Search results for: biomass protein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3241

Search results for: biomass protein

3001 Alterations of Malondialdehyde and Heat Shock Protein-27 in Sheep with Naturally Infected Liver Cystic Echinococcosis

Authors: K. Azimzadeh, S. Rasouli

Abstract:

The present study investigates whether malondialdehyde (MDA) and heat shock protein-27 (HSP-27) are altered in sheep with cystic echinococcosis (CE). For this purpose, forty parasitized and thirty healthy sheep were selected based on severe cystic form observation in liver and lack of blood parasite along with no cystic conformation in carcass respectively. The results revealed a significant decrease (p<0.01) in albumin (Alb) and total plasma protein (TPP) and a significant increase (p<0.01) in HSP-27, MDA, total bilirubin and unconjugated bilirubin in the infected group compared with healthy ones.The results indicate low levels of TPP and Alb reveal liver damage in suffered sheep and MDA elevation demonstrates oxidative stress in infected group. In addition, HSP-27 enhancement may attribute to disease-induced stress conditions.

Keywords: malondialdehyde, heat shock protein-27, Echinococcosis, blood parasites

Procedia PDF Downloads 582
3000 A New Tactical Optimization Model for Bioenergy Supply Chain

Authors: Birome Holo Ba, Christian Prins, Caroline Prodhon

Abstract:

Optimization is an important aspect of logistics management. It can reduce significantly logistics costs and also be a good tool for decision support. In this paper, we address a planning problem specific to biomass supply chain. We propose a new mixed integer linear programming (MILP) model dealing with different feed stock production operations such as harvesting, packing, storage, pre-processing and transportation, with the objective of minimizing the total logistic cost of the system on a regional basis. It determines the optimal number of harvesting machine, the fleet size of trucks for transportation and the amount of each type of biomass harvested, stored and pre-processed in each period to satisfy demands of refineries in each period. We illustrate the effectiveness of the proposal model with a numerical example, a case study in Aube (France department), which gives preliminary and interesting, results on a small test case.

Keywords: biomass logistics, supply chain, modelling, optimization, bioenergy, biofuels

Procedia PDF Downloads 489
2999 In vitro and invivo Antioxidant Studies of Grewia crenata Leaves Extract in Albino Rats

Authors: A. N.Ukwuani, A. K. Abdulfatah

Abstract:

G. crenata is used locally for the treatment of fractured bones, wound healing and inflammatory conditions. In vitro and in vivo antioxidant activity of hydromethanolic extracts of the leaves of G. crenata were assessed. The phytochemical analysis shows the presence of phenols, flavonoids, saponins, cardiac glycosides and tannins. An in vitro quantitative analysis of phenols, flavonoids and tannins respectively were (164±1.20, 199±0.88 and 88.67±0.88 mg/100g FW). In vivo studies of hydromethanolic extract demonstrated a dose dependent increase in hepatic superoxide dismutase (1.14±0.14, 2.13±0.11, 2.55±0.11 U/mg Protein) with improvement in hepatic glutathione (6.98±0.42, 8.91±0.37, 11.07±0.46 µM/mg Protein) and Catalase (4.47±0.05, 6.24±0.02, 7.17±0.04 U/mg Protein) and Total protein (6.18±0.08, 6.69±0.18, 7.27±0.16 mg/ml) respectively at 100-300mg/kg body weight Grewia crenata leaves when compared to the control and standard drug. It can be concluded from the present findings of that G. crenata leaves possess antioxidant potential.

Keywords: Grewia crenata, antioxidant, hydromethanolic extract, in vivo, in vitro

Procedia PDF Downloads 508
2998 Evaluation of Electro-Flocculation for Biomass Production of Marine Microalgae Phaodactylum tricornutum

Authors: Luciana C. Ramos, Leandro J. Sousa, Antônio Ferreira da Silva, Valéria Gomes Oliveira Falcão, Suzana T. Cunha Lima

Abstract:

The commercial production of biodiesel using microalgae demands a high-energy input for harvesting biomass, making production economically unfeasible. Methods currently used involve mechanical, chemical, and biological procedures. In this work, a flocculation system is presented as a cost and energy effective process to increase biomass production of Phaeodactylum tricornutum. This diatom is the only species of the genus that present fast growth and lipid accumulation ability that are of great interest for biofuel production. The algae, selected from the Bank of Microalgae, Institute of Biology, Federal University of Bahia (Brazil), have been bred in tubular reactor with photoperiod of 12 h (clear/dark), providing luminance of about 35 μmol photons m-2s-1, and temperature of 22 °C. The medium used for growing cells was the Conway medium, with addition of silica. The seaweed growth curve was accompanied by cell count in Neubauer camera and by optical density in spectrophotometer, at 680 nm. The precipitation occurred at the end of the stationary phase of growth, 21 days after inoculation, using two methods: centrifugation at 5000 rpm for 5 min, and electro-flocculation at 19 EPD and 95 W. After precipitation, cells were frozen at -20 °C and, subsequently, lyophilized. Biomass obtained by electro-flocculation was approximately four times greater than the one achieved by centrifugation. The benefits of this method are that no addition of chemical flocculants is necessary and similar cultivation conditions can be used for the biodiesel production and pharmacological purposes. The results may contribute to improve biodiesel production costs using marine microalgae.

