention attempts to advance its production and quality. Based on the information above, available data on Lesotho wool for 10 years were collected and analysed for trends to used in benchmarking where applicable. The fibre properties analysed include fibre diameter (fineness), vegetable matter and yield, application and price. These were selected because they are fundamental in determining fibre quality and price. Production of wool in Lesotho has increased slightly over the ten years covered by this study. It also became apparent that production and quality trends of Lesotho wool are greatly influenced by the farming practices, breed of sheep and climatic conditions. Greater adoption of the merino sheep breed, sheds/barns and sheep coats are suggested as ways to reduce mortality rate (due to extremely cold temperatures), to reduce the vegetable matter on the fibre thus improving the quality and increase yield per sheep and production as a whole. Some farming practices such as the lack of barns, supplementary feeding and veterinary care present constraints in wool production. The districts in the Highlands region were found to have the highest production of mostly wool, this being ascribed to better pastures, climatic, social and other conditions conducive to wool production. The production of Lesotho wool and its quality can be improved further, possibly because of the interventions the Ministry of Agriculture introduced through the Small Agricultural and Development Project (SADP) and other appropriate initiatives by the National Wool and Mohair Growers Association (NWMGA). The challenge however, remains the lack of direct involvement of the wool growers (farmers) in decisions making and policy development, this potentially influences and may lead to the reluctance to adopt the strategies. In some cases, the wool growers do not receive the benefits associated with the interventions immediately. Based on these discoveries; it is recommended that the relevant educators and researchers in wool and textile science, as well as the local wool farmers in Lesotho, be represented in policy and other decision making forums relating to these interventions. In this way, educational campaigns and training workshops will be demand driven with a better chance of adoption and success. This is because the direct beneficiaries will have been involved at inception and they will have a sense of ownership as well as intent to see them through successfully.

Keywords: lesotho wool, wool quality, wool production, lesotho economy, global market, apparel wool, database, textile science, exports, animal farming practices, intimate apparel, interventions

Procedia PDF Downloads 60
88 Management Potentialities Of Rice Blast Disease Caused By Magnaporthe Grisae Using New Nanofungicides Derived From Chitosan

Authors: Abdulaziz Bashir Kutawa1, 2, *, Khairulmazmi Ahmad 1, 3, Mohd Zobir Hussein 4, Asgar Ali 5, * Mohd Aswad Abdul Wahab1, Amara Rafi3, Mahesh Tiran Gunasena1, 6, Muhammad Ziaur Rahman1, 7, Md Imam Hossain1, And Syazwan Afif Mohd Zobir1

Abstract:

Various abiotic and biotic stresses have an impact on rice production all around the world. The most serious and prevalent disease in rice plants, known as rice blast, is one of the major obstacles to the production of rice. It is one of the diseases that has the greatest negative effects on rice farming globally, the disease is caused by a fungus called Magnaporthe grisae. Since nanoparticles were shown to have an inhibitory impact on certain types of fungus, nanotechnology is a novel notion to enhance agriculture by battling plant diseases. Utilizing nanocarrier systems enables the active chemicals to be absorbed, attached, and encapsulated to produce efficient nanodelivery formulations. The objectives of this research work were to determine the efficacy and mode of action of the nanofungicides (in-vitro) and in field conditions (in-vivo). Ionic gelation method was used in the development of the nanofungicides. Using the poisoned media method, the synthesized agronanofungicides' in-vitro antifungal activity was assessed against M. grisae. The potato dextrose agar (PDA) was amended in several concentrations; 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, and 0.35 ppm for the nanofungicides. Medium with the only solvent served as a control. Every day, mycelial growth was measured, and PIRG (percentage inhibition of radial growth) was also computed. Every day, mycelial growth was measured, and PIRG (percentage inhibition of radial growth) was also computed. Based on the results of the zone of inhibition, the chitosan-hexaconazole agronanofungicide (2g/mL) was the most effective fungicide to inhibit the growth of the fungus with 100% inhibition at 0.2, 0.25, 0.30, and 0.35 ppm, respectively. Then followed by carbendazim analytical fungicide that inhibited the growth of the fungus (100%) at 5, 10, 25, 50, and 100 ppm, respectively. The least were found to be propiconazole and basamid fungicides with 100% inhibition only at 100 ppm. The scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), and transmission electron microscope (TEM) were used to study the mechanisms of action of the M. grisae fungal cells. The results showed that both carbendazim, chitosan-hexaconazole, and HXE were found to be the most effective fungicides in disrupting the mycelia of the fungus, and internal structures of the fungal cells. The results of the field assessment showed that the CHDEN treatment (5g/L, double dosage) was found to be the most effective fungicide to reduce the intensity of the rice blast disease with DSI of 17.56%, lesion length (0.43 cm), DR of 82.44%, AUDPC of 260.54 Unit2, and PI of 65.33%, respectively. The least treatment was found to be chitosan-hexaconazole-dazomet (2.5g/L, MIC). The usage of CHDEN and CHEN nanofungicides will significantly assist in lessening the severity of rice blast in the fields, increasing output and profit for rice farmers.

Keywords: chitosan, hexaconazole, disease incidence, and magnaporthe grisae

Procedia PDF Downloads 39
87 The Causes and Potential Solutions for Foodborne Illness, Food Security, and Food Safety: In the Case of the East Harerghe Region of Oromia, Ethiopia

Authors: Tuji Jemal Ahmed, Abdi Mohammed, Geremew Geidare Kailo

Abstract:

Food security, foodborne illness, and food safety are critical issues that affect the East Harerghe region of Oromia, Ethiopia. Despite the region's potential for agriculture, food insecurity remains a significant problem, with many households experiencing chronic hunger and malnutrition. The region also experiences high rates of foodborne illnesses, including cholera, typhoid, and diarrhea, which are caused by poor hygiene and sanitation practices. Additionally, food safety is a significant challenge, particularly in rural areas, where there is a lack of infrastructure, inadequate food storage facilities, and limited access to information about food safety. There are several factors that contribute to the current situation in the East Harerghe region; firstly, the region is susceptible to natural disasters, for instance, drought, which affects crop yields and livestock production. Secondly, the region also experiences poor infrastructure, which affects the storage and transportation of food, particularly in rural areas. Thirdly, there is a lack of awareness and knowledge on good hygiene and sanitation practices, specifically during food handling, processing, and storage. Fourthly, unitability due to conflict and other forms of land degradation exacerbates food insecurity and malnutrition. Finally, limited access to financial resources and markets commonly affects smallholder farmers by their ability to produce and sell food. To address the current situation in that area, several potential solutions can be implemented; investment in infrastructure is necessary, especially in rural areas, to improve the storage and transportation of food. Education and awareness programs on good hygiene and sanitation practices should target local communities, smallholder farmers, and food vendors. Financial resources and markets should be made more accessible to smallholder farmers, particularly through the provision of credit and improved access to markets. Addressing the underlying causes of conflict and promoting peaceful coexistence can help to reduce displacement and loss of livelihoods. Finally, the enforcement of food safety regulations and the implementation of standards for food processing and storage facilities are necessary to ensure food safety. In conclusion, addressing the challenges of food security, foodborne illness, and food safety in the East Harerghe region requires a coordinated effort from various stakeholders, including the government, non-governmental organizations, and local communities. By implementing the solutions outlined above, the region can improve its food security, prevent foodborne illnesses, and keep food safe for its population. Eventually, building the resilience of communities to shocks such as droughts, floods, and conflict is necessary to ensure long-term food security in the region.

