Search results for: carbon nanodots/C₃N₄
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2979

Search results for: carbon nanodots/C₃N₄

2799 Experimentation and Analysis of Reinforced Basalt and Carbon Fibres Composite Laminate Mechanical Properties

Authors: Vara Prasad Vemu

Abstract:

The aim of the present work is to investigate the mechanical properties and water absorption capacity of carbon and basalt fibers mixed with matrix epoxy. At present, there is demand for nature friendly products. Basalt reinforced composites developed recently, and these mineral amorphous fibres are a valid alternative to carbon fibres for their lower cost and to glass fibres for their strength. The present paper describes briefly on basalt and carbon fibres (uni-directional) which are used as reinforcement materials for composites. The matrix epoxy (LY 556-HY 951) is taken into account to assess its influence on the evaluated parameters. In order to use reinforced composites for structural applications, it is necessary to perform a mechanical characterization. With this aim experiments like tensile strength, flexural strength, hardness and water absorption are performed. Later the mechanical properties obtained from experiments are compared with ANSYS software results.

Keywords: carbon fibre, basalt fibre, uni-directional, reinforcement, mechanical tests, water absorption test, ANSYS

Procedia PDF Downloads 170
2798 Effect of Carbon Nanotubes Functionalization with Nitrogen Groups on Pollutant Emissions in an Internal Combustion Engine

Authors: David Gamboa, Bernardo Herrera, Karen Cacua

Abstract:

Nanomaterials have been explored as alternatives to reduce particulate matter from diesel engines, which is one of the most common pollutants of the air in urban centers. However, the use of nanomaterials as additives for diesel has to overcome the instability of the dispersions to be considered viable for commercial use. In this work, functionalization of carbon nanotubes with amide groups was performed to improve the stability of these nanomaterials in a mix of 90% petroleum diesel and 10% palm oil biodiesel (B10) in concentrations of 50 and 100 ppm. The resulting nano fuel was used as the fuel for a stationary internal combustion engine, where the particulate matter, NOx, and CO were measured. The results showed that the use of amide groups significantly enhances the time for the carbon nanotubes to remain suspended in the fuel, and at the same time, these nanomaterials helped to reduce the particulate matter and NOx emissions. However, the CO emissions with nano fuel were higher than those ones with the combustion of B10. These results suggest that carbon nanotubes have thermal and catalytic effects on the combustion of B10.

Keywords: carbon nanotubes, diesel, internal combustion engine, particulate matter

Procedia PDF Downloads 92
2797 Biomass and Carbon Stock Estimates of Woodlands in the Southeastern Escarpment of Ethiopian Rift Valley: An Implication for Climate Change Mitigation

Authors: Sultan Haji Shube

Abstract:

Woodland ecosystems of semiarid rift valley of Ethiopia play a significant role in climate change mitigation by sequestering and storing more carbon. This study was conducted in Gidabo river sub-basins southeastern rift-valley escarpment of Ethiopian. It aims to estimate biomass and carbon stocks of woodlands and its implications for climate change mitigation. A total of 44 sampling plots (900m²each) were systematically laid in the woodland for vegetation and environmental data collection. A composite soil sample was taken from five locations main plot. Both disturbed and undisturbed soil samples were taken at two depths using soil auger and core-ring sampler, respectively. Allometric equation was used to estimate aboveground biomass while root-to-shoot ratio method and Walkley-Black method were used for belowground biomass and SOC, respectively. Result revealed that the totals of the study site was 17.05t/ha, of which 14.21t/ha was belonging for AGB and 2.84t/ha was for BGB. Moreover, 2224.7t/ha total carbon stocks was accumulated with an equivalent carbon dioxide of 8164.65t/ha. This study also revealed that more carbon was accumulated in the soil than the biomass. Both aboveground and belowground carbon stocks were decreased with increase in altitude while SOC stocks were increased. The AGC and BGC stocks were higher in the lower slope classes. SOC stocks were higher in the higher slope classes than in the lower slopes. Higher carbon stock was obtained from woody plants that had a DBH measure of >16cm and situated at plots facing northwest. Overall, study results will add up information about carbon stock potential of the woodland that will serve as a base line scenario for further research, policy makers and land managers.