Keywords: biomass, diatom, flocculation, microalgae

Procedia PDF Downloads 302
2997 Exploring Forest Biomass Changes in Romania in the Last Three Decades

Authors: Remus Pravalie, Georgeta Bandoc

Abstract:

Forests are crucial for humanity and biodiversity, through the various ecosystem services and functions they provide all over the world. Forest ecosystems are vital in Romania as well, through their various benefits, known as provisioning (food, wood, or fresh water), regulating (water purification, soil protection, carbon sequestration or control of climate change, floods, and other hazards), cultural (aesthetic, spiritual, inspirational, recreational or educational benefits) and supporting (primary production, nutrient cycling, and soil formation processes, with direct or indirect importance for human well-being) ecosystem services. These ecological benefits are of great importance in Romania, especially given the fact that forests cover extensive areas countrywide, i.e. ~6.5 million ha or ~27.5% of the national territory. However, the diversity and functionality of these ecosystem services fundamentally depend on certain key attributes of forests, such as biomass, which has so far not been studied nationally in terms of potential changes due to climate change and other driving forces. This study investigates, for the first time, changes in forest biomass in Romania in recent decades, based on a high volume of satellite data (Landsat images at high spatial resolutions), downloaded from the Google Earth Engine platform and processed (using specialized software and methods) across Romanian forestland boundaries from 1987 to 2018. A complex climate database was also investigated across Romanian forests over the same 32-year period, in order to detect potential similarities and statistical relationships between the dynamics of biomass and climate data. The results obtained indicated considerable changes in forest biomass in Romania in recent decades, largely triggered by the climate change that affected the country after 1987. Findings on the complex pattern of recent forest changes in Romania, which will be presented in detail in this study, can be useful to national policymakers in the fields of forestry, climate, and sustainable development.

Keywords: forests, biomass, climate change, trends, romania

Procedia PDF Downloads 127
2996 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters

Authors: Komal Kumar, Sreedevi Upadhyayula

Abstract:

In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.

Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester

Procedia PDF Downloads 218
2995 Functional Cell Surface Display Using Ice Nucleation Protein from Erwina ananas on Escherischia coli

Authors: Mei Yuin Joanne Wee, Rosli Md. Illias

Abstract:

Cell surface display is the expression of a protein with an anchoring motif on the surface of the cell. This approach offers advantages when used in bioconversion in terms of easier purification steps and more efficient enzymatic reaction. A surface display system using ice nucleation protein (InaA) from Erwina ananas as an anchoring motif has been constructed to display xylanase (xyl) on the surface of Escherischia coli. The InaA was truncated so that it is made up of the N- and C-terminal domain (INPANC-xyl) and it has successfully directed xylanase to the surface of the cell. A study was also done on xylanase fused to two other ice nucleation proteins, InaK (INPKNC-xyl) and InaZ (INPZNC-xyl) from Pseudomonas syringae KCTC 1832 and Pseudomonas syringae S203 respectively. Surface localization of the fusion protein was verified using SDS-PAGE and Western blot on the cell fractions and all anchoring motifs were successfully displayed on the outer membrane of E. coli. Upon comparison, whole-cell activity of INPANC-xyl was more than six and five times higher than INPKNC-xyl and INPZNC-xyl respectively. Furthermore, the expression of INPANC-xyl on the surface of E. coli did not inhibit the growth of the cell. This is the first report of surface display system using ice nucleation protein, InaA from E. ananas. From this study, this anchoring motif offers an attractive alternative to the current surface display systems.

Keywords: cell surface display, Escherischia coli, ice nucleation protein, xylanase

Procedia PDF Downloads 364
2994 Extraction of Rice Bran Protein Using Enzymes and Polysaccharide Precipitation

Authors: Sudarat Jiamyangyuen, Tipawan Thongsook, Riantong Singanusong, Chanida Saengtubtim

Abstract:

Rice is a staple food as well as exported commodity of Thailand. Rice bran, a 10.5% constituent of rice grain, is a by-product of rice milling process. Rice bran is normally used as a raw material for rice bran oil production or sold as feed with a low price. Therefore, this study aimed to increase value of defatted rice bran as obtained after extracting of rice bran oil. Conventionally, the protein in defatted rice bran was extracted using alkaline extraction and acid precipitation, which results in reduction of nutritious components in rice bran. Rice bran protein concentrate is suitable for those who are allergenic of protein from other sources eg. milk, wheat. In addition to its hypoallergenic property, rice bran protein also contains good quantity of lysine. Thus it may act as a suitable ingredient for infant food formulations while adding variety to the restricted diets of children with food allergies. The objectives of this study were to compare properties of rice bran protein concentrate (RBPC) extracted from defatted rice bran using enzymes together with precipitation step using polysaccharides (alginate and carrageenan) to those of a control sample extracted using a conventional method. The results showed that extraction of protein from rice bran using enzymes exhibited the higher protein recovery compared to that extraction with alkaline. The extraction conditions using alcalase 2% (v/w) at 50 C, pH 9.5 gave the highest protein (2.44%) and yield (32.09%) in extracted solution compared to other enzymes. Rice bran protein concentrate powder prepared by a precipitation step using alginate (protein in solution: alginate 1:0.006) exhibited the highest protein (27.55%) and yield (6.62%). Precipitation using alginate was better than that of acid. RBPC extracted with alkaline (ALK) or enzyme alcalase (ALC), then precipitated with alginate (AL) (samples RBP-ALK-AL and RBP-ALC-AL) yielded the precipitation rate of 75% and 91.30%, respectively. Therefore, protein precipitation using alginate was then selected. Amino acid profile of control sample, and sample precipitated with alginate, as compared to casein and soy protein isolated, showed that control sample showed the highest content among all sample. Functional property study of RBP showed that the highest nitrogen solubility occurred in pH 8-10. There was no statically significant between emulsion capacity and emulsion stability of control and sample precipitated by alginate. However, control sample showed a higher of foaming and lower foam stability compared to those of sample precipitated with alginate. The finding was successful in terms of minimizing chemicals used in extraction and precipitation steps in preparation of rice bran protein concentrate. This research involves in a production of value-added product in which the double amount of protein (28%) compared to original amount (14%) contained in rice bran could be beneficial in terms of adding to food products eg. healthy drink with high protein and fiber. In addition, the basic knowledge of functional property of rice bran protein concentrate was obtained, which can be used to appropriately select the application of this value-added product from rice bran.

