Search results for: cement/polymer composite
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3770

Search results for: cement/polymer composite

3500 Transient Electrical Resistivity and Elastic Wave Velocity of Sand-Cement-Inorganic Binder Mixture

Authors: Kiza Rusati Pacifique, Ki-il Song

Abstract:

The cement milk grout has been used for ground improvement. Due to the environmental issues related to cement, the reduction of cement usage is requesting. In this study, inorganic binder is introduced to reduce the use of cement contents for ground improvement. To evaluate transient electrical and mechanical properties of sand-cement-inorganic binder mixture, two non-destructive testing (NDT) methods, Electrical Resistivity (ER) and Free Free Resonant Column (FFRC) tests were adopted in addition to unconfined compressive strength test. Electrical resistivity, longitudinal wave velocity and damping ratio of sand-cement admixture samples improved with addition of inorganic binders were measured. Experimental tests were performed considering four different mixing ratios and three different cement contents depending on the curing time. Results show that mixing ratio and curing time have considerable effects on electrical and mechanical properties of mixture. Unconfined compressive strength (UCS) decreases as the cement content decreases. However, sufficient grout strength can be obtained with increase of content of inorganic binder. From the results, it is found that the inorganic binder can be used to enhance the mechanical properties of mixture and reduce the cement content. It is expected that data and trends proposed in this study can be used as reference in predicting grouting quality in the field.

Keywords: damping ratio, electrical resistivity, ground improvement, inorganic binder, longitudinal wave velocity, unconfined compression strength

Procedia PDF Downloads 318
3499 Synthesis and Characterization of Molecularly Imprinted Polymer as a New Adsorbent for the Removal of Pyridine from Organic Medium

Authors: Opeyemi Elujulo, Aderonke Okoya, Kehinde Awokoya

Abstract:

Molecularly imprinted polymers (MIP) for the adsorption of pyridine (PYD) was obtained from PYD (the template), styrene (the functional monomer), divinyl benzene (the crosslinker), benzoyl peroxide (the initiator), and water (the porogen). When the template was removed by solvent extraction, imprinted binding sites were left in the polymer material that are capable of selectively rebinding the target molecule. The material was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. Batch adsorption experiments were performed to study the adsorption of the material in terms of adsorption kinetics, isotherms, and thermodynamic parameters. The results showed that the imprinted polymer exhibited higher affinity for PYD compared to non-imprinted polymer (NIP).

Keywords: molecularly imprinted polymer, bulk polymerization, environmental pollutant, adsorption

Procedia PDF Downloads 115
3498 Effect of Polymer Concentration on the Rheological Properties of Polyelectrolyte Solutions

Authors: Khaled Benyounes, Abderrahmane Mellak

Abstract:

The rheology of aqueous solutions of polyelectrolyte (polyanionic cellulose, PAC) at high molecular weight was investigated using a controlled stress rheometer. Several rheological measurements; viscosity measurements, creep compliance tests at a constant low shear stress and oscillation experiments have been performed. The concentrations ranged by weight from 0.01 to 2.5% of PAC. It was found that the aqueous solutions of PAC do not exhibit a yield stress, the flow curves of PAC over a wide range of shear rate (0 to 1000 s-1) could be described by the cross model and the Williamson models. The critical concentrations of polymer c* and c** have been estimated. The dynamic moduli, i.e., storage modulus (G’) and loss modulus (G’’) of the polymer have been determined at frequency sweep from 0.01 to 10 Hz. At polymer concentration above 1%, the modulus G’ is superior to G’’. The relationships between the dynamic modulus and concentration of polymer have been established. The creep-recovery experiments demonstrated that polymer solutions show important viscoelastic properties of system water-PAC when the concentration of the polymer increases.

Keywords: polyanionic cellulose, viscosity, creep, oscillation, cross model

Procedia PDF Downloads 297
3497 Numerical Study for Structural Design of Composite Rotor with Crack Initiation

Authors: A. Chellil, A. Nour, S. Lecheb, H.Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, the numerical study for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor is developed. The use of the composite material for the rotor, offers a good Stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.