Keywords: foodborne illness, food handling, food safety, food security

Procedia PDF Downloads 68
86 Strategies for Conserving Ecosystem Functions of the Aravalli Range to Combat Land Degradation: Case of Kishangarh and Tijara Tehsil in Rajasthan, India

Authors: Saloni Khandelwal

Abstract:

The Aravalli hills are one of the oldest and most distinctive mountain chains of peninsular India spanning in around 692 Km. More than 60% of it falls in the state of Rajasthan and influences ecological equilibrium in about 30% of the state. Because of natural and human-induced activities, physical gaps in the Aravallis are increasing, new gaps are coming up, and its physical structure is changing. There are no strict regulations to protect and monitor the Aravallis and no comprehensive research and study has been done for the enhancement of ecosystem functions of these ranges. Through this study, various factors leading to Aravalli’s degradation are identified and its impacts on selected areas are analyzed. A literature study is done to identify factors responsible for the degradation. To understand the severity of the problem at the lowest level, two tehsils from different districts in Rajasthan, which are the most affected due to illegal mining and increasing physical gaps are selected for the study. Case-1 of three-gram panchayats in Kishangarh Tehsil of Ajmer district focuses on the expanding physical gaps in the Aravalli range, and case-2 of three-gram panchayats in Tijara Tehsil of Alwar district focuses on increasing illegal mining in the Aravalli range. For measuring the degradation, physical, biological and social indicators are identified through literature review and for both the cases analysis is done on the basis of these indicators. Primary survey and focus group discussions are done with villagers, mining owners, illegal miners, and various government officials to understand dependency of people on the Aravalli and its importance to them along with the impact of degradation on their livelihood and environment. From the analysis, it has been found that green cover is continuously decreasing in both cases, dense forest areas do not exist now, the groundwater table is depleting at a very fast rate, soil is losing its moisture resulting in low yield and shift in agriculture. Wild animals which were easily seen earlier are now extinct. Cattles of villagers are dependent on the forest area in the Aravalli range for food, but with a decrease in fodder, their cattle numbers are decreasing. There is a decrease in agricultural land and an increase in scrub and salt-affected land. Analysis of various national and state programmes, acts which were passed to conserve biodiversity has been done showing that none of them is helping much to protect the Aravalli. For conserving the Aravalli and its forest areas, regional level and local level initiatives are required and are proposed in this study. This study is an attempt to formulate conservation and management strategies for the Aravalli range. These strategies will help in improving biodiversity which can lead to the revival of its ecosystem functions. It will also help in curbing the pollution at the regional and local level. All this will lead to the sustainable development of the region.

Keywords: Aravalli, ecosystem, LULC, Rajasthan

Procedia PDF Downloads 110
85 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 43
84 Multivariate Ecoregion Analysis of Nutrient Runoff From Agricultural Land Uses in North America

Authors: Austin P. Hopkins, R. Daren Harmel, Jim A Ippolito, P. J. A. Kleinman, D. Sahoo

Abstract:

Field-scale runoff and water quality data are critical to understanding the fate and transport of nutrients applied to agricultural lands and minimizing their off-site transport because it is at that scale that agricultural management decisions are typically made based on hydrologic, soil, and land use factors. However, regional influences such as precipitation, temperature, and prevailing cropping systems and land use patterns also impact nutrient runoff. In the present study, the recently-updated MANAGE (Measured Annual Nutrient loads from Agricultural Environments) database was used to conduct an ecoregion-level analysis of nitrogen and phosphorus runoff from agricultural lands in the North America. Specifically, annual N and P runoff loads for cropland and grasslands in North American Level II EPA ecoregions were presented, and the impact of factors such as land use, tillage, and fertilizer timing and placement on N and P runoff were analyzed. Specifically we compiled annual N and P runoff load data (i.e., dissolved, particulate, and total N and P, kg/ha/yr) for each Level 2 EPA ecoregion and for various agricultural management practices (i.e., land use, tillage, fertilizer timing, fertilizer placement) within each ecoregion to showcase the analyses possible with the data in MANAGE. Potential differences in N and P runoff loads were evaluated between and within ecoregions with statistical and graphical approaches. Non-parametric analyses, mainly Mann-Whitney tests were conducted on median values weighted by the site years of data utilizing R because the data were not normally distributed, and we used Dunn tests and box and whisker plots to visually and statistically evaluate significant differences. Out of the 50 total North American Ecoregions, 11 were found that had significant data and site years to be utilized in the analysis. When examining ecoregions alone, it was observed that ER 9.2 temperate prairies had a significantly higher total N at 11.7 kg/ha/yr than ER 9.4 South Central Semi Arid Prairies with a total N of 2.4. When examining total P it was observed that ER 8.5 Mississippi Alluvial and Southeast USA Coastal Plains had a higher load at 3.0 kg/ha/yr than ER 8.2 Southeastern USA Plains with a load of 0.25 kg/ha/yr. Tillage and Land Use had severe impacts on nutrient loads. In ER 9.2 Temperate Prairies, conventional tillage had a total N load of 36.0 kg/ha/yr while conservation tillage had a total N load of 4.8 kg/ha/yr. In all relevant ecoregions, when corn was the predominant land use, total N levels significantly increased compared to grassland or other grains. In ER 8.4 Ozark-Ouachita, Corn had a total N of 22.1 kg/ha/yr while grazed grassland had a total N of 2.9 kg/ha/yr. There are further intricacies of the interactions that agricultural management practices have on one another combined with ecological conditions and their impacts on the continental aquatic nutrient loads that still need to be explored. This research provides a stepping stone to further understanding of land and resource stewardship and best management practices.