Keywords: alginate, carrageenan, rice bran, rice bran protein

Procedia PDF Downloads 261
2993 Nanoparticle-Based Histidine-Rich Protein-2 Assay for the Detection of the Malaria Parasite Plasmodium Falciparum

Authors: Yagahira E. Castro-Sesquen, Chloe Kim, Robert H. Gilman, David J. Sullivan, Peter C. Searson

Abstract:

Diagnosis of severe malaria is particularly important in highly endemic regions since most patients are positive for parasitemia and treatment differs from non-severe malaria. Diagnosis can be challenging due to the prevalence of diseases with similar symptoms. Accurate diagnosis is increasingly important to avoid overprescribing antimalarial drugs, minimize drug resistance, and minimize costs. A nanoparticle-based assay for detection and quantification of Plasmodium falciparum histidine-rich protein 2 (HRP2) in urine and serum is reported. The assay uses magnetic beads conjugated with anti-HRP2 antibody for protein capture and concentration, and antibody-conjugated quantum dots for optical detection. Western Blot analysis demonstrated that magnetic beads allows the concentration of HRP2 protein in urine by 20-fold. The concentration effect was achieved because large volume of urine can be incubated with beads, and magnetic separation can be easily performed in minutes to isolate beads containing HRP2 protein. Magnetic beads and Quantum Dots 525 conjugated to anti-HRP2 antibodies allows the detection of low concentration of HRP2 protein (0.5 ng mL-1), and quantification in the range of 33 to 2,000 ng mL-1 corresponding to the range associated with non-severe to severe malaria. This assay can be easily adapted to a non-invasive point-of-care test for classification of severe malaria.

Keywords: HRP2 protein, malaria, magnetic beads, Quantum dots

Procedia PDF Downloads 300
2992 Encapsulation and Protection of Bioactive Nutrients Based on Ligand-Binding Property of Milk Proteins

Authors: Hao Cheng, Yingzhou Ni, Amr M. Bakry, Li Liang

Abstract:

Functional foods containing bioactive nutrients offer benefits beyond basic nutrition and hence the possibility of delaying and preventing chronic diseases. However, many bioactive nutrients degrade rapidly under food processing and storage conditions. Encapsulation can be used to overcome these limitations. Food proteins have been widely used as carrier materials for the preparation of nano/micro-particles because of their ability to form gels and emulsions and to interact with polysaccharides. The mechanisms of interaction between bioactive nutrients and proteins must be understood in order to develop protein-based lipid-free delivery systems. Beta-lactoglobulin, a small globular protein in milk whey, exhibits an affinity to a wide range of compounds. Alfa-tocopherol, resveratrol and folic acid were respectively bound to the central cavity, the outer surface near Trp19–Arg124 and the hydrophobic pocket in the groove between the alfa-helix and the beta-barrel of the protein. Beta-lactoglobulin could thus bind the three bioactive nutrients simultaneously to form protein-multi-ligand complexes. Beta-casein, an intrinsically unstructured but major milk protein, could also interact with resveratrol and folic acid to form complexes. These results suggest the potential to develop milk-protein-based complex carrier systems for encapsulation of multiple bioactive nutrients for functional food application and also pharmaceutical and medical uses.

Keywords: milk protein, bioactive nutrient, interaction, protection

Procedia PDF Downloads 386
2991 A Basic Modeling Approach for the 3D Protein Structure of Insulin

Authors: Daniel Zarzo Montes, Manuel Zarzo Castelló

Abstract:

Proteins play a fundamental role in biology, but their structure is complex, and it is a challenge for teachers to conceptually explain the differences between their primary, secondary, tertiary, and quaternary structures. On the other hand, there are currently many computer programs to visualize the 3D structure of proteins, but they require advanced training and knowledge. Moreover, it becomes difficult to visualize the sequence of amino acids in these models, and how the protein conformation is reached. Given this drawback, a simple and instructive procedure is proposed in order to teach the protein structure to undergraduate and graduate students. For this purpose, insulin has been chosen because it is a protein that consists of 51 amino acids, a relatively small number. The methodology has consisted of the use of plastic atom models, which are frequently used in organic chemistry and biochemistry to explain the chirality of biomolecules. For didactic purposes, when the aim is to teach the biochemical foundations of proteins, a manipulative system seems convenient, starting from the chemical structure of amino acids. It has the advantage that the bonds between amino acids can be conveniently rotated, following the pattern marked by the 3D models. First, the 51 amino acids were modeled, and then they were linked according to the sequence of this protein. Next, the three disulfide bonds that characterize the stability of insulin have been established, and then the alpha-helix structure has been formed. In order to reach the tertiary 3D conformation of this protein, different interactive models available on the Internet have been visualized. In conclusion, the proposed methodology seems very suitable for biology and biochemistry students because they can learn the fundamentals of protein modeling by means of a manipulative procedure as a basis for understanding the functionality of proteins. This methodology would be conveniently useful for a biology or biochemistry laboratory practice, either at the pre-graduate or university level.