Keywords: rotor, composite, damage, finite element, numerical

Procedia PDF Downloads 459
3496 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 290
3495 Evaluation of Heat of Hydration and Strength Development in Natural Pozzolan-Incorporated Cement from the Gulf Region

Authors: S. Al-Fadala, J. Chakkamalayath, S. Al-Bahar, A. Al-Aibani, S. Ahmed

Abstract:

Globally, the use of pozzolan in blended cement is gaining great interest due to the desirable effect of pozzolan from the environmental and energy conservation standpoint and the technical benefits they provide to the performance of cement. The deterioration of concrete structures in the marine environment and extreme climates demand the use of pozzolana cement in concrete construction in the Gulf region. Also, natural sources of cement clinker materials are limited in the Gulf region, and cement industry imports the raw materials for the production of Portland cement, resulting in an increase in the greenhouse gas effect due to the CO₂ emissions generated from transportation. Even though the Gulf region has vast deposits of natural pozzolana, it is not explored properly for the production of high performance concrete. Hence, an optimum use of regionally available natural pozzolana for the production of blended cement can result in sustainable construction. This paper investigates the effect of incorporating natural pozzolan sourced from the Gulf region on the performance of blended cement in terms of heat evolution and strength development. For this purpose, a locally produced Ordinary Portland Cement (OPC) and pozzolan-incorporated blended cements containing different amounts of natural pozzolan (volcanic ash) were prepared on laboratory scale. The strength development and heat evolution were measured and quantified. Promising results of strength development were obtained for blends with the percentages of Volcanic Ash (VA) replacement varying from 10 to 30%. Results showed that the heat of hydration decreased with increase in percentage of replacement of OPC with VA, indicating increased retardation in hydration due to the addition of VA. This property could be used in mass concreting in which a reduction in heat of hydration is required to reduce cracking in concrete, especially in hot weather concreting.

Keywords: blended cement, hot weather, hydration, volcanic ash

Procedia PDF Downloads 300
3494 Assessing Green Metrics of Cement Supply Chain in Iran: A Fuzzy DEMATEL Approach

Authors: Hadi Badri Ahmadi, Xuping Wang

Abstract:

Due to strict regulations and public awareness, corporations should develop policies to effectively decrease the negative environmental effects of their products and enhance their supply chain environmental sustainability. Assessment of environmental issues in the context of many industries has been studied in the previous literature. However, Iran cement industry has received less attention from researchers. Therefore, in this paper, we apply a Decision-Making Trial and Evaluation Laboratory (DEMATEL) approach to assess the relationships among green metrics of Iran cement industry supply chain under fuzzy environment. The study findings provide considerable insight for cement industry managers and experts in order to enhance the environmental sustainability of their supply chain and move towards sustainable development.

Keywords: green supply chain, DEMATEL, fuzzy set theory, environmental sustainability, sustainable development, cement industry

Procedia PDF Downloads 381
3493 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: mineralogical structure, pozzolanic reactivity, Quartz, mechanical strength

Procedia PDF Downloads 255
3492 Effective Layer-by-layer Chemical Grafting of a Reactive Oxazoline Polymer and MWCNTs onto Carbon Fibers for Enhancing Mechanical Properties of Composites using Polystyrene as a Model Thermoplastic Matrix

Authors: Ryoma Tokonami, Teruya Goto, Tatsuhiro Takahashi,

Abstract:

For enhancing the mechanical property ofcarbon fiber reinforced plastic (CFRP), the surface modification of carbon fiber (CF) by multi-walled carbon nanotube (MWCNT) has received considerable attention using direct MWCNT growth on CF with a catalysis, MWCNT electrophoresis, and layer-by-layer of MWCNT with reactive polymers, etc. Among above approaches, the layer-by-layer method is the simplest process, however, the amount of MWCNTs on CF is very little, resulting in the small amount of improvement of the mechanical property of the composite. The remaining amount of MWCNT on CF after melt mixing of CF (short fiber) with thermoplastic matrix polymer was not examined clearly in the former studies. The present research aims to propose an effective layer-by-layer chemical grafting of a highly reactive oxazoline polymer, which has not been used before, and MWCNTs onto CF using the highly reactivity of oxazoline and COOH on the surface of CF and MWCNTs.With layer-by-layer method, the first uniform chemically bonded mono molecular layer on carbon fiber was formed by chemical surface reaction of carbon fiber, a reactive oxazoline polymer solution between COOH of carbon fiber and oxazoline. The second chemically bonded uniform layer of MWCNTs on the first layer was prepared through the first layer coated carbon fiber in MWCNT dispersion solution by chemical reaction between oxazoline and COOH of MWCNTs. The quantitative analysis of MWCNTs on carbon fiber was performed, showing 0.44 wt.% of MWCNTs based on carbon fiber, which is much larger amount compared with the former studies in layer-by-layer method. In addition, MWCNTs were also observed uniform coating on carbon fiber by scanning electron micrograph (SEM). Carbon fiber composites were prepared by melting mixing using polystyrene (PS) as a thermoplastic matrix because of easy removal of PS by solvent for additional analysis, resulting the 20% of enhancement of tensile strength and modulus by tensile strength test. It was confirmed bySEM the layer-by-layer structure on carbon fibers were remained after the melt mixing by removing PS with a solvent. As a conclusion, the effectiveness for the enhancement of the mechanical properties of CF(short fiber)/PS composite using the highly reactive oxazoline polymer for the first layer and MWCNT for the second layer, which act as the physical anchor, was demonstrated.

Keywords: interface, layer-by-layer, multi walled carbon nanotubes (MWCNTs), oxazoline

Procedia PDF Downloads 165
3491 Investigation of the Properties of Epoxy Modified Binders Based on Epoxy Oligomer with Improved Deformation and Strength Properties

Authors: Hlaing Zaw Oo, N. Kostromina, V. Osipchik, T. Kravchenko, K. Yakovleva

Abstract:

The process of modification of ed-20 epoxy resin synthesized by vinyl-containing compounds is considered. It is shown that the introduction of vinyl-containing compounds into the composition based on epoxy resin ED-20 allows adjusting the technological and operational characteristics of the binder. For improvement of the properties of epoxy resin, following modifiers were selected: polyvinylformalethyl, polyvinyl butyral and composition of linear and aromatic amines (Аramine) as a hardener. Now the big range of hardeners of epoxy resins exists that allows varying technological properties of compositions, and also thermophysical and strength indicators. The nature of the aramin type hardener has a significant impact on the spatial parameters of the mesh, glass transition temperature, and strength characteristics. Epoxy composite materials based on ED-20 modified with polyvinyl butyral were obtained and investigated. It is shown that the composition of resins based on derivatives of polyvinyl butyral and ED-20 allows obtaining composite materials with a higher complex of deformation-strength, adhesion and thermal properties, better water resistance, frost resistance, chemical resistance, and impact strength. The magnitude of the effect depends on the chemical structure, temperature and curing time. In the area of concentrations, where the effect of composite synergy is appearing, the values of strength and stiffness significantly exceed the similar parameters of the individual components of the mixture. The polymer-polymer compositions form their class of materials with diverse specific properties that ensure their competitive application. Coatings with high performance under cyclic loading have been obtained based on epoxy oligomers modified with vinyl-containing compounds.

Keywords: epoxy resins, modification, vinyl-containing compounds, deformation, strength properties

Procedia PDF Downloads 83
3490 Thermal Analysis of a Composite of Coco Fiber and Látex

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

Given the unquestionable need of environmental preservation, the natural fibers have been seen as a salutary alternative for production of composites in substitution to the synthetic fibers, vitreous and metallic. In this work, the behavior of a composite was analyzed done with fiber of the peel of the coconut as reinforcement and latex as head office, when submitted the source of heat. The temperature profiles were verified in the internal surfaces and it expresses of the composite as well as the temperature gradient in the same. It was also analyzed the behavior of this composite when submitted to a cold source. As consequence, in function of the answers of the system, conclusions were reached.

Keywords: natural fiber, composite, temperature, latex, gradient

Procedia PDF Downloads 774
3489 Aging Behaviour of 6061 Al-15 vol% SiC Composite in T4 and T6 Treatments

Authors: Melby Chacko, Jagannath Nayak

Abstract:

The aging behaviour of 6061 Al-15 vol% SiC composite was investigated using Rockwell B hardness measurement. The composite was solutionized at 350°C and quenched in water. The composite was aged at room temperature (T4 treatment) and also at 140°C, 160°C, 180°C and 200°C (T6 treatment). The natural and artificial aging behaviour of composite was studied using aging curves determined at different temperatures. The aging period for peak aging for different temperatures was identified. The time required for attaining peak aging decreased with increase in the aging temperature. The peak hardness was found to increase with increase with aging temperature and the highest peak hardness was observed at 180ºC. Beyond 180ºC the peak hardness was found to be decreasing.