Keywords: water quality, ecoregions, nitrogen, phosphorus, agriculture, best management practices, land use

Procedia PDF Downloads 56
83 Characterization of Extra Virgin Olive Oil from Olive Cultivars Grown in Pothwar, Pakistan

Authors: Abida Mariam, Anwaar Ahmed, Asif Ahmad, Muhammad Sheeraz Ahmad, Muhammad Akram Khan, Muhammad Mazahir

Abstract:

The plant olive (Olea europaea L.) is known for its commercial significance due to nutritional and health benefits. Pakistan is ranked 4th among countries who import olive oil whereas, 70% of edible oil is imported to fulfil the needs of the country. There exists great potential for Olea europaea cultivation in Pakistan. The popularity and cultivation of olive fruit has increased in recent past due to its high socio-economic and health significance. There exist almost negligible data on the chemical composition of extra virgin olive oil extracted from cultivars grown in Pothwar, an area with arid climate conducive for growth of olive trees. Keeping in view these factors a study has been conducted to characterize the olive oil extracted from olive cultivars collected from Pothwar regions of Pakistan for their nutritional potential and value addition. Ten olive cultivars (Gemlik, Coratina, Sevillano, Manzanilla, Leccino, Koroneiki, Frantoio, Arbiquina, Earlik and Ottobratica) were collected from Barani Agriculture Research Institute, Chakwal. Extra Virgin Olive Oil (EVOO) was extracted by cold pressing and centrifuging of olive fruits. The highest amount of oil was yielded in Coratina (23.9%) followed by Frantoio (23.7%), Koroneiki (22.8%), Sevillano (22%), Ottobratica (22%), Leccino (20.5%), Arbiquina (19.2%), Manzanilla (17.2%), Earlik (14.4%) and Gemllik (13.1%). The extracted virgin olive oil was studied for various physico- chemical properties and fatty acid profile. The Physical and chemical properties i.e., characteristic odor and taste, light yellow color with no foreign matter, insoluble impurities (≤0.08), fee fatty acid (0.1 to 0.8), acidity (0.5 to 1.6 mg/g acid), peroxide value (1.5 to 5.2 meqO2/kg), Iodine value (82 to 90), saponification value (186 to 192 mg/g) and unsaponifiable matter (4 to 8g/kg), ultraviolet spectrophotometric analysis (k232 and k270), showed values in the acceptable range, established by PSQCA and IOOC set for extra virgin olive oil. Olive oil was analyzed by Near Infra-Red spectrophotometry (NIR) for fatty acids sin olive oils which were found as: palmitic, palmitoleic, stearic, oleic, linoleic and alpha-linolenic. Major fatty acid was Oleic acid in the highest percentage ranging from (55 to 66.1%), followed by linoleic (10.4 to 20.4%), palmitic (13.8 to 19.5%), stearic (3.9 to 4.4%), palmitoleic (0.3 to 1.7%) and alpha-linolenic (0.9 to 1.7%). The results were significant with differences in parameters analyzed for all ten cultivars which confirm that genetic factors are important contributors in the physico-chemical characteristics of oil. The olive oil showed superior physical and chemical properties and recommended as one of the healthiest forms of edible oil. This study will help consumers to be more aware of and make better choices of healthy oils available locally thus contributing towards their better health.

Keywords: characterization, extra virgin olive oil, oil yield, fatty acids

Procedia PDF Downloads 65
82 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.

Keywords: earthquake, Nepal, reconstruction, settlement, transformation

Procedia PDF Downloads 94
81 Cytochrome B Diversity and Phylogeny of Egyptian Sheep Breeds

Authors: Othman E. Othman, Agnés Germot, Daniel Petit, Abderrahman Maftah

Abstract:

Threats to the biodiversity are increasing due to the loss of genetic diversity within the species utilized in agriculture. Due to the progressive substitution of the less productive, locally adapted and native breeds by highly productive breeds, the number of threatened breeds is increased. In these conditions, it is more strategically important than ever to preserve as much the farm animal diversity as possible, to ensure a prompt and proper response to the needs of future generations. Mitochondrial (mtDNA) sequencing has been used to explain the origins of many modern domestic livestock species. Studies based on sequencing of sheep mitochondrial DNA showed that there are five maternal lineages in the world for domestic sheep breeds; A, B, C, D and E. Because of the eastern location of Egypt in the Mediterranean basin and the presence of fat-tailed sheep breeds- character quite common in Turkey and Syria- where genotypes that seem quite primitive, the phylogenetic studies of Egyptian sheep breeds become particularly attractive. We aimed in this work to clarify the genetic affinities, biodiversity and phylogeny of five Egyptian sheep breeds using cytochrome B sequencing. Blood samples were collected from 63 animals belonging to the five tested breeds; Barki, Rahmani, Ossimi, Saidi and Sohagi. The total DNA was extracted and the specific primer allowed the conventional PCR amplification of the cytochrome B region of mtDNA (approximately 1272 bp). PCR amplified products were purified and sequenced. The alignment of Sixty-three samples was done using BioEdit software. DnaSP 5.00 software was used to identify the sequence variation and polymorphic sites in the aligned sequences. The result showed that the presence of 34 polymorphic sites leading to the formation of 18 haplotypes. The haplotype diversity in five tested breeds ranged from 0.676 in Rahmani breed to 0.894 in Sohagi breed. The genetic distances (D) and the average number of pairwise differences (Dxy) between breeds were estimated. The lowest distance was observed between Rahmani and Saidi (D: 1.674 and Dxy: 0.00150) while the highest distance was observed between Ossimi and Sohagi (D: 5.233 and Dxy: 0.00475). Neighbour-joining (Phylogeny) tree was constructed using Mega 5.0 software. The sequences of the 63 analyzed samples were aligned with references sequences of different haplogroups. The phylogeny result showed the presence of three haplogroups (HapA, HapB and HapC) in the 63 examined samples. The other two haplogroups described in literature (HapD and HapE) were not found. The result showed that 50 out of 63 tested animals cluster with haplogroup B (79.37%) whereas 7 tested animals cluster with haplogroup A (11.11%) and 6 animals cluster with haplogroup C (9.52%). In conclusion, the phylogenetic reconstructions showed that the majority of Egyptian sheep breeds belonging to haplogroup B which is the dominant haplogroup in Eastern Mediterranean countries like Syria and Turkey. Some individuals are belonging to haplogroups A and C, suggesting that the crosses were done with other breeds for characteristic selection for growth and wool quality.