Keywords: protein structure, 3D model, insulin, biomolecule

Procedia PDF Downloads 24
2990 Fusarium Wilt of Tomato: Plant Growth, Physiology and Biological Disease Management

Authors: Amna Shoaib, Sidrah Hanif, Rashid Mehmood

Abstract:

Current research work was carried out to check influence of farmyard manure (FYM) in Lycopersicon esculentum L. against Fusarium oxysporum f. sp. lycopersici (FO) in copper polluted soil. Silt-loam soil naturally enriched with 70 ppm of Cu was inoculated with 1 x 106 spore suspensions of FO and incorporated with 0%, 1%, 1.5% or 2% FYM. The multilateral interaction of host-pathogen-metal-organic amendment was assessed in terms of morphology, growth, yield, physiology, biochemistry and metal uptake in tomato plant after 30 and 60 days of sowing. When soil was inoculated with FO, plant growth and biomass were significantly increased during vegetative stage, while declining during flowering stage with substantial increase in productivity over control. Infected plants exhibited late wilting and disease severity was found on 26-50% of plant during reproductive stage. Incorporation of up to 1% FYM suppressed disease severity, improved plant growth and biomass, while it decreased yield. Rest of manure doses was found ineffective in suppressing disease. Content of total chlorophyll, sugar and protein were significantly declined in FO inoculated plants and incorporation of FYM caused significant reduction or no influence on sugar and chlorophyll content, and no pronounced difference among different FYM doses were observed. On the other hand, proline, peroxidase, catalase and nitrate reductase activity were found to be increased in infected plants and incorporation of 1-2% FYM further enhanced the activity of these enzymes. Tomato plant uptake of 30-40% of copper naturally present in the soil and incorporation of 1-2% FYM markedly decreased plant uptake of metal by 15-30%, while increased Cu retention in soil. Present study concludes that lower dose (1%) of FYM could be used to manage disease, increase growth and biomass, while being ineffective for yield and productivity in Cu-polluted soil. Altered physiology/biochemistry of plant in response to any treatment could be served as basis for resistant against pathogen and metal homeostasis in plants.

Keywords: Lycopersicon esculentum, copper, Fusarium wilt, farm yard manure

Procedia PDF Downloads 386
2989 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 290
2988 Impact of Dietary L-Threonine Supplementation on Performance and Health of Broiler Chickens, a Review

Authors: Mandana Hoseini

Abstract:

During last decades, intensive selection for higher growth rate in broiler chickens has accelerated daily body weight gain, which this has changed/increased the trends and amounts of nutrient requirements in the diet. As a result, considerable studies have been focused on the better determination of protein/amino acids requirements in modern broiler diets. One approach to minimize dietary crude protein inclusion levels is substitution of some of the dietary crude protein with synthetic amino acids. In addition, using synthetic forms of limiting essential amino acids in the diet could help better coincidence of dietary protein with ideal protein concept, which this in turn, minimizes nitrogen dissipation and environmental pollution. Threonine is usually considered as the third limiting amino acid in broiler diets. Recent studies have been demonstrated that dietary supplemental threonine would optimize growth performance, immune system, intestinal morphology, as well as oxidative defense in broiler chickens. In this review, threonine metabolism and its effects in relation with different aspects of broiler performance have been discussed.

Keywords: immune system, intestine, performance, requirement, threonine

Procedia PDF Downloads 71
2987 Valorization of Residues from Forest Industry for the Generation of Energy

Authors: M. A. Amezcua-Allieri, E. Torres, J. A. Zermeño Eguía-Lis, M. Magdaleno, L. A. Melgarejo, E. Palmerín, A. Rosas, D. López, J. Aburto

Abstract:

The use of biomass to produce renewable energy is one of the forms that can be used to reduce the impact of energy production. Like any other energy resource, there are limitations for biomass use, and it must compete not only with fossil fuels but also with other renewable energy sources such as solar or wind energy. Combustion is currently the most efficient and widely used waste-to-energy process, in the areas where direct use of biomass is possible, without the need to make large transfers of raw material. Many industrial facilities can use agricultural or forestry waste, straw, chips, bagasse, etc. in their thermal systems without making major transformations or adjustments in the feeding to the ovens, making this waste an attractive and cost-effective option in terms of availability, access, and costs. In spite of the facilities and benefits, the environmental reasons (emission of gases and particulate material) are decisive for its use for energy purpose. This paper describes a valorization of residues from forest industry to generate energy, using a case study.