Keywords: allometric equation, climate change mitigation, soil organic carbon, woodland

Procedia PDF Downloads 54
2796 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 45
2795 Comparative Study of Fenton and Activated Carbon Treatment for Dyeing Waste Water

Authors: Prem Mohan, Namrata Jariwala

Abstract:

In recent years 10000 dyes are approximately used by dying industry which makes dyeing wastewater more complex in nature. It is very difficult to treat dyeing wastewater by conventional methods. Here an attempt has been made to treat dyeing wastewater by the conventional and advanced method for removal of COD. Fenton process is the advanced method and activated carbon treatment is the conventional method. Experiments have been done on synthetic wastewater prepared from three different dyes; acidic, disperse and reactive. Experiments have also been conducted on real effluent obtained from industry. The optimum dose of catalyst and hydrogen peroxide in Fenton process and optimum activated carbon dose for each of these wastewaters were obtained. In Fenton treatment, COD removal was obtained up to 95% whereas 70% removal was obtained with activated carbon treatment.

Keywords: activated carbon, advanced oxidation process, dyeing waste water, fenton oxidation process

Procedia PDF Downloads 181
2794 Fabrication of Activated Carbon from Palm Trunksfor Removal of Harmful Dyes

Authors: Eman Alzahrani

Abstract:

Date palm trees are abundant and cheap natural resources in Saudi Arabia. In this study, an activated carbon was prepared from palm trunks by chemical processes. The chemical activation was performed by impregnation of the raw materials after grinding with H3PO4 solution (63%), followed by placing of the sample solution on a muffle furnace at 400ºC for 30 min, and then at 800ºC for 10 min. The morphology of the fabricated material was checked using scanning electron microscopy that showed the rough surfaces on the carbon samples. The use of fabricated activated carbon for removal of eosin dye from aqueous solutions at different contact time, initial dye concentration, pH and adsorbent doses was investigated. The experimental results show that the adsorption process attains equilibrium within 20 min. The adsorption isotherm equilibrium was studied by means of the Langmuir and Freundlich isotherms, and it was found that the data fit the Langmuir isotherm equation with maximum monolayer adsorption capacity of 126.58 mg g-1. The results indicated that the home made activated carbon prepared from palm trunks has the ability to remove eosin dye from aqueous solution and it will be a promising adsorbent for the removal of harmful dyes from waste water.

Keywords: activated carbon, date palm trunks, H3PO4 activation, adsorption, dye removal, eosin dye, isotherm

Procedia PDF Downloads 333
2793 Evaluation of the Adsorption Adaptability of Activated Carbon Using Dispersion Force

Authors: Masao Fujisawa, Hirohito Ikeda, Tomonori Ohata, Miho Yukawa, Hatsumi Aki, Takayoshi Kimura

Abstract:

We attempted to predict adsorption coefficients by utilizing dispersion energies. We performed liquid-phase free energy calculations based on gas-phase geometries of organic compounds using the DFT and studied the relationship between the adsorption of organic compounds by activated carbon and dispersion energies of the organic compounds. A linear correlation between absorption coefficients and dispersion energies was observed.

Keywords: activated carbon, adsorption, prediction, dispersion energy

Procedia PDF Downloads 207
2792 Analysis and Measurement on Indoor Environment of University Dormitories

Authors: Xuechen Gui, Senmiao Li, Qi Kan

Abstract:

Dormitory is a place for college students to study and live their daily life. The indoor environment quality of the dormitory is closely related to the physical health, mood status and work efficiency of the dormitory students. In this paper, the temperature, humidity and carbon dioxide concentration of the dormitory in Zijingang campus of Zhejiang University have been tested for three days. The experimental results show that the concentration of carbon dioxide is related to the size of the window opens and the number of dormitory staff, and presents a high concentration of carbon dioxide at nighttime while a low concentration at daytime. In terms of temperature and humidity, there is no significant difference between different orientation and time and presents a small humidity at daytime while a high humidity at nighttime.