Keywords: cytochrome B, diversity, phylogheny, Egyptian sheep breeds

Procedia PDF Downloads 350
80 Intended Use of Genetically Modified Organisms, Advantages and Disadvantages

Authors: Pakize Ozlem Kurt Polat

Abstract:

GMO (genetically modified organism) is the result of a laboratory process where genes from the DNA of one species are extracted and artificially forced into the genes of an unrelated plant or animal. This technology includes; nucleic acid hybridization, recombinant DNA, RNA, PCR, cell culture and gene cloning techniques. The studies are divided into three groups of properties transferred to the transgenic plant. Up to 59% herbicide resistance characteristic of the transfer, 28% resistance to insects and the virus seems to be related to quality characteristics of 13%. Transgenic crops are not included in the commercial production of each product; mostly commercial plant is soybean, maize, canola, and cotton. Day by day increasing GMO interest can be listed as follows; Use in the health area (Organ transplantation, gene therapy, vaccines and drug), Use in the industrial area (vitamins, monoclonal antibodies, vaccines, anti-cancer compounds, anti -oxidants, plastics, fibers, polyethers, human blood proteins, and are used to produce carotenoids, emulsifiers, sweeteners, enzymes , food preservatives structure is used as a flavor enhancer or color changer),Use in agriculture (Herbicide resistance, Resistance to insects, Viruses, bacteria, fungi resistance to disease, Extend shelf life, Improving quality, Drought , salinity, resistance to extreme conditions such as frost, Improve the nutritional value and quality), we explain all this methods step by step in this research. GMO has advantages and disadvantages, which we explain all of them clearly in full text, because of this topic, worldwide researchers have divided into two. Some researchers thought that the GMO has lots of disadvantages and not to be in use, some of the researchers has opposite thought. If we look the countries law about GMO, we should know Biosafety law for each country and union. For this Biosecurity reasons, the problems caused by the transgenic plants, including Turkey, to minimize 130 countries on 24 May 2000, ‘the United Nations Biosafety Protocol’ signed nudes. This protocol has been prepared in addition to Cartagena Biosafety Protocol entered into force on September 11, 2003. This protocol GMOs in general use by addressing the risks to human health, biodiversity and sustainable transboundary movement of all GMOs that may affect the prevention, transit covers were dealt and used. Under this protocol we have to know the, ‘US Regulations GMO’, ‘European Union Regulations GMO’, ‘Turkey Regulations GMO’. These three different protocols have different applications and rules. World population increasing day by day and agricultural fields getting smaller for this reason feeding human and animal we should improve agricultural product yield and quality. Scientists trying to solve this problem and one solution way is molecular biotechnology which is including the methods of GMO too. Before decide to support or against the GMO, should know the GMO protocols and it effects.

Keywords: biotechnology, GMO (genetically modified organism), molecular marker

Procedia PDF Downloads 212
79 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 45
78 Study on Changes of Land Use impacting the Process of Urbanization, by Using Landsat Data in African Regions: A Case Study in Kigali, Rwanda

Authors: Delphine Mukaneza, Lin Qiao, Wang Pengxin, Li Yan, Chen Yingyi

Abstract:

Human activities on land use make the land-cover gradually change or transit. In this study, we examined the use of Landsat TM data to detect the land use change of Kigali between 1987 and 2009 using remote sensing techniques and analysis of data using ENVI and ArcGIS, a GIS software. Six different categories of land use were distinguished: bare soil, built up land, wetland, water, vegetation, and others. With remote sensing techniques, we analyzed land use data in 1987, 1999 and 2009, changed areas were found and a dynamic situation of land use in Kigali city was found during the 22 years studied. According to relevant Landsat data, the research focused on land use change in accordance with the role of remote sensing in the process of urbanization. The result of the work has shown the rapid increase of built up land between 1987 and 1999 and a big decrease of vegetation caused by the rebuild of the city after the 1994 genocide, while in the period of 1999 to 2009 there was a reduction in built up land and vegetation, after the authority of Kigali city established, a Master Plan where all constructions which were not in the range of the master Plan were destroyed. Rwanda's capital, Kigali City, through the expansion of the urban area, it is increasing the internal employment rate and attracts business investors and the service sector to improve their economy, which will increase the population growth and provide a better life. The overall planning of the city of Kigali considers the environment, land use, infrastructure, cultural and socio-economic factors, the economic development and population forecast, urban development, and constraints specification. To achieve the above purpose, the Government has set for the overall planning of city Kigali, different stages of the detailed description of the design, strategy and action plan that would guide Kigali planners and members of the public in the future to have more detailed regional plans and practical measures. Thus, land use change is significantly the performance of Kigali active human area, which plays an important role for the country to take certain decisions. Another area to take into account is the natural situation of Kigali city. Agriculture in the region does not occupy a dominant position, and with the population growth and socio-economic development, the construction area will gradually rise and speed up the process of urbanization. Thus, as a developing country, Rwanda's population continues to grow and there is low rate of utilization of land, where urbanization remains low. As mentioned earlier, the 1994 genocide massacres, population growth and urbanization processes, have been the factors driving the dramatic changes in land use. The focus on further research would be on analysis of Rwanda’s natural resources, social and economic factors that could be, the driving force of land use change.

Keywords: land use change, urbanization, Kigali City, Landsat

Procedia PDF Downloads 286
77 Assessment of Heavy Metals Contamination Levels in Groundwater: A Case Study of the Bafia Agricultural Area, Centre Region Cameroon

Authors: Carine Enow-Ayor Tarkang, Victorine Neh Akenji, Dmitri Rouwet, Jodephine Njdma, Andrew Ako Ako, Franco Tassi, Jules Remy Ngoupayou Ndam

Abstract:

Groundwater is the major water resource in the whole of Bafia used for drinking, domestic, poultry and agricultural purposes, and being an area of intense agriculture, there is a great necessity to do a quality assessment. Bafia is one of the main food suppliers in the Centre region of Cameroon, and so to meet their demands, the farmers make use of fertilizers and other agrochemicals to increase their yield. Less than 20% of the population in Bafia has access to piped-borne water due to the national shortage, according to the authors best knowledge very limited studies have been carried out in the area to increase awareness of the groundwater resources. The aim of this study was to assess heavy metal contamination levels in ground and surface waters and to evaluate the effects of agricultural inputs on water quality in the Bafia area. 57 water samples (including 31 wells, 20 boreholes, 4 rivers and 2 springs) were analyzed for their physicochemical parameters, while collected samples were filtered, acidified with HNO3 and analyzed by ICP-MS for their heavy metal content (Fe, Ti, Sr, Al, Mn). Results showed that most of the water samples are acidic to slightly neutral and moderately mineralized. Ti concentration was significantly high in the area (mean value 130µg/L), suggesting another Ti source besides the natural input from Titanium oxides. The high amounts of Mn and Al in some cases also pointed to additional input, probably from fertilizers that are used in the farmlands. Most of the water samples were found to be significantly contaminated with heavy metals exceeding the WHO allowable limits (Ti-94.7%, Al-19.3%, Mn-14%, Fe-5.2% and Sr-3.5% above limits), especially around farmlands and topographic low areas. The heavy metal concentration was evaluated using the heavy metal pollution index (HPI), heavy metal evaluation index (HEI) and degree of contamination (Cd), while the Ficklin diagram was used for the water based on changes in metal content and pH. The high mean values of HPI and Cd (741 and 5, respectively), which exceeded the critical limit, indicate that the water samples are highly contaminated, with intense pollution from Ti, Al and Mn. Based on the HPI and Cd, 93% and 35% of the samples, respectively, are unacceptable for drinking purposes. The lowest HPI value point also had the lowest EC (50 µS/cm), indicating lower mineralization and less anthropogenic influence. According to the Ficklin diagram, 89% of the samples fell within the near-neutral low-metal domain, while 9% fell in the near-neutral extreme-metal domain. Two significant factors were extracted from the PCA, explaining 70.6% of the total variance. The first factor revealed intense anthropogenic activity (especially from fertilizers), while the second factor revealed water-rock interactions. Agricultural activities thus have an impact on the heavy metal content of groundwater in the area; hence, much attention should be given to the affected areas in order to protect human health/life and thus sustainably manage this precious resource.

Keywords: Bafia, contamination, degree of contamination, groundwater, heavy metal pollution index

Procedia PDF Downloads 48
76 Investigations at the Settlement of Oglankala

Authors: Ayten Tahirli

Abstract:

Settlements and grave monuments discovered by archeological excavations conducted in Nakhchivan Autonomous Republic have a special place in studying the Ancient history of Azerbaijan between the 4th century B.C. and the 3rd century A.C. From this point of view, the archeological excavations and investigations conducted at Oglankala, Goshatapa, Babatapa, Pusyan, Agvantapa, Meydantapa and other monuments in Nakhchivan have a specific place. From this point of view, the conclusions of archeological research conducted at the Oglankala settlement enable studying of Nakhchivan history, economic life and trade relationships broadly. Oglankala, which is located on Garatapa Mountain with a space of 50 ha, was the largest fortress in Nakhchivan and one of the largest fortresses in the South Caucasus during the Middle Iron Age. The territory where the monument is located is very important in terms of keeping Sharur Lowland, which has great importance for agriculture and is the most productive territory in Nakhchivan, where Arpachay passes starting from the Lesser Caucasus. During the excavations between 1988 and 1989 at Oglankala, covering the fortress's history belonging to the Early and Middle Iron Ages, indisputable proofs showing that the territory was an important political center were discovered at that territory. Oglankala was the capital city of an independent government during the Middle Iron Age. It maintained economic and cultural relationships with the neighboring Urartu Government and was the capital city of a city government covered by a strong protection system in the centuries after the collapse of the Achaemenid Empire. It is need say that broader archeological excavations at Oglankala City were first started by Vali Bakhshaliyev, the Department Head of the Institute of History, Ethnography and Archeology of ANAS Nakhchivan Branch. Between 1988 and 1989, V.B. Bakhshaliyev conducted an excavation within an area of 320 square meters at Oglankala. Since 2006, Oglankala has become a research object for the International Azerbaijan-USA archeological expedition. In 2006, Lauren Ristvet from Pennsylvania State University, Veli Bakhshaliyev from the Nakhchivan Branch of Azerbaijan National Academy of Sciences and Safar Ashurov from Baku Office of Azerbaijan National Academy of Sciences, together with their other colleagues and students, started to study the ancient history of that magic area. During the archeological research conducted by an international expedition between 2008 and 2011 under the supervision of Vali Bakhshaliyev, the remnants of a palace and the protective walls of a citadel constructed between late 9th century B.C. and early 8th century A.C. were discovered in that residential area. It was found out that Oglankala was the capital city of a small government established at Sharur Lowland during the Middle Iron Age and struggled against the Urartu by establishing a union with the local tribes. That government had a specific cuneiform script. Between the 4th and 2nd centuries B.C., Oglankala and the territory it covered was one of the major political centers of the Atropathena Government.

Keywords: Nakhchivan, Oglankala, settlement, ceramic, archaeological excavation

Procedia PDF Downloads 47
75 Road Map to Health: Palestinian Workers in Israel's Construction Sector

Authors: Maya de Vries Kedem, Abir Jubran, Diana Baron

Abstract:

Employment in Israel offers Palestinian workers an income double what they can earn in the West Bank. The need to support their families leads many educated Palestinians to forgo finding work in their profession in the Palestinian Authority and instead look for employment in those sectors open to them in Israel, particularly the construction, agriculture, and industry sectors. The International Labor Organization estimated that about 1,200 workers in Israel die every year because of occupational diseases (diseases caused by working conditions). Construction workers in Israel are constantly exposed to dust, noise, chemical materials, and work in awkward postures, which require prolonged bending, repetitive motion, and other risk factors that can lead to illnesses and death. Occupational health is vastly neglected in Israel and construction workers are particularly at risk . As of June 2022, the Israeli quota in the construction sector for Palestinian workers stood at 80,000. Kav LaOved released a new study on the state of occupational health among Palestinian workers employed in construction in Israel. The study Roadmap to Health: Palestinian Workers in Israel's Construction Sector reviews the extent to which the health of Palestinian workers is protected at work in Israel. The report includes analysis of a survey administered to 256 workers as well as interviews with 10 workers and with 5 Israeli occupational health experts. Report highlights: • Among survey respondents, 63.9% stated that safety procedures to protect their health are rarely followed in their workplace (e.g., taking breaks, using protective gear, following restrictions on lifting heavy items, and having inspectors regularly on site to monitor safety). • All 256 Palestinian workers who participated to the survey said that their health has been directly or indirectly harmed by working in Israel and reported suffering from the following problems: orthopedic problems such as joint, hand, leg or knee problems (100%); headaches (75%); back problems (36.3%); eye problems (23.8%); breathing problems (17.6%); chronic pain (14.8%); heart problems (7.8%); and skin problems (3.5%). • Workers who are injured or do not feel well often continue working for fear of losing their payment for that day. About half of the 256 survey respondents reported that they pay brokerage fees to find an employer with a work permit, often paying between 2,000 and 3,000 NIS per month. “I have an obligation—I pay about NIS 120 a day for my permit, [and] I have to pay for it whether I work or not" a worker said. • Most Palestinian construction workers suffer from stress and mental health problems. Workers pointed to several issues that greatly affect their mood and mental state: daily crossings at crowded checkpoints where workers stand for hours; lack of sleep due to leaving home daily at 3:00-3:30 am; commuting two to four hours to work in each direction; and abusive work environments. A worker told KLO that the sight of thousands of workers standing together at the checkpoint causes “high blood pressure and the feeling that you are going to be squeezed.” Another said, “I felt that my bones would break.” In the survey workers reported suffering from insomnia (70.1%), breathing difficulties (35.8%), chest pressure (27.6%), or rapid pulse rate (12.2%).