Keywords: bioenergy, forest waste, life-cycle assessment, waste-to-energy, electricity

Procedia PDF Downloads 275
2986 Interaction between Kazal-Type Serine Proteinase Inhibitor SPIPm2 and Cyclophilin A from the Black Tiger Shrimp Penaeus monodon

Authors: Sirikwan Ponprateep, Anchalee Tassanakajon, Vichien Rimphanitchayakit

Abstract:

A Kazal-type serine proteinase inhibitor, SPIPm2, was abundantly expressed in the hemocytes and secreted into shrimp plasma has anti-viral property against white spot syndrome virus (WSSV). To discover the molecular mechanism of antiviral activity, the binding assay showed that SPIPm2 bind to the components of viral particle and shrimp hemocyte. From our previous report, viral target protein of SPIPm2 was identified, namely WSV477 using yeast two-hybrid screening. WSV477 is an early gene product of WSSV and involved in viral propagation. In this study, the co-immunoprecipitation technique and Tandem Mass Spectrometry (LC-MS/MS) was used to identify the target protein of SPIPm2 from shrimp hemocyte. The target protein of SPIPm2 was cyclophilin A. In vertebrate, cyclophilin A or peptidylprolyl isomerase A was reported to be the immune suppressor interacted with cyclosporin A involved in immune defense response. The recombinant cyclophilin A from Penaeus monodon (rPmCypA) was produced in E.coli system and purified using Ni-NTA column to confirm the protein-protein interaction. In vitro pull-down assay showed the interaction between rSPIPm2 and rPmCypA. To study the biological function of these proteins, the expression analysis of immune gene in shrimp defense pathways will be investigated after rPmCypA administration.

Keywords: cyclophilin A, protein-protein interaction, Kazal-type serine proteinase inhibitor, Penaeus monodon

Procedia PDF Downloads 210
2985 The Effect of the Earthworm (Lumbricus rubellus) as the Source of Protein Feed and Pathogen Antibacterial for Broiler

Authors: Waode Nurmayani, Nikmatul Riswanda

Abstract:

Broilers are chickens which are kept with the most efficient time and hoped get a good body weight. All things are done, for example with the improvement of feed and use antibiotics. Feed cost is the most cost to be spent. Nearly 80% of the cost is spent just for buy feed. Earthworm (Lumbricus rubellus) is a good choice to reduce the cost of feed protein source. The Earthworm has a high crude protein content of about 48.5%-61.9%, rich with proline amino acid about 15% of the 62 amino acids. Not only about protein, this earthworm also has a role in disease prevention. Prevention of disease in livestock usual with use feed supplement. Earthworm (Lumbricus rubellus) is one of the natural materials used as feed. In addition, several types of earthworms that have been known to contain active substances about antibacterial pathogens namely Lumbricus rubellus. The earthworm could be used as an antibiotic because it contain the antibody of Lumbricine active substance. So that, this animal feed from Lumbricus rubellus could improve the performance of broilers. Bioactive of anti-bacterial is called Lumbricine able to inhibit the growth of pathogenic bacteria in the intestinal wall so that the population of pathogenic bacteria is reduced. The method of write in this scientific writing is divided into 3 techniques, namely data completion, data analysis, and thinking pan from various literature about earthworm (Lumbricus rubellus) as broiler feed. It is expected that innovation of feed material of earthworm (Lumbricus rubellus) could reduce the cost of protein feed and the use of chemical antibiotics.

Keywords: earthworm, broiler, protein, antibiotic

Procedia PDF Downloads 130
2984 Biosorption Kinetics, Isotherms, and Thermodynamic Studies of Copper (II) on Spirogyra sp.

Authors: Diwan Singh

Abstract:

The ability of non-living Spirogyra sp. biomass for biosorption of copper(II) ions from aqueous solutions was explored. The effect of contact time, pH, initial copper ion concentration, biosorbent dosage and temperature were investigated in batch experiments. Both the Freundlich and Langmuir Isotherms were found applicable on the experimental data (R2>0.98). Qmax obtained from the Langmuir Isotherms was found to be 28.7 mg/g of biomass. The values of Gibbs free energy (ΔGº) and enthalpy change (ΔHº) suggest that the sorption is spontaneous and endothermic at 20ºC-40ºC.

Keywords: biosorption, Spirogyra sp., contact time, pH, dose

Procedia PDF Downloads 394
2983 Apparent Ileal and Excreta Digestibility of Protein Poultry By-Product Meal in 21 to 28 Days of Age Broiler Chicken

Authors: N. Mahmoudnia, M. Khormali

Abstract:

This experiment was conducted to determine the apparent protein digestibility of poultry byproduct meal (PBPM) from two industrial poultry slaughter-houses on Ross 308 male broiler chickens in independent comparisons. The experiment consisted of seven dietary treatments and three replicates per treatment with three broiler chickens per replicate in a completely randomized design. Dietary treatments consisted of a control corn- soybean diet, and levels 3, 6, and 9% PBPM produced by slaughter-house 1 and levels 3, 6, and 9% PBPM produced by slaughter house 2. Chromic oxide was added to the experimental diets as an indigestible marker. The apparent protein digestibility of each diet were determined with two methods of sample collection of ileum and excreta in 21-28 d of age. The results this experiment showed that use of PBPM had no significant effect on the performance of broiler chicks during period of experiments. The apparent protein digestibility of PBPM groups was significantly higher than control group by excreta sampling procedure (P<0.05). Using of PBPM 2 significantly (P<0.05) decreased the apparent protein digestibility values based on ileum sampling procedure vs control (85.21 vs. 90.14).Based results of this experiment,it is possible to use of PBPM 1 in broiler chicken.