Keywords: dormitory, indoor environment, temperature, relative humidity, carbon dioxide concentration

Procedia PDF Downloads 143
2791 Investigation of Different Surface Oxidation Methods on Pyrolytic Carbon

Authors: Lucija Pustahija, Christine Bandl, Wolfgang Kern, Christian Mitterer

Abstract:

Concerning today´s ecological demands, producing reliable materials from sustainable resources is a continuously developing topic. Such an example is the production of carbon materials via pyrolysis of natural gases or biomass. The amazing properties of pyrolytic carbon are utilized in various fields, where in particular the application in building industry is a promising way towards the utilization of pyrolytic carbon and composites based on pyrolytic carbon. For many applications, surface modification of carbon is an important step in tailoring its properties. Therefore, in this paper, an investigation of different oxidation methods was performed to prepare the carbon surface before functionalizing it with organosilanes, which act as coupling agents for epoxy and polyurethane resins. Made in such a way, a building material based on carbon composites could be used as a lightweight, durable material that can be applied where water or air filtration / purification is needed. In this work, both wet and dry oxidation were investigated. Wet oxidation was first performed in solutions of nitric acid (at 120 °C and 150 °C) followed by oxidation in hydrogen peroxide (80 °C) for 3 and 6 h. Moreover, a hydrothermal method (under oxygen gas) in autoclaves was investigated. Dry oxidation was performed under plasma and corona discharges, using different power values to elaborate optimum conditions. Selected samples were then (in preliminary experiments) subjected to a silanization of the surface with amino and glycidoxy organosilanes. The functionalized surfaces were examined by X-ray photon spectroscopy and Fourier transform infrared spectroscopy spectroscopy, and by scanning electron microscopy. The results of wet and dry oxidation methods indicated that the creation of functionalities was influenced by temperature, the concentration of the reagents (and gases) and the duration of the treatment. Sequential oxidation in aq. HNO₃ and H₂O₂ results in a higher content of oxygen functionalities at lower concentrations of oxidizing agents, when compared to oxidizing the carbon with concentrated nitric acid. Plasma oxidation results in non-permanent functionalization on the carbon surface, by which it´s necessary to find adequate parameters of oxidation treatments that could enable longer stability of functionalities. Results of the functionalization of the carbon surfaces with organosilanes will be presented as well.

Keywords: building materials, dry oxidation, organosilanes, pyrolytic carbon, resins, surface functionalization, wet oxidation

Procedia PDF Downloads 73
2790 Analyzing the Effect of Materials’ Selection on Energy Saving and Carbon Footprint: A Case Study Simulation of Concrete Structure Building

Authors: M. Kouhirostamkolaei, M. Kouhirostami, M. Sam, J. Woo, A. T. Asutosh, J. Li, C. Kibert

Abstract:

Construction is one of the most energy consumed activities in the urban environment that results in a significant amount of greenhouse gas emissions around the world. Thus, the impact of the construction industry on global warming is undeniable. Thus, reducing building energy consumption and mitigating carbon production can slow the rate of global warming. The purpose of this study is to determine the amount of energy consumption and carbon dioxide production during the operation phase and the impact of using new shells on energy saving and carbon footprint. Therefore, a residential building with a re-enforced concrete structure is selected in Babolsar, Iran. DesignBuilder software has been used for one year of building operation to calculate the amount of carbon dioxide production and energy consumption in the operation phase of the building. The primary results show the building use 61750 kWh of energy each year. Computer simulation analyzes the effect of changing building shells -using XPS polystyrene and new electrochromic windows- as well as changing the type of lighting on energy consumption reduction and subsequent carbon dioxide production. The results show that the amount of energy and carbon production during building operation has been reduced by approximately 70% by applying the proposed changes. The changes reduce CO2e to 11345 kg CO2/yr. The result of this study helps designers and engineers to consider material selection’s process as one of the most important stages of design for improving energy performance of buildings.

Keywords: construction materials, green construction, energy simulation, carbon footprint, energy saving, concrete structure, designbuilder

Procedia PDF Downloads 161
2789 Functionalization and Dispersion of Multiwall Carbon Nanotubes in Waterborne Polyurethane

Authors: Shahla Hajializadeh, Maryam Hamedanlou

Abstract:

Multiwall carbon nanotubes were chemically modified with amide groups for the purpose of enhancing their chemical affinity with waterborne polyurethane. In this study, a thermoplastic nanocomposite containing functionalized multiwall carbon nanotube/waterborne polyurethane (WBPU/MWNT) via in situ polymerization has been prepared. The impacts of MWNT addition on the morphology and electrical properties of nanocomposites were investigated. Micrographs of Scanning Electron Microscopy (SEM) prove that functionalized CNT can be effectively dispersed in WBPU matrix. The electrical conductivity of nanocomposites increased with the CNT contents in as such the nanocomposites containing 1 wt% of MWNT exhibited a conductivity nearly five orders of magnitude higher than the WBPU film.