Keywords: 6061 Al-SiC composite, aging curve, Rockwell B hardness, T4, T6 treatments

Procedia PDF Downloads 243
3488 Investigation of Optical, Film Formation and Magnetic Properties of PS Lates/MNPs Composites

Authors: Saziye Ugur

Abstract:

In this study, optical, film formation, morphological and the magnetic properties of a nanocomposite system, composed of polystyrene (PS) latex polymer and core-shell magnetic nanoparticles (MNPs) is presented. Nine different mixtures were prepared by mixing of PS latex dispersion with different amount of MNPs in the range of (0- 100 wt%). PS/MNPs films were prepared from these mixtures on glass substrates by drop casting method. After drying at room temperature, each film sample was separately annealed at temperatures from 100 to 250 °C for 10 min. In order to monitor film formation process, the transmittance of these composites was measured after each annealing step as a function of MNPs content. Below a critical MNPs content (30 wt%), it was found that PS percolates into the MNPs hard phase and forms an interconnected network upon annealing. The transmission results showed above this critical value, PS latexes were no longer film forming at all temperatures. Besides, the PS/MNPs composite films also showed excellent magnetic properties. All composite films showed superparamagnetic behaviors. The saturation magnetisation (Ms) first increased up to 0.014 emu in the range of (0-50) wt% MNPs content and then decreased to 0.010 emu with increasing MNPs content. The highest value of Ms was approximately 0.020 emu and was obtained for the film filled with 85 wt% MNPs content. These results indicated that the optical, film formation and magnetic properties of PS/MNPs composite films can be readily tuned by varying loading content of MNPs nanoparticles.

Keywords: composite film, film formation, magnetic nanoparticles, ps latex, transmission

Procedia PDF Downloads 224
3487 Cementing Efficiency of Low Calcium Fly Ash in Fly Ash Concretes

Authors: T. D. Gunneswara Rao, Mudimby Andal

Abstract:

Research on the utilization of fly ash will no longer refer the fly ash as a waste material of thermal power plants. Use of fly ash in concrete making, makes the concrete economical as well as durable. The fly ash is being added to the concrete in three ways namely, as partial replacement to cement, partial replacement to fine aggregates and admixture. Addition of fly ash to the concrete in each one of the form mentioned above, makes the concrete more workable and durable than the conventional concrete. Studies on fly ash as partial replacement to cement gained momentum as such replacement makes the concrete economical. In the present study, an attempt has been made to understand the effects of fly ash on the workability characteristics and strength aspects of fly ash concretes. In India, major number of thermal power plants are producing low calcium fly ash. Hence, in the present investigation, low calcium fly ash has been used. Fly ash in concrete was considered for the partial replacement of cement. The percentage replacement of cement by fly ash varied from 0% to 40% at regular intervals of 10%. Moreover the fine aggregate to coarse aggregate ratio also has been varied as 1:1, 1:2, and 1:3. The workability tests revealed that up to 30% replacement of cement by fly ash in concrete mixes water demand for reduces and beyond 30% replacement of cement by fly ash demanded more water content for constant workability.

Keywords: cementing efficiency, compressive strength, low calcium fly ash, workability

Procedia PDF Downloads 450
3486 Development of High Strength Self Curing Concrete Using Super Absorbing Polymer

Authors: K. Bala Subramanian, A. Siva, S. Swaminathan, Arul. M. G. Ajin

Abstract:

Concrete is an essential building material which is widely used in construction industry all over the world due to its compressible strength. Curing of concrete plays a vital role in durability and other performance necessities. Improper curing can affect the concrete performance and durability easily. When areas like scarcity of water, structures is not accessible by humans external curing cannot be performed, so we opt for internal curing. Internal curing (or) self-curing plays a major role in developing the concrete pore structure and microstructure. The concept of internal curing is to enhance the hydration process to maintain the temperature uniformly. The evaporation of water in the concrete is reduced by self-curing agent (Super Absorbing Polymer – SAP) thereby increasing the water retention capacity of the concrete. The research work was carried out to reduce water, which is prime material used for concrete in the construction industry. Concrete curing plays a major role in developing hydration process. Concept of self-curing will reduce the evaporation of water from concrete. Self-curing will increase water retention capacity as compared to the conventional concrete. Proper self-curing (or) internal curing increases the strength, durability and performance of concrete. Super absorbing Polymer (SAP) used as internal curing agent. In this study 0.2% to 0.4% of SAP was varied in different grade of high strength concrete. In the experiment replacement of cement by silica fumes with 5%, 10% and 15% are studied. It is found that replacement of silica fumes by 10 % gives more strength and durability when compared to others

Keywords: compressive strength, high strength concrete rapid chloride permeability, super absorbing polymer

Procedia PDF Downloads 355
3485 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 143
3484 Analysis of Artificial Hip Joint Using Finite Element Method

Authors: Syed Zameer, Mohamed Haneef

Abstract:

Hip joint plays very important role in human beings as it takes up the whole body forces generated due to various activities. These loads are repetitive and fluctuating depending on the activities such as standing, sitting, jogging, stair casing, climbing, etc. which may lead to failure of Hip joint. Hip joint modification and replacement are common in old aged persons as well as younger persons. In this research study static and Fatigue analysis of Hip joint model was carried out using finite element software ANSYS. Stress distribution obtained from result of static analysis, material properties and S-N curve data of fabricated Ultra High molecular weight polyethylene / 50 wt% short E glass fibres + 40 wt% TiO2 Polymer matrix composites specimens were used to estimate fatigue life of Hip joint using stiffness Degradation model for polymer matrix composites. The stress distribution obtained from static analysis was found to be within the acceptable range.The factor of safety calculated from linear Palmgren linear damage rule is less than one, which indicates the component is safe under the design.

Keywords: hip joint, polymer matrix composite, static analysis, fatigue analysis, stress life approach

Procedia PDF Downloads 323
3483 Design of Composite Joints from Carbon Fibre for Automotive Parts

Authors: G. Hemath Kumar, H. Mohit, K. Karthick

Abstract:

One of the most important issues in the composite technology is the repairing of parts of aircraft structures which is manufactured from composite materials. In such applications and also for joining various composite parts together, they are fastened together either using adhesives or mechanical fasteners. The tensile strength of these joints was carried out using Universal Testing Machine (UTM). A parametric study was also conducted to compare the performance of the hybrid joint with varying adherent thickness, adhesive thickness and overlap length. The composition of the material is combination of epoxy resin and carbon fibre under the method of reinforcement. To utilize the full potential of composite materials as structural elements, the strength and stress distribution of these joints must be understood. The study of tensile strength in the members involved under various design conditions and various joints were took place.

Keywords: carbon fiber, FRP composite, MMC, automotive

Procedia PDF Downloads 376
3482 Dynamic Analysis and Instability of a Rotating Composite Rotor

Authors: A. Chellil, A. Nour, S. Lecheb, H. Mechakra, A. Bouderba, H. Kebir

Abstract:

In this paper, the dynamic response for the instability of a composite rotor is presented, under dynamic loading response in the harmonic analysis condition. The analysis of the stress which operates the rotor is done. Calculations of different energies and the virtual work of the aerodynamic loads from the rotor blade is developed. The use of the composite material for the rotor, offers a good stability. Numerical calculations on the model develop of three dimensions prove that the damage effect has a negative effect on the stability of the rotor. The study of the composite rotor in transient system allowed to determine the vibratory responses due to various excitations.