Keywords: construction sector, palestinian workers, occupational health, Israel, occupation

Procedia PDF Downloads 61
74 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases

Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus

Abstract:

Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.

Keywords: cellulases, LaeA/1, proteomics, secondary metabolites

Procedia PDF Downloads 245
73 Achieving Sustainable Agriculture with Treated Municipal Wastewater

Authors: Reshu Yadav, Himanshu Joshi, S. K. Tripathi

Abstract:

Fresh water is a scarce resource which is essential for humans and ecosystems, but its distribution is uneven. Agricultural production accounts for 70% of all surface water supplies. It is projected that against the expansion in the area equipped for irrigation by 0.6% per year, the global potential irrigation water demand would rise by 9.5% during 2021-25. This would, on one hand, have to compete against the sharply rising urban water demand. On the other, it would also have to face the fear of climate change, as temperatures rise and crop yields could drop from 10-30% in many large areas. The huge demand for irrigation combined with fresh water scarcity encourages to explore the reuse of wastewater as a resource. However, the use of such wastewater is often linked to the safety issues when used non judiciously or with poor safeguards while irrigating food crops. Paddy is one of the major crops globally and amongst the most important in South Asia and Africa. In many parts of the world, use of municipal wastewater has been promoted as a viable option in this regard. In developing and fast growing countries like India, regularly increasing wastewater generation rates may allow this option to be considered quite seriously. In view of this, a pilot field study was conducted at the Jagjeetpur Municipal Sewage treatment plant situated in the Haridwar town of Uttarakhand state, India. The objectives of the present study were to study the effect of treated wastewater on the production of various paddy varieties (Sharbati, PR-114, PB-1, Menaka, PB1121 and PB 1509) and emission of GHG gases (CO2, CH4 and N2O) as compared to the same varieties grown in the control plots irrigated with fresh water. Of late, the concept of water footprint assessment has emerged, which explains enumeration of various types of water footprints of an agricultural entity from its production to processing stages. Paddy, the most water demanding staple crop of Uttarakhand state, displayed a high green water footprint value of 2966.538 m3/ton. Most of the wastewater irrigated varieties displayed upto 6% increase in production, except Menaka and PB-1121, which showed a reduction in production (6% and 3% respectively), due to pest and insect infestation. The treated wastewater was observed to be rich in Nitrogen (55.94 mg/ml Nitrate), Phosphorus (54.24 mg/ml) and Potassium (9.78 mg/ml), thus rejuvenating the soil quality and not requiring any external nutritional supplements. Percentage increase of GHG gases on irrigation with treated municipal waste water as compared to control plots was observed as 0.4% - 8.6% (CH4), 1.1% - 9.2% (CO2), and 0.07% - 5.8% (N2O). The variety, Sharbati, displayed maximum production (5.5 ton/ha) and emerged as the most resistant variety against pests and insects. The emission values of CH4 ,CO2 and N2O were 729.31 mg/m2/d, 322.10 mg/m2/d and 400.21 mg/m2/d in water stagnant condition. This study highlighted a successful possibility of reuse of wastewater for non-potable purposes offering the potential for exploiting this resource that can replace or reduce existing use of fresh water sources in agricultural sector.

Keywords: greenhouse gases, nutrients, water footprint, wastewater irrigation

Procedia PDF Downloads 295
72 Decorative Plant Motifs in Traditional Art and Craft Practices: Pedagogical Perspectives

Authors: Geetanjali Sachdev

Abstract:

This paper explores the decorative uses of plant motifs and symbols in traditional Indian art and craft practices in order to assess their pedagogical significance within the context of plant study in higher education in art and design. It examines existing scholarship on decoration and plants in Indian art and craft practices. The impulse to elaborate upon an existing form or surface is an intrinsic part of many Indian traditional art and craft traditions where a deeply ingrained love for decoration exists. Indian craftsmen use an array of motifs and embellishments to adorn surfaces across a range of practices, and decoration is widely seen in textiles, jewellery, temple sculptures, vehicular art, architecture, and various other art, craft, and design traditions. Ornamentation in Indian cultural traditions has been attributed to religious and spiritual influences in the lives of India’s art and craft practitioners. Through adornment, surfaces and objects were ritually transformed to function both spiritually and physically. Decorative formations facilitate spiritual development and attune our minds to concepts that support contemplation. Within practices of ornamentation and adornment, there is extensive use of botanical motifs as Indian art and craft practitioners have historically been drawn towards nature as a source of inspiration. This is due to the centrality of agriculture in the lives of Indian people as well as in religion, where plants play a key role in religious rituals and festivals. Plant representations thus abound in two-dimensional and three-dimensional surface designs and patterns where the motifs range from being realistic, highly stylized, and curvilinear forms to geometric and abstract symbols. Existing scholarship reveals that these botanical embellishments reference a wide range of plants that include native and non-indigenous plants, as well as imaginary and mythical plants. Structural components of plant anatomy, such as leaves, stems, branches and buds, and flowers, are part of the repertoire of design motifs used, as are plant forms indicating different stages of growth, such as flowering buds and flowers in full bloom. Symmetry is a characteristic feature, and within the decorative register of various practices, plants are part of border zones and bands, connecting corners and all-over patterns, used as singular motifs and floral sprays on panels, and as elements within ornamental scenes. The results of the research indicate that decoration as a mode of inquiry into plants can serve as a platform to learn about local and global biodiversity and plant anatomy and develop artistic modes of thinking symbolically, metaphorically, imaginatively, and relationally about the plant world. The conclusion is drawn that engaging with ornamental modes of plant representation in traditional Indian art and craft practices is pedagogically significant for two reasons. Decoration as a mode of engagement cultivates both botanical and artistic understandings of plants. It also links learners with the indigenous art and craft traditions of their own culture.