Keywords: chemical functionalization, electrical properties, in situ polymerization, morphology, multiwall carbon nanotubes, waterborne polyurethane

Procedia PDF Downloads 234
2788 Synthesis and Characterization of Functionalized Carbon Nanorods/Polystyrene Nanocomposites

Authors: M. A. Karakassides, M. Baikousi, A. Kouloumpis, D. Gournis

Abstract:

Nanocomposites of Carbon Nanorods (CNRs) with Polystyrene (PS), have been synthesized successfully by means of in situ polymerization process and characterized. Firstly, carbon nanorods with graphitic structure were prepared by the standard synthetic procedure of CMK-3 using MCM-41 as template, instead of SBA-15, and sucrose as carbon source. In order to create an organophilic surface on CNRs, two parts of modification were realized: surface chemical oxidation (CNRs-ox) according to the Staudenmaier’s method and the attachment of octadecylamine molecules on the functional groups of CNRs-ox (CNRs-ODA The nanocomposite materials of polystyrene with CNRs-ODA, were prepared by a solution-precipitation method at three nanoadditive to polymer loadings (1, 3 and 5 wt. %). The as derived nanocomposites were studied with a combination of characterization and analytical techniques. Especially, Fourier-transform infrared (FT-IR) and Raman spectroscopies were used for the chemical and structural characterization of the pristine materials and the derived nanocomposites while the morphology of nanocomposites and the dispersion of the carbon nanorods were analyzed by atomic force and scanning electron microscopy techniques. Tensile testing and thermogravimetric analysis (TGA) along with differential scanning calorimetry (DSC) were also used to examine the mechanical properties and thermal stability -glass transition temperature of PS after the incorporation of CNRs-ODA nanorods. The results showed that the thermal and mechanical properties of the PS/ CNRs-ODA nanocomposites gradually improved with increasing of CNRs-ODA loading.

Keywords: nanocomposites, polystyrene, carbon, nanorods

Procedia PDF Downloads 319
2787 Furniture Embodied Carbon Calculator for Interior Design Projects

Authors: Javkhlan Nyamjav, Simona Fischer, Lauren Garner, Veronica McCracken

Abstract:

Current whole building life cycle assessments (LCA) primarily focus on structural and major architectural elements to measure building embodied carbon. Most of the interior finishes and fixtures are available on digital tools (such as Tally); however, furniture is still left unaccounted for. Due to its repeated refreshments and its complexity, furniture embodied carbon can accumulate over time, becoming comparable to structure and envelope numbers. This paper presents a method to calculate the Global Warming Potential (GWP) of furniture elements in commercial buildings. The calculator uses the quantity takeoff method with GWP averages gathered from environmental product declarations (EPD). The data was collected from EPD databases and furniture manufacturers from North America to Europe. A total of 48 GWP numbers were collected, with 16 GWP coming from alternative EPD. The finalized calculator shows the average GWP of typical commercial furniture and helps the decision-making process to reduce embodied carbon. The calculator was tested on MSR Design projects and showed furniture can account for more than half of the interior embodied carbon. The calculator highlights the importance of adding furniture to the overall conversation. However, the data collection process showed a) acquiring furniture EPD is not straightforward as other building materials; b) there are very limited furniture EPD, which can be explained from many perspectives, including the EPD price; c) the EPD themselves vary in terms of units, LCA scopes, and timeframes, which makes it hard to compare the products. Even though there are current limitations, the emerging focus on interior embodied carbon will create more demand for furniture EPD. It will allow manufacturers to represent all their efforts on reducing embodied carbon. In addition, the study concludes with recommendations on how designers can reduce furniture-embodied carbon through reuse and closed-loop systems.