Keywords: poultry by-product meal, apparent protein digestibility, independed comparison, broiler chicken

Procedia PDF Downloads 457
2982 Evaluation of Coagulation Efficiency of Protein Extracts from Lupinus Albus L., Moringa Stenopetala Cufod., Trigonella Foenum-Graecum L. And Vicia Faba L. For Water Purification

Authors: Neway Adele, Adey Feleke

Abstract:

Access to clean drinking water is a basic human right. However, an estimated 1.2 billion people across the world consume unclean water daily. Interest has been growing in natural coagulants as the health and environmental concerns of conventional chemical coagulants are rising. Natural coagulants have the potential to serve as alternative water treatment agents. In this study, Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were evaluated as natural coagulants for water treatment. The protein extracts were purified from crude extracts using a protein purifier, and protein concentrations were determined by the spectrophotometric method. Small-volume coagulation efficiency tests were conducted on raw water taken from the Legedadi water treatment plant. These were done using a completely randomized design (CRD) experiment with settling times of 0 min (initial time), 90 min, 180 min and 270 min and protein extract doses of 5 mg/L, 10 mg/L, 15 mg/L and 20 mg/L. Raw water as negative control and polyelectrolyte as positive control were also included. The optical density (OD) values were measured for all the samples. At 270 min and 20 mg/L, the coagulation efficiency percentages for Lupinus albus, Moringa stenopetala, Trigonella foenum-graecum and Vicia faba protein extracts were 71%, 89%, 12% and 67% in the water sample collected in April 2019 respectively. Similarly, Lupinus albus, Moringa stenopetala and Vicia faba achieved 17%, 92% and 12% at 270 min settling times and 5 mg/L, 20 mg/L and 10 mg/L concentration in the water sample collected from August 2019, respectively. Negative control (raw water) and polyelectrolyte (positive control) were also 6 − 10% and 89 − 94% at 270 min settling time in April and August 2019, respectively. Among the four protein extracts, Moringa stenopetala showed the highest coagulation efficiency, similar to polyelectrolyte. This study concluded that Moringa stenopetala protein extract could be used as a natural coagulant for water purification in both sampling times.

Keywords: coagulation efficiency, extraction, natural coagulant, protein extract

Procedia PDF Downloads 39
2981 New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin

Authors: Anna Trusek-Holownia, Andrzej Noworyta

Abstract:

Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed.

Keywords: peptide bond hydrolysis, kinetics, enzyme specificity, biologically active peptides

Procedia PDF Downloads 413
2980 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater

Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige

Abstract:

This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.

Keywords: granular sludge, PAOs, P recovery, SBR

Procedia PDF Downloads 453
2979 Dynamics of Soil Carbon and Nitrogen Contents and Stocks along a Salinity Gradient

Authors: Qingqing Zhao, Junhong Bai

Abstract:

To investigate the effects of salinity on dynamics of soil carbon and nitrogen contents and stocks, soil samples were collected at a depth of 30 cm at four sampling sites (Sites B, T, S and P) along a salinity gradient in a drained coastal wetland, the Yellow River Delta, China. The salinity of these four sites ranked in the order: B (8.68±4.25 ms/cm) > T (5.89±3.17 ms/cm) > S (3.19±1.01 ms/cm) > P (2.26±0.39 ms/cm). Soil total carbon (TC), soil organic carbon (SOC), soil microbial biomass carbon (MBC), soil total nitrogen (TC) and soil microbial biomass carbon (MBC) were measured. Based on these data, soil organic carbon density (SOCD), soil microbial biomass carbon density (MBCD), soil nitrogen density (TCD) and soil microbial biomass nitrogen density (MBND) were calculated at four sites. The results showed that the mean concentrations of TC, SOC, MBC, TN and MBN showed a general deceasing tendency with increasing salinities in the top 30 cm of soils. The values of SOCD, MBCD, TND and MBND exhibited similar tendency along the salinity gradient. As for profile distribution pattern, The C/N ratios ranged from 8.28 to 56. 51. Higher C/N ratios were found in samples with high salinity. Correlation analysis showed that the concentrations of TC, SOC and MBC at four sampling sites were significantly negatively correlated with salinity (P < 0.01 or P < 0.05), indicating that salinity could inhibit soil carbon accumulation. However, no significant relationship was observed between TN, MBN and salinity (P > 0.05).

Keywords: carbon content and stock, nitrogen content and stock, salinity, coastal wetland

Procedia PDF Downloads 281
2978 About the Effect of Temperature and Heating Rate on the Pyrolysis of Lignocellulosic Biomass Waste

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

At the present time, conventional fossil fuels show environmental and sustainability disadvantages with regard to renewables energies. Producing energy and chemicals from biomass is an interesting alternative for substitution of conventional fossil sources with a renewable feedstock while enabling zero net greenhouse gases emissions. Pyrolysis is a well-known process to produce fuels and chemicals from biomass. In this work, conventional and fast pyrolysis of different agro-industrial residues (almond shells, hemp hurds, olive stones, and Kraft lignin) was studied. Both processes were carried out in a fixed bed reactor under nitrogen flow and using different operating conditions to analyze the influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/minfor conventional pyrolysis and 50 ºC/s for fast pyrolysis)on the yields, products distribution, and composition of the different fractions. The results showed that for both conventional and fast pyrolysis, the solid fraction yield decreased with temperature, while the liquid and gas fractions increased. In the case of the fast pyrolysis, a higher content of liquid fraction than that obtained in conventional pyrolysis could be observed due to cracking reactions occur at a lesser extent. With respect to the composition of de non-condensable fraction, the main gases obtained were CO, CO₂ (mainly at low temperatures), CH₄, and H₂ (mainly at high temperatures).