Keywords: art and design pedagogy, decoration, plant motifs, traditional art and craft

Procedia PDF Downloads 59
71 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 390
70 Management of Urine Recovery at the Building Level

Authors: Joao Almeida, Ana Azevedo, Myriam Kanoun-Boule, Maria Ines Santos, Antonio Tadeu

Abstract:

The effects of the increasing expansion of cities and climate changes have encouraged European countries and regions to adopt nature-based solutions with ability to mitigate environmental issues and improve life in cities. Among these strategies, green roofs and urban gardens have been considered ingenious solutions, since they have the desirable potential to improve air quality, prevent floods, reduce the heat island effect and restore biodiversity in cities. However, an additional consumption of fresh water and mineral nutrients is necessary to sustain larger green urban areas. This communication discusses the main technical features of a new system to manage urine recovery at the building level and its application in green roofs. The depletion of critical nutrients like phosphorus constitutes an emergency. In turn, their elimination through urine is one of the principal causes for their loss. Thus, urine recovery in buildings may offer numerous advantages, constituting a valuable fertilizer abundantly available in cities and reducing the load on wastewater treatment plants. Although several urine-diverting toilets have been developed for this purpose and some experiments using urine directly in agriculture have already been carried out in Europe, several challenges have emerged with this practice concerning collection, sanitization, storage and application of urine in buildings. To our best knowledge, current buildings are not designed to receive these systems and integrated solutions with ability to self-manage the whole process of urine recovery, including separation, maturation and storage phases, are not known. Additionally, if from a hygiene point of view human urine may be considered a relatively safe fertilizer, the risk of disease transmission needs to be carefully analysed. A reduction in microorganisms can be achieved by storing the urine in closed tanks. However, several factors may affect this process, which may result in a higher survival rate for some pathogens. In this work, urine effluent was collected under real conditions, stored in closed containers and kept in climatic chambers under variable conditions simulating cold, temperate and tropical climates. These samples were subjected to a first physicochemical and microbiological control, which was repeated over time. The results obtained so far suggest that maturation conditions were reached for all the three temperatures and that a storage period of less than three months is required to achieve a strong depletion of microorganisms. The authors are grateful for the Project WashOne (POCI-01-0247-FEDER-017461) funded by the Operational Program for Competitiveness and Internationalization (POCI) of Portugal 2020, with the support of the European Regional Development Fund (FEDER).

Keywords: sustainable green roofs and urban gardens, urban nutrient cycle, urine-based fertilizers, urine recovery in buildings

Procedia PDF Downloads 135
69 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach

Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh

Abstract:

Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.

Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling

Procedia PDF Downloads 15
68 Coping Strategies and Characterization of Vulnerability in the Perspective of Climate Change

Authors: Muhammad Umer Mehmood, Muhammad Luqman, Muhammad Yaseen, Imtiaz Hussain

Abstract:

Climate change is an arduous fact, which could not be unheeded easily. It is a phenomenon which has brought a collection of challenges for the mankind. Scientists have found many of its negative impacts on the life of human being and the resources on which the life of humanity is dependent. There are many issues which are associated with the factor of prime importance in this study, 'climate change'. Whenever changes happen in nature, they strike the whole globe. Effects of these changes vary from region to region. Climate of every region of this globe is different from the other. Even within a state, country or the province has different climatic conditions. So it is mandatory that the response in that specific region and the coping strategy of this specific region should be according to the prevailing risk. In the present study, the objective was to assess the coping strategies and vulnerability of small landholders. So that a professional suggestion could be made to cope with the vulnerability factor of small farmers. The cross-sectional research design was used with the intervention of quantitative approach. The study was conducted in the Khanewal district, of Punjab, Pakistan. 120 small farmers were interviewed after randomized sampling from the population of respective area. All respondents were above the age of 15 years. A questionnaire was developed after keen observation of facts in the respective area. Content and face validity of the instrument was assessed with SPSS and experts in the field. Data were analyzed through SPSS using descriptive statistics. From the sample of 120, 81.67% of the respondents claimed that the environment is getting warmer and not fit for their present agricultural practices. 84.17% of the sample expressed serious concern that they are disturbed due to change in rainfall pattern and vulnerability towards the climatic effects. On the other hand, they expressed that they are not good at tackling the effects of climate change. Adaptation of coping strategies like change in cropping pattern, use of resistant varieties, varieties with minimum water requirement, intercropping and tree planting was low by more than half of the sample. From the sample 63.33% small farmers said that the coping strategies they adopt are not effective enough. The present study showed that subsistence farming, lack of marketing and overall infrastructure, lack of access to social security networks, limited access to agriculture extension services, inappropriate access to agrometeorological system, unawareness and access to scientific development and low crop yield are the prominent factors which are responsible for the vulnerability of small farmers. A comprehensive study should be conducted at national level so that a national policy could be formulated to cope with the dilemma in future with relevance to climate change. Mainstreaming and collaboration among the researchers and academicians could prove beneficiary in this regard the interest of national leaders’ does matter. Proper policies to avoid the vulnerability factors should be the top priority. The world is taking up this issue with full responsibility as should we, keeping in view the local situation.

Keywords: adaptation, coping strategies, climate change, Pakistan, small farmers, vulnerability

Procedia PDF Downloads 107
67 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition

Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa

Abstract:

Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).

Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin

Procedia PDF Downloads 114
66 Radish Sprout Growth Dependency on LED Color in Plant Factory Experiment

Authors: Tatsuya Kasuga, Hidehisa Shimada, Kimio Oguchi

Abstract:

Recent rapid progress in ICT (Information and Communication Technology) has advanced the penetration of sensor networks (SNs) and their attractive applications. Agriculture is one of the fields well able to benefit from ICT. Plant factories control several parameters related to plant growth in closed areas such as air temperature, humidity, water, culture medium concentration, and artificial lighting by using computers and AI (Artificial Intelligence) is being researched in order to obtain stable and safe production of vegetables and medicinal plants all year anywhere, and attain self-sufficiency in food. By providing isolation from the natural environment, a plant factory can achieve higher productivity and safe products. However, the biggest issue with plant factories is the return on investment. Profits are tenuous because of the large initial investments and running costs, i.e. electric power, incurred. At present, LED (Light Emitting Diode) lights are being adopted because they are more energy-efficient and encourage photosynthesis better than the fluorescent lamps used in the past. However, further cost reduction is essential. This paper introduces experiments that reveal which color of LED lighting best enhances the growth of cultured radish sprouts. Radish sprouts were cultivated in the experimental environment formed by a hydroponics kit with three cultivation shelves (28 samples per shelf) each with an artificial lighting rack. Seven LED arrays of different color (white, blue, yellow green, green, yellow, orange, and red) were compared with a fluorescent lamp as the control. Lighting duration was set to 12 hours a day. Normal water with no fertilizer was circulated. Seven days after germination, the length, weight and area of leaf of each sample were measured. Electrical power consumption for all lighting arrangements was also measured. Results and discussions: As to average sample length, no clear difference was observed in terms of color. As regards weight, orange LED was less effective and the difference was significant (p < 0.05). As to leaf area, blue, yellow and orange LEDs were significantly less effective. However, all LEDs offered higher productivity per W consumed than the fluorescent lamp. Of the LEDs, the blue LED array attained the best results in terms of length, weight and area of leaf per W consumed. Conclusion and future works: An experiment on radish sprout cultivation under 7 different color LED arrays showed no clear difference in terms of sample size. However, if electrical power consumption is considered, LEDs offered about twice the growth rate of the fluorescent lamp. Among them, blue LEDs showed the best performance. Further cost reduction e.g. low power lighting remains a big issue for actual system deployment. An automatic plant monitoring system with sensors is another study target.

Keywords: electric power consumption, LED color, LED lighting, plant factory

Procedia PDF Downloads 163
65 Climate Change and Rural-Urban Migration in Brazilian Semiarid Region

Authors: Linda Márcia Mendes Delazeri, Dênis Antônio Da Cunha

Abstract:

Over the past few years, the evidence that human activities have altered the concentration of greenhouse gases in the atmosphere have become stronger, indicating that this accumulation is the most likely cause of climate change observed so far. The risks associated with climate change, although uncertain, have the potential to increase social vulnerability, exacerbating existing socioeconomic challenges. Developing countries are potentially the most affected by climate change, since they have less potential to adapt and are those most dependent on agricultural activities, one of the sectors in which the major negative impacts are expected. In Brazil, specifically, it is expected that the localities which form the semiarid region are among the most affected, due to existing irregularity in rainfall and high temperatures, in addition to economic and social factors endemic to the region. Given the strategic limitations to handle the environmental shocks caused by climate change, an alternative adopted in response to these shocks is migration. Understanding the specific features of migration flows, such as duration, destination and composition is essential to understand the impacts of migration on origin and destination locations and to develop appropriate policies. Thus, this study aims to examine whether climatic factors have contributed to rural-urban migration in semiarid municipalities in the recent past and how these migration flows will be affected by future scenarios of climate change. The study was based on microeconomic theory of utility maximization, in which, to decide to leave the countryside and move on to the urban area, the individual seeks to maximize its utility. Analytically, we estimated an econometric model using the modeling of Fixed Effects and the results confirmed the expectation that climate drivers are crucial for the occurrence of the rural-urban migration. Also, other drivers of the migration process, as economic, social and demographic factors were also important. Additionally, predictions about the rural-urban migration motivated by variations in temperature and precipitation in the climate change scenarios RCP 4.5 and 8.5 were made for the periods 2016-2035 and 2046-2065, defined by the Intergovernmental Panel on Climate Change (IPCC). The results indicate that there will be increased rural-urban migration in the semiarid region in both scenarios and in both periods. In general, the results of this study reinforce the need for formulations of public policies to avoid migration for climatic reasons, such as policies that give support to the productive activities generating income in rural areas. By providing greater incentives for family agriculture and expanding sources of credit for the farmer, it will have a better position to face climate adversities and to settle in rural areas. Ultimately, if migration becomes necessary, there must be the adoption of policies that seek an organized and planned development of urban areas, considering migration as an adaptation strategy to adverse climate effects. Thus, policies that act to absorb migrants in urban areas and ensure that they have access to basic services offered to the urban population would contribute to the social costs reduction of climate variability.

Keywords: climate change, migration, rural productivity, semiarid region

Procedia PDF Downloads 320
64 Solutions for Food-Safe 3D Printing

Authors: Geremew Geidare Kailo, Igor Gáspár, András Koris, Ivana Pajčin, Flóra Vitális, Vanja Vlajkov

Abstract:

Three-dimension (3D) printing, a very popular additive manufacturing technology, has recently undergone rapid growth and replaced the use of conventional technology from prototyping to producing end-user parts and products. The 3D Printing technology involves a digital manufacturing machine that produces three-dimensional objects according to designs created by the user via 3D modeling or computer-aided design/manufacturing (CAD/CAM) software. The most popular 3D printing system is Fused Deposition Modeling (FDM) or also called Fused Filament Fabrication (FFF). A 3D-printed object is considered food safe if it can have direct contact with the food without any toxic effects, even after cleaning, storing, and reusing the object. This work analyzes the processing timeline of the filament (material for 3D printing) from unboxing to the extrusion through the nozzle. It is an important task to analyze the growth of bacteria on the 3D printed surface and in gaps between the layers. By default, the 3D-printed object is not food safe after longer usage and direct contact with food (even though they use food-safe filaments), but there are solutions for this problem. The aim of this work was to evaluate the 3D-printed object from different perspectives of food safety. Firstly, testing antimicrobial 3D printing filaments from a food safety aspect since the 3D Printed object in the food industry may have direct contact with the food. Therefore, the main purpose of the work is to reduce the microbial load on the surface of a 3D-printed part. Coating with epoxy resin was investigated, too, to see its effect on mechanical strength, thermal resistance, surface smoothness and food safety (cleanability). Another aim of this study was to test new temperature-resistant filaments and the effect of high temperature on 3D printed materials to see if they can be cleaned with boiling or similar hi-temp treatment. This work proved that all three mentioned methods could improve the food safety of the 3D printed object, but the size of this effect variates. The best result we got was with coating with epoxy resin, and the object was cleanable like any other injection molded plastic object with a smooth surface. Very good results we got by boiling the objects, and it is good to see that nowadays, more and more special filaments have a food-safe certificate and can withstand boiling temperatures too. Using antibacterial filaments reduced bacterial colonies to 1/5, but the biggest advantage of this method is that it doesn’t require any post-processing. The object is ready out of the 3D printer. Acknowledgements: The research was supported by the Hungarian and Serbian bilateral scientific and technological cooperation project funded by the Hungarian National Office for Research, Development and Innovation (NKFI, 2019-2.1.11-TÉT-2020-00249) and the Ministry of Education, Science and Technological Development of the Republic of Serbia. The authors acknowledge the Hungarian University of Agriculture and Life Sciences’s Doctoral School of Food Science for the support in this study

Keywords: food safety, 3D printing, filaments, microbial, temperature

Procedia PDF Downloads 113