Keywords: furniture, embodied carbon, calculator, tenant improvement, interior design

Procedia PDF Downloads 165
2786 Carbon Dioxide (CO₂) and Methane (CH₄) Fluxes from Irrigated Wheat in a Subtropical Floodplain Soil Increased by Reduced Tillage, Residue Retention, and Nitrogen Application Rate

Authors: R. Begum, M. M. R. Jahangir, M. Jahiruddin, M. R. Islam, M. M. Rahman, M. B. Hossain, P. Hossain

Abstract:

Quantifying carbon (C) sequestration in soils is necessary to help better understand the effect of agricultural practices on the C cycle. The estimated contribution of agricultural carbon dioxide (CO₂) and methane (CH₄) to global warming potential (GWP) has a wide range. The underlying causes of this huge uncertainty are the difficulties to predict the regional CO₂ and CH₄ loss due to the lack of experimental evidence on CO₂ and CH₄ emissions and associated drivers. The CH₄ and CO₂ emissions were measured in irrigated wheat in subtropical floodplain soils which have been under two soil disturbance levels (strip vs. conventional tillage; ST vs. CT being both with 30% residue retention) and three N fertilizer rates (60, 100, and 140% of the recommended N fertilizer dose, RD) in annual wheat (Triticum aestivum)-mungbean (Vigna radiata)-rice (Oryza sativa L) for seven consecutive years. The highest CH₄ and CO₂ emission peak was observed on day 3 after urea application in both tillages except CO₂ flux in CT. Nitrogen fertilizer application rate significantly influenced mean and cumulative CH₄ and CO₂ fluxes. The CH₄ and CO₂ fluxes decreased in an optimum dose of N fertilizer except for ST for CH₄. The CO₂ emission significantly showed higher emission at minimum (60% of RD) fertilizer application at both tillages. Soil microbial biomass carbon (MBC), organic carbon (SOC), Particulate organic carbon (POC), permanganate oxidisable carbon (POXC), basal respiration (BR) were significantly higher in ST which were negative and significantly correlated with CO₂. However, POC and POXC were positively and significantly correlated with CH₄ emission.

Keywords: carbon dioxide emissions, methane emission, nitrogen rate, tillage

Procedia PDF Downloads 78
2785 Carbon Sequestration and Carbon Stock Potential of Major Forest Types in the Foot Hills of Nilgiri Biosphere Reserve, India

Authors: B. Palanikumaran, N. Kanagaraj, M. Sangareswari, V. Sailaja, Kapil Sihag

Abstract:

The present study aimed to estimate the carbon sequestration potential of major forest types present in the foothills of Nilgiri biosphere reserve. The total biomass carbon stock was estimated in tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest as 14.61 t C ha⁻¹ 75.16 t C ha⁻¹ and 187.52 t C ha⁻¹ respectively. The density and basal area were estimated in tropical thorn forest, tropical dry deciduous forest, tropical moist deciduous forest as 173 stems ha⁻¹, 349 stems ha⁻¹, 391 stems ha⁻¹ and 6.21 m² ha⁻¹, 31.09 m² ha⁻¹, 67.34 m² ha⁻¹ respectively. The soil carbon stock of different forest ecosystems was estimated, and the results revealed that tropical moist deciduous forest (71.74 t C ha⁻¹) accounted for more soil carbon stock when compared to tropical dry deciduous forest (31.80 t C ha⁻¹) and tropical thorn forest (3.99 t C ha⁻¹). The tropical moist deciduous forest has the maximum annual leaf litter which was 12.77 t ha⁻¹ year⁻¹ followed by 6.44 t ha⁻¹ year⁻¹ litter fall of tropical dry deciduous forest. The tropical thorn forest accounted for 3.42 t ha⁻¹ yr⁻¹ leaf litter production. The leaf litter carbon stock of tropical thorn forest, tropical dry deciduous forest and tropical moist deciduous forest found to be 1.02 t C ha⁻¹ yr⁻¹ 2.28 t⁻¹ C ha⁻¹ yr⁻¹ and 5.42 t C ha⁻¹ yr⁻¹ respectively. The results explained that decomposition percent at the soil surface in the following order.tropical dry deciduous forest (77.66 percent) > tropical thorn forest (69.49 percent) > tropical moist deciduous forest (63.17 percent). Decomposition percent at soil subsurface was studied, and the highest decomposition percent was observed in tropical dry deciduous forest (80.52 percent) followed by tropical moist deciduous forest (77.65 percent) and tropical thorn forest (72.10 percent). The decomposition percent was higher at soil subsurface. Among the three forest type, tropical moist deciduous forest accounted for the highest bacterial (59.67 x 105cfu’s g⁻¹ soil), actinomycetes (74.87 x 104cfu’s g⁻¹ soil) and fungal (112.60 x10³cfu’s g⁻¹ soil) population. The overall observation of the study helps to conclude that, the tropical moist deciduous forest has the potential of storing higher carbon content as biomass with the value of 264.68 t C ha⁻¹ and microbial populations.