Keywords: bio-oil, biomass, conventional pyrolysis, fast pyrolysis

Procedia PDF Downloads 153
2977 Determination of Biomolecular Interactions Using Microscale Thermophoresis

Authors: Lynn Lehmann, Dinorah Leyva, Ana Lazic, Stefan Duhr, Philipp Baaske

Abstract:

Characterization of biomolecular interactions, such as protein-protein, protein-nucleic acid or protein-small molecule, provides critical insights into cellular processes and is essential for the development of drug diagnostics and therapeutics. Here we present a novel, label-free, and tether-free technology to analyze picomolar to millimolar affinities of biomolecular interactions by Microscale Thermophoresis (MST). The entropy of the hydration shell surrounding molecules determines thermophoretic movement. MST exploits this principle by measuring interactions using optically generated temperature gradients. MST detects changes in the size, charge and hydration shell of molecules and measures biomolecule interactions under close-to-native conditions: immobilization-free and in bioliquids of choice, including cell lysates and blood serum. Thus, MST measures interactions under close-to-native conditions, and without laborious sample purification. We demonstrate how MST determines the picomolar affinities of antibody::antigen interactions, and protein::protein interactions measured from directly from cell lysates. MST assays are highly adaptable to fit to the diverse requirements of different and complex biomolecules. NanoTemper´s unique technology is ideal for studies requiring flexibility and sensitivity at the experimental scale, making MST suitable for basic research investigations and pharmaceutical applications.

Keywords: biochemistry, biophysics, molecular interactions, quantitative techniques

Procedia PDF Downloads 489
2976 Oxidation of Lignin for Production of Chemicals

Authors: Abayneh Getachew Demesa

Abstract:

Interest in renewable feedstock for the chemical industry has increased considerably over the last decades, mainly due to environmental concerns and foreseeable shortage of fossil raw materials. Lignocellulosic biomass is an abundant source of bio-based raw material that is readily available and can be utilized as an alternative source for chemical production. Lignin accrues in enormous amounts as a by-product of the pulping process in the pulp and paper industry. It is estimated that 70 million tons of lignin are annually processed worldwide from the pulp and paper industry alone. Despite its attractive chemical composition, lignin is still insufficiently exploited and mainly regarded as bio-waste. Therefore, an environmentally benign process that can completely and competitively convert lignin into different value-added chemicals is needed to launch its commercial success on industrial scale. Partial wet oxidation by molecular oxygen has received increased attention as a potential process for production of chemicals from biomass wastes. In this paper, the production of chemicals by oxidation of lignin is investigated. The factors influencing the different types of products formed during the oxidation of lignin and their yields and compositions are discussed.

Keywords: biomass, lignin, waste, chemicals

Procedia PDF Downloads 207
2975 Effect of Different Processing Methods on the Quality Attributes of Pigeon Pea Used in Bread Production

Authors: B. F. Olanipekun, O. J. Oyelade, C. O. Osemobor

Abstract:

Pigeon pea is a very good source of protein and micronutrient, but it is being underutilized in Nigeria because of several constraints. This research considered the effect of different processing methods on the quality attributes of pigeon pea used in bread production towards enhancing its utility. Pigeon pea was obtained at a local market and processed into the flour using three processing methods: soaking, sprouting and roasting and were used to bake bread in different proportions. Chemical composition and sensory attributes of the breads were thereafter determined. The highest values of protein and ash contents were obtained from 20 % substitution of sprouted pigeon pea in wheat flour and may be attributable to complex biochemical changes occurring during hydration, to invariably lead to protein constituent being broken down. Hydrolytic activities of the enzymes from the sprouted sample resulted in improvement in the constituent of total protein probably due to reduction in the carbohydrate content. Sensory qualities analyses showed that bread produced with soaked and roasted pigeon pea flours at 5 and 10% inclusion, respectively were mostly accepted than other blends, and products with sprouted pigeon pea flour were least accepted. The findings of this research suggest that supplementing wheat flour with sprouted pigeon peas have more nutritional potentials. However, with sensory analysis indices, the soaked and roasted pigeon peas up to 10% are majorly accepted, and also can improve the nutritional status. Overall, this will be very beneficial to population dependent on plant protein in order to combat malnutrition problems.