Keywords: rotor, composite, damage, finite element, numerical

Procedia PDF Downloads 500
3481 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 233
3480 Characteristics of Different Volumes of Waste Cellular Concrete Powder-Cement Paste for Sustainable Construction

Authors: Mohammed Abed, Rita Nemes

Abstract:

Cellular concrete powder (CCP) is not used widely as supplementary cementitious material, but in the literature, its efficiency is proved when it used as a replacement of cement in concrete mixtures. In this study, different amounts of raw CCP (CCP as a waste material without any industrial modification) will be used to investigate the characteristics of cement pastes and the effects of CCP on the properties of the cement pastes. It is an attempt to produce green binder paste, which is useful for sustainable construction applications. The fresh and hardened properties of a number of CCP blended cement paste will be tested in different life periods, and the optimized CCP volume will be reported with more significant investigations on durability properties. Different replacing of mass percentage (low and high) of the cement mass will be conducted (0%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The consistency, flexural strength, and compressive strength will be the base indicator for the further properties' investigations. The CCP replacement until 50% have been tested until 7 days, and the initial results showed a linear relationship between strength and the percentage of the replacement; that is an optimistic indicator for further replacement percentages of waste CCP.

Keywords: cellular concrete powder, supplementary cementitious material, sustainable construction, green concrete

Procedia PDF Downloads 295
3479 Production and Characterization of Sol-Enhanced Zn-Ni-Al2O3 Nano Composite Coating

Authors: Soroor Ghaziof, Wei Gao

Abstract:

Sol-enhanced Zn-Ni-Al2O3 nano-composite coatings were electroplated on mild steel by our newly developed sol-enhanced electroplating method. In this method, transparent Al2O3 sol was added into the acidic Zn-Ni bath to produced Zn-Ni-Al2O3 nano-composite coatings. The chemical composition, microstructure and mechanical properties of the composite and alloy coatings deposited at two different agitation speed were investigated. The structure of all coatings was single γ-Ni5Zn21 phase. The composite coatings possess refined crystals with higher microhardness compared to Zn-Ni alloy coatings. The wear resistance of Zn-Ni coatings was improved significantly by incorporation of alumina nano particles into the coatings. Higher agitation speed provided more uniform coatings with smaller grain sized and slightly higher microhardness. Considering composite coatings, high agitation speeds may facilitate co-deposition of alumina in the coatings.

Keywords: microhardness, sol-enhanced electroplating, wear resistance, Zn-Ni-Al2O3 composite coatings

Procedia PDF Downloads 466
3478 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete

Authors: Gashaw Abebaw

Abstract:

Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.

Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan

Procedia PDF Downloads 92
3477 Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites

Authors: G. B. Manjunatha

Abstract:

Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed.

Keywords: hybrid composites, mechanical properties, polymer composites, stacking sequence

Procedia PDF Downloads 127
3476 Study of Metakaolin-Based Geopolymer with Addition of Polymer Admixtures

Authors: Olesia Mikhailova, Pavel Rovnaník

Abstract:

In the present work, metakaolin-based geopolymer including different polymer admixtures was studied. Different types of commercial polymer admixtures VINNAPAS® and polyethylene glycol of different relative molecular weight were used as polymer admixtures. The main objective of this work is to investigate the influence of different types of admixtures on the properties of metakaolin-based geopolymer mortars considering their different dosage. Mechanical properties, such as flexural and compressive strength were experimentally determined. Also, study of the microstructure of selected specimens by using a scanning electron microscope was performed. The results showed that the specimen with addition of 1.5% of VINNAPAS® 7016 F and 10% of polyethylene glycol 400 achieved maximum mechanical properties.

Keywords: geopolymer, mechanical properties, metakaolin, microstructure, polymer admixtures, porosity

Procedia PDF Downloads 201
3475 The Effects of COVID-19 on the Energy Trends and Production Capacity of Turkish Cement Industry

Authors: Adem Atmaca

Abstract:

More than 500 million COVID-19 cases were noted in February 2022 in Turkey. The country is one of the most impacted countries all around the world with twenty million cases. The cement industry in Turkey ranks among the most energy-intensive sectors with huge production capacities among the biggest exporter countries. The purpose of this paper is to clarify the effects of the pandemic on the cement industry in Turkey by showing the changes in manufacturing capacities and export rates of all facilities in the country. The investigation has revealed that the epidemic has slight effects on the factory production capacities and export rates. Even though the capacity usage rates of the factories decreased dramatically in 2019, it seems that Turkish cement companies turned the pandemic to their advantage by increasing their production capacities, capacity usage rates and export rates gradually by reaching new markets during the pandemic.