Keywords: basal area, carbon sequestration, carbon stock, Nilgiri biosphere reserve

Procedia PDF Downloads 138
2784 A Synthetic Strategy to Attach 2,6-Dichlorophenolindophenol onto Multi Walled Carbon Nanotubes and Their Application for Electrocatalytic Determination of Sulfide

Authors: Alireza Mohadesi, Ashraf Salmanipour

Abstract:

A chemically modified glassy carbon electrode for electrocatalytic determination of sulfide was developed using multiwalled carbon nanotubes (MWCNTs) covalently immobilized with 2,6-dichlorophenolindophenol (DPIP). The immobilization of 2,6-dichlorophenolindophenol with MWCNTs was performed with a new synthetic strategy and characterized by UV–visible absorption spectroscopy, Fourier transform infrared spectroscopy and cyclic voltammetry. The cyclic voltammetric response of DPIP grafted onto MWCNTs indicated that it promotes the low potential, sensitive and stable determination of sulfide. The dependence of response currents on the concentration of sulfide was examined and was linear in the range of 10 - 1100 µM. The detection limit of sulfide was 5 µM and RSD for 100 and 500 µM sulfides were 1.8 and 1.3 %. Many interfering species had little or no effect on the determination of sulfide. The procedure was applied to determination of sulfide in waters samples.

Keywords: functionalized carbon nanotubes, sulfide, biological samples, 2, 6-dichlorophenolindophenol

Procedia PDF Downloads 263
2783 Effect of Carbon Amount of Dual-Phase Steels on Deformation Behavior Using Acoustic Emission

Authors: Ramin Khamedi, Isa Ahmadi

Abstract:

In this study acoustic emission (AE) signals obtained during deformation and fracture of two types of ferrite-martensite dual phase steels (DPS) specimens have been analyzed in frequency domain. For this reason two low carbon steels with various amounts of carbon were chosen, and intercritically heat treated. In the introduced method, identifying the mechanisms of failure in the various phases of DPS is done. For this aim, AE monitoring has been used during tensile test of several DPS with various volume fraction of the martensite (VM) and attempted to relate the AE signals and failure mechanisms in these steels. Different signals, which referred to 2-3 micro-mechanisms of failure due to amount of carbon and also VM have been seen. By Fast Fourier Transformation (FFT) of signals in distinct locations, an excellent relationship between peak frequencies in these areas and micro-mechanisms of failure were seen. The results were verified by microscopic observations (SEM).

Keywords: acoustic emission, dual phase steels, deformation, failure, fracture

Procedia PDF Downloads 370
2782 Analysis of Causality between Economic Growth and Carbon Emissions: The Case of Mexico 1971-2011

Authors: Mario Gómez, José Carlos Rodríguez

Abstract:

This paper analyzes the Environmental Kuznets Curve (EKC) hypothesis to test the causality relationship between economic activity, trade openness and carbon dioxide emissions in Mexico (1971-2011). The results achieved in this research show that there are three long-run relationships between production, trade openness, energy consumption and carbon dioxide emissions. The EKC hypothesis was not verified in this research. Indeed, it was found evidence of a short-term unidirectional causality from GDP and GDP squared to carbon dioxide emissions, from GDP, GDP squared and TO to EC, and bidirectional causality between TO and GDP. Finally, it was found evidence of long-term unidirectional causality from all variables to carbon emissions. These results suggest that a reduction in energy consumption, economic activity, or an increase in trade openness would reduce pollution.

Keywords: causality, cointegration, energy consumption, economic growth, environmental Kuznets curve

Procedia PDF Downloads 322
2781 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 396
2780 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment

Authors: R. Niranchana, K. Meena Alias Jeyanthi

Abstract:

As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.

Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm

Procedia PDF Downloads 52
2779 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material

Authors: Ghazi R. Reda Mahmoud Reda

Abstract:

Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.

Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption

Procedia PDF Downloads 331
2778 Role of Sequestration of CO2 Due to the Carbonation in Total CO2 Emission Balance in Concrete Life

Authors: P. P. Woyciechowski

Abstract:

Calculation of the carbon footprint of cement concrete is a complex process including consideration of the phase of primary life (components and concrete production processes, transportation, construction works, maintenance of concrete structures) and secondary life, including demolition and recycling. Taking into consideration the effect of concrete carbonation can lead to a reduction in the calculated carbon footprint of concrete. In this paper, an example of CO2 balance for small bridge elements made of Portland cement reinforced concrete was done. The results include the effect of carbonation of concrete in a structure and of concrete rubble after demolition. It was shown that important impact of carbonation on the balance is possible only when rubble carbonation is possible. It was related to the fact that only the sequestration potential in the secondary phase of concrete life has significant value.

Keywords: carbon footprint, balance of carbon dioxide in nature, concrete carbonation, the sequestration potential of concrete

Procedia PDF Downloads 194
2777 Synthesize of Cobalt Oxide Nanoballs/Carbon Aerogel Nanostructures: Towards High-Performance Materials for Supercapacitors

Authors: A. Bahadoran, M. Zomorodian

Abstract:

The synthesizer of cobalt oxide nanoballs (length 3−4 μm, width 250−400 nm) was achieved by a simple high-temperature supercritical solution method. Multiwalled carbon aerogels are a step towards high-density nanometer-scale nanostructures. Cobalt oxide nanoballs were prepared by supercritical solution method. Synthesis in an aqueous solution containing cobalt hydroxide at ∼80 °C without any further heat treatment at high temperature. The formation of cobalt oxide nanoballs on carbon aerogel was confirmed by X-ray diffraction and Raman spectroscopy. The FE-SEM images showed the presence of cobalt oxide nanoballs. The reaction mechanism of the ultrasound-assisted synthesis of cobalt oxide nanostructures was proposed on the basis of the XRD, X-ray absorption spectroscopy analysis and FE-SEM observation of the reaction products taken during the course of the synthesis.

Keywords: cobalt oxide nano balls, carbon aerogel, synthesize, nanostructure

Procedia PDF Downloads 331
2776 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques

Procedia PDF Downloads 242
2775 Pyrolysis of the Reed (Phragmites australis) and Evaluation of Pyrolysis Products

Authors: Ahmet Helvaci, Selcuk Dogan

Abstract:

Reed in especially almost all the lakes in Western Anatolia grows naturally. Due to the abundance of reed, pyrolysis of reed is very economical and practical application. In this study, it is aimed to determine the optimum conditions for the pyrolysis of the reed which is a cheap and abundant raw material and to evaluate pyrolysis products. For this purpose, reed was used obtained from Eber Lake located in the borders of Bolvadin county of Afyonkarahisar. Optimum pyrolysis conditions have been determined by examining the effects of changes in pyrolysis temperature and pyrolysis time. The evaluation of the obtained liquid and solid pyrolysis products has been investigated. Especially evaluability of solid carbon black production of tires has been investigated. Tire samples were prepared with carbon black samples obtained as a result of the pyrolysis process at different temperatures. Then, performance tests were made and compared with reference carbon blacks, used in the market and standards. At the same time, surface area measurement analysis of carbon black samples was made and compared again with reference carbon blacks. In addition, the fuel values of liquid products were also determined by calorimeter. It has been determined that the best surface area (about 370 m²/g) for carbon black samples, for tire production is 40 minutes at 500ᵒC. It was also found that the best result for evaluation studies in tire production was carbon black samples obtained at 450ᵒC pyrolysis temperature. In addition, it was seen that the calorimetry results of the liquid product obtained during 60 minutes of pyrolysis were quite good (around 5500 kcal/kg).