Keywords: pigeon pea, processing, protein, malnutrition

Procedia PDF Downloads 217
2974 Ethanol and Biomass Production from Spent Sulfite Liquor by Filamentous Fungi

Authors: M. T. Asadollahzadeh, A. Ghasemian, A. R. Saraeian, H. Resalati, P. R. Lennartsson, M. J. Taherzadeh

Abstract:

Since filamentous fungi are capable of assimilating several types of sugars (hexoses and pentoses), they are potential candidates for bioconversion of spent sulfite liquor (SSL). Three filamentous fungi such as Aspergillus oryzae, Mucor indicus, and Rhizopus oryzae were investigated in this work. The SSL was diluted in order to obtain concentrations of 50, 60, 70, 80, and 90% and supplemented with two types of nutrients. The results from cultivations in shake flask showed that A. oryzae and M. indicus were not able to grow in pure SSL and SSL90% while R. oryzae could grow only in SSL50% and SSL60%. Cultivation with A. oryzae resulted in the highest yield of produced fungal biomass, while R. oryzae cultivation resulted in the lowest fungal biomass yield. Although, the mediums containing yeast extract, (NH4)2SO4, KH2PO4, CaCl2∙2H2O, and MgSO4∙7H2O as nutrients supplementations produced higher fungal biomass compared to the mediums containing NH4H2PO4 and ammonia, but there was no significant difference between two types of nutrients in terms of sugars and acetic acid consumption rate. The sugars consumption in M. indicus cultivation was faster than A. oryzae and R. oryzae cultivation. Acetic acid present in SSL was completely consumed during cultivation of all fungi. M. indicus was the best and fastest ethanol producer from SSL among the fungi examined, when yeast extract and salts were used as nutrients supplementations. Furthermore, no further improvement in ethanol concentration and rate of sugars consumption was obtained in medium supplemented with NH4H2PO4 and ammonia compared to medium containing yeast extract, (NH4)2SO4, KH2PO4, CaCl2∙2H2O, and MgSO4∙7H2O. On the other hand, the higher dilution of SSL resulted in a better fermentability, and better consumption of sugars and acetic acid.

Keywords: ethanol, filamentous fungi, fungal biomass, spent sulfite liquor

Procedia PDF Downloads 230
2973 Effect of Many Levels of Undegradable Protein on Performance, Blood Parameters, Colostrum Composition and Lamb Birth Weight in Pregnant Ewes

Authors: Maria Magdy Danial Riad

Abstract:

The objective of this study was to investigate the effect of different protein sources with different degradability ratios during late gestation of ewes on colostrum composition and its IgG concentration, body weight change of dams, and birth weight of their lambs. Objectives: 35 multiparous native crossbred ewes (BW= 59±2.5kg) were randomly allocated to five dietary treatments (7 ewes / treatment) for 2 months prior to lambing. Methods: Experimental diets were isonitrogenous (12.27% CP) and isocaloric (2.22 Mcal ME/kg DM). In diet I (the control), solvent extract soybeans (SESM 33% RUP of CP), II feed grade urea (FGU 31% RUP), III slow release urea (SRU 31% RUP). As sources of undegradable protein, extruded expeller SBM-EESM 40 (37% RUP) and extruded expeller SBM-EESM 60 (41% RUP) were used in groups IV and V, respectively. Results showed no significant effect on feed intake, crude protein (CP), metabolizable energy (ME), and body condition score (BCS). Ewes fed the 37% RUP diet gained more (p<0.05) weight compared with ewes fed the 31% RUP diet (5.62 vs. 2.5kg). Ewes in EESM 60 had the highest levels of fat, protein, total solid, solid not fat, and immunoglobulin and the lowest in urea N content (P< 0.05) in colostrum during the first 24hrs after lambing. Conclusions: Protein source and RUP levels in ewes’ diets had no significant effect (P< 0.05) on lambs’ birth weight and ewes' blood biochemical parameters. Increasing the RUP content of diet during late gestation resulted in an increase in colostrum constituents and its IgG level but had no effect on ewes’ performance and their lambs’ outcome.

Keywords: colostrum, ewes, lambs output, pregnancy, undegradable protein

Procedia PDF Downloads 18
2972 Thermochemical and Biological Pretreatment Study for Efficient Sugar Release from Lignocellulosic Biomass (Deodar and Sal Wood Residues)

Authors: Neelu Raina, Parvez Singh Slathia, Deepali Bhagat, Preeti Sharma

Abstract:

Pretreatment of lignocellulosic biomass for generating suitable substrates (starch/ sugars) for conversion to bioethanol is the most crucial step. In present study waste from furniture industry i.e sawdust from softwood Cedrus deodara (deodar) and hardwood Shorea robusta (sal) was used as lignocellulosic biomass. Thermochemical pretreatment was given by autoclaving at 121°C temperature and 15 psi pressure. Acids (H2SO4,HCl,HNO3,H3PO4), alkali (NaOH,NH4OH,KOH,Ca(OH)2) and organic acids (C6H8O7,C2H2O4,C4H4O4) were used at 0.1%, 0.5% and 1% concentration without giving any residence time. 1% HCl gave maximum sugar yield of 3.6587g/L in deodar and 6.1539 g/L in sal. For biological pretreatment a fungi isolated from decaying wood was used , sawdust from deodar tree species was used as a lignocellulosic substrate and before thermochemical pretreatment sawdust was treated with fungal culture at 37°C under submerged conditions with a residence time of one week followed by a thermochemical pretreatment methodology. Higher sugar yields were obtained with sal tree species followed by deodar tree species, i.e., 6.0334g/L in deodar and 8.3605g/L in sal was obtained by a combined biological and thermochemical pretreatment. Use of acids along with biological pretreatment is a favourable factor for breaking the lignin seal and thus increasing the sugar yield. Sugar estimation was done using Dinitrosalicyclic assay method. Result validation is being done by statistical analysis.

Keywords: lignocellulosic biomass, bioethanol, pretreatment, sawdust

Procedia PDF Downloads 381