Keywords: energy, emissions, cement industry, COVID-19

Procedia PDF Downloads 87
3474 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway

Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine

Abstract:

In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.

Keywords: cement, dredged, sediment, foundation layer, resistance

Procedia PDF Downloads 65
3473 Visible-Light Induced Photocatalytic Degradation of Dye Molecules over ZnWO4-Bi2WO6 Composite

Authors: Sudarat Issarapanacheewin, Katcharin Wetchakun, Sukon Phanichphant, Wiyong Kangwansupamonkon, Natda Wetchakun

Abstract:

The photocatalytic degradation of Methylene blue (MB) and Rhodamine B (RhB) in the presence of ZnWO4-Bi2WO6 composite under visible light irradiation (λ ≥ 400 nm) were studied in this research. The structural and photophysical properties of ZnWO4-Bi2WO6 composite on the photocatalytic degradation process were investigated. The as-prepared ZnWO4-Bi2WO6 composite photocatalyst exhibits wide absorption in the visible-light region and display superior visible-light-driven photocatalytic activities in degradation of MB and RhB. The enhanced photocatalytic activity was attributed to electron-hole separation with the appropriate band potential and the physicochemical properties of ZnWO4 and Bi2WO6. The main active species for the degradation of organic dyes were investigated to explain the enhancement of photocatalytic performance of ZnWO4-Bi2WO6 composite. The possible photocatalytic degradation pathway of aqueous MB and RhB dyes and charge transfer of ZnWO4-Bi2WO6 composite was proposed.

Keywords: composite, dyes, photocatalytic activity, ZnWO4-Bi2WO6

Procedia PDF Downloads 270
3472 Role of Amount of Glass Fibers in PAEK Composites to Control Mechanical and Tribological Properties

Authors: Jitendra Narayan Panda, Jayashree Bijwe, Raj K. Pandey

Abstract:

PAEK (Polyaryl ether ketone) being a high-performance polymer, is currently being explored for its tribo-potential by incorporating various fibers, solid lubricants. In this work, influence of amount (30 and 40 %) of short glass fibers (GF) in two composites containing PAEK (60 and 50 %) and synthetic graphite (10 %) on mechanical and tribological behaviour was studied. The composites were developed by injection molding and evaluated in adhesive wear mode (pin on disc configuration) against mild steel disc. The load and speed were selected as variable input parameters while coefficient of friction (µ), specific wear rate (K0) and PVlimit (pressure × velocity) values were selected as output parameters for performance evaluation. Although higher amount of GF lead to better mechanical properties, tribological properties were not in tune to this. Overall, µ and K0 for both composites were in the range 0.04-0.08 and 3-8x 10-16 m3/Nm respectively and decreased with increase in applied PV values till failure was observed. PVlimit was indicated by 112 and 100 MPa m/s. Such high PVlimit values are not reported for any polymer composites running in dry conditions in the literature. The mechanical properties of the C40 composite (40 % GF) proved superior to C30 composite (30 % GF). However, all tribological properties of C40 were inferior to C30. It exhibited higher µ, higher K0 and slightly lower PVlimit value. The higher % fibers proved detrimental for tribo-performance and worn surface analysis by SEM & EDAX was done on the discs & pins to understand wear mechanisms.

Keywords: PAEK composites, pin-on-disk, PV limit, friction

Procedia PDF Downloads 161
3471 Effect of Iron Contents on Rheological Properties of Syndiotactic Polypropylene/iron Composites

Authors: Naveed Ahmad, Farooq Ahmad, Abdul Aal

Abstract:

The effect of iron contents on the rheological behavior of sPP/iron composites in the melt phase was investigated using a series of syndiotactic polypropylene/iron (sPP/iron) composite samples. Using the Advanced Rheometric Expansion System, studies with small amplitude oscillatory shear were conducted (ARES). It was discovered that the plateau modulus rose along with the iron loading. Also it was found that both entanglement molecular weight and packing length decrease with increase in iron loading.. This finding demonstrates how iron content in polymer/iron composites affects chain parameters and dimensions, which in turn affects the entire chain dynamics.

Keywords: plateau modulus, packing lenght, polymer/iron composites, rheology, entanglement molecular weight

Procedia PDF Downloads 124