Keywords: evaluation of products, optimization, pyrolysis, reed

Procedia PDF Downloads 165
2774 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 203
2773 Production of Clean Reusable Distillery Waste Water Using Activated Carbon Prepared from Waste Orange Peels

Authors: Joseph Govha, Sharon Mudutu

Abstract:

The research details the treatment of distillery waste water by making use of activated carbon prepared from orange peels as an adsorbent. Adsorption was carried out at different conditions to determine the optimum conditions that work best for the removal of color in distillery waste water using orange peel activated carbon. Adsorption was carried out at different conditions by varying contact time, adsorbent dosage, pH, testing for color intensity and Biological Oxygen Demand. A maximum percentage color removal of 88% was obtained at pH 7 at an adsorbent dosage of 1g/20ml. Maximum adsorption capacity was obtained from the Langmuir isotherm at R2=0.98.

Keywords: distillery, waste water, orange peel, activated carbon, adsorption

Procedia PDF Downloads 261
2772 Improving the Electrical Conductivity of Epoxy Coating Using Carbon Nanotube by Electrodeposition Method

Authors: Mahla Zabet, Navid Zanganeh, Hafez Balavi, Farbod Sharif

Abstract:

Electrodeposition is a method for applying coatings with uniform thickness on complex objects. A conductive surface can be produced using the electrical current in this method. Carbon nanotubes are known to have high electrical conductivity and mechanical properties. In this report, NH2-multiwalled carbon nanotubes (MWCNTs) were used in epoxy resin with different weight percent. The weight percent of incorporated MWCNTS into the matrix was changed in the range of 0.6-3.6 wt% to obtain a series of electrocoatings. The electrocoats were then applied on steel substrates by a cathodic electrodeposition technique. Scanning electron microscopy (SEM) and optical microscopy were used to characterize the electrocoated films. The results illustrated the increase in conductivity by increasing of MWCNT load. However, at the percolation threshold, throwing power was dropped with increase in recoating ability.

Keywords: electrodeposition, carbon nanotube, electrical conductivity, throwing power

Procedia PDF Downloads 381
2771 Energy Scenarios for Greater Kampala Metropolitan Area towards a Sustainable 2050: A TIMES-VEDA Analysis

Authors: Kimuli Ismail, Michael Lubwama, John Baptist Kirabira, Adam Sebbit

Abstract:

This study develops 4 energy scenarios for Greater Kampala Metropolitan Area (GKMA). GKMA is Uganda’s capital with a population of 4.1million and a GDP growth rate of 5.8 with a nonsustainable energy management system. The study uses TIMES-VEDA to examine the energy impacts of business as usual (BAU), Kabejja, Carbon-Tax, and Lutta scenarios in commercial, industrial, transportation, residential, agricultural, and electricity generation activities. BAU is the baseline scenario with limited CO2 emissions restrictions against which Kabejja with 20% CO2 emissions restriction, a carbon tax of $100/ton imposed in 2050 for Carbon-Tax scenario, and Lutta with 95% CO2 emissions restriction is made. The analysis suggests that if the current policy trends continue as BAU, consumption would increase from 139.6PJ to 497.42PJ and CO2 emissions will increase from 4.6mtns to 7mtns. However, consumption would decrease by 2.3% in Kabejja, 3.4% in Carbon-Tax, and 3.3 % in Lutta compared to BAU. The CO2 emissions would decrease by 8.57% in Kabejja, 55.14% in Carbon-Tax, and 60% in Lutta compared to BAU. Sustainability is achievable when low-carbon electricity is increased by 53.68% in the EMS, and setting up an electrified Kampala metro. The study recommends Lutta as the sustainable pathway to a lowcarbon 2050.

Keywords: Sustainability, Scenario Plannnig, Times-Veda Modelling, Energy Policy Development

Procedia PDF Downloads 40
2770 Terahertz Surface Plasmon in Carbon Nanotube Dielectric Interface via Amplitude Modulated Laser

Authors: Monika Singh

Abstract:

A carbon nanotube thin film coated on dielectric interface is employed to produce THz surface plasma wave (SPW). The carbon nanotube has its plasmon frequency in the THz range. The SPW field falls off away from the metal film both inside the dielectric as well as in free space. An amplitude modulated laser pulse normally incident, from free space on slow wave structure, exert a modulation frequency ponderomotive force on the free electrons of the CNT film and resonantly excite the THz surface plasma wave at the modulation frequency. Carbon nanotube based plasmonic nano-structure materials provides potentially more versatile approach to tightly confined surface modes in the THz range in comparison to noble metals.

Keywords: surface plasmons, surface waves, thin films, THz radiation

Procedia PDF Downloads 366