Search results for: biodegradable fillers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 510

Search results for: biodegradable fillers

300 Economic and Ecological Implications in Agricultural Production Within the Strong and Weak Sustainability Framework

Authors: Mauricio Quintero Angel, Andrés A. Duque Nivia, Carlos H. Fajardo Toro

Abstract:

This paper analyzes two approaches of sustainability, the weak and strong, considering a case of study of oil palm production for an industry of biodegradable detergent. In this case, a company demand the oil palm as the active element for washing and through its trademark aims to supply 10% of the Colombian market of washing powders. Under each approach the economic and ecological implications of the palm oil production and especially the implications for crop management are described. The crop production under the weak sustainability implies plantations, intensive use of agrochemicals and the inclusion of new areas of cultivation as the market grows. Under the strong sustainability the production system is limited by the productive vocation of the ecosystem, so that new approaches and creativity for making viable the nature conservancy and the business development are require.

Keywords: agriculture, environmental impacts, oil palm, strong sustainability, weak sustainability

Procedia PDF Downloads 397
299 A Furaneol-Containing Glass-Ionomer Cement for Enhanced Antibacterial Activity

Authors: Dong Xie, Yuling Xu, Leah Howard

Abstract:

Secondary caries is found to be one of the main reasons to the restoration failure of dental restoratives. To prevent secondary caries formation, dental restoratives ought to be made antibacterial. In this study, a natural fruit component furaneol was tethered onto polyacid, the formed polyacid was used to formulate the light-curable glass-ionomer cements, and then the effect of this new antibacterial compound on compressive strength (CS) and antibacterial activity of the formed cement was evaluated. Fuji II LC glass powders were used as fillers. Compressive strength (CS) and S. mutans viability were used to evaluate the mechanical strength and antibacterial activity of the formed cement. The experimental cement showed a significant antibacterial activity, accompanying with an initial CS reduction. Increasing the compound loading significantly decreased the S. mutans viability from 5 to 81% and also reduced the initial CS of the formed cements from 4 to 58%. The cement loading with 7% antibacterial polymer showed 168 MPa, 7.8 GPa, 243 MPa, 46 MPa, and 57 MPa in yield strength, modulus, CS, diametral tensile strength and flexural strength, respectively, as compared to 141, 6.9, 236, 42 and 53 for Fuji II LC. The cement also showed an antibacterial function to other bacteria. No human saliva effect was noticed. It is concluded that the experimental cement may potentially be developed to a permanent antibacterial cement.

Keywords: antibacterial, dental materials, strength, cell viability

Procedia PDF Downloads 289
298 Enhancing the Structural, Optical, and Dielectric Properties of the Polymer Nanocomposites Based on Polymer Blend and Gold Nanoparticles for Application in Energy Storage

Authors: Mohammed Omar

Abstract:

Using Chenopodium murale leaf, gold nanoparticles (Au NP's) were biosynthesized effectively in an amicable strategy. The casting process was used to create composite layers of sodium alginate and polyvinyl pyrrolidone. Gold nanoparticles were incorporated into the polyvinyl pyrrolidone (PVP)/ sodium alginate (NaAlg) polymer blend by casting technique. Before and after exposure to different doses of gamma irradiation (2, 4, 6 Mrad), thin films of synthesized nanocomposites were analyzed. XRD revealed the amorphous nature of polymer blends (PVP/ NaAlg), which decreased by both Au NP's embedding and consecutive doses of irradiation. FT-IR spectra revealed interactions and differences within the functional groups of their respective pristine components and dopant nano-fillers. The optical properties of PVP/NaAlg – Au NP thin films (refractive index n, energy gap Eg, Urbach energy Eu) were examined before and after the irradiation procedure. Transmission electron micrographs (TEM) demonstrated a decrease in the size of Au NP’s and narrow size distribution as the gamma irradiation dose was increased. Gamma irradiation was found to influence the electrical conductivity of synthesized composite films, as well as dielectric permittivity (ɛ′) and dielectric losses (ε″).

Keywords: PVP, SPR, γ-radiations, XRD

Procedia PDF Downloads 75
297 Eco-Nanofiltration Membranes: Nanofiltration Membrane Technology Utilization-Based Fiber Pineapple Leaves Waste as Solutions for Industrial Rubber Liquid Waste Processing and Fertilizer Crisis in Indonesia

Authors: Andi Setiawan, Annisa Ulfah Pristya

Abstract:

Indonesian rubber plant area reached 2.9 million hectares with productivity reached 1.38 million. High rubber productivity is directly proportional to the amount of waste produced rubber processing industry. Rubber industry would produce a negative impact on the rubber industry in the form of environmental pollution caused by waste that has not been treated optimally. Rubber industrial wastewater containing high-nitrogen compounds (nitrate and ammonia) and phosphate compounds which cause water pollution and odor problems due to the high ammonia content. On the other hand, demand for NPK fertilizers in Indonesia continues to increase from year to year and in need of ammonia and phosphate as raw material. Based on domestic demand, it takes a year to 400,000 tons of ammonia and Indonesia imports 200,000 tons of ammonia per year valued at IDR 4.2 trillion. As well, the lack of phosphoric acid to be imported from Jordan, Morocco, South Africa, the Philippines, and India as many as 225 thousand tons per year. During this time, the process of wastewater treatment is generally done with a rubber on the tank to contain the waste and then precipitated, filtered and the rest released into the environment. However, this method is inefficient and thus require high energy costs because through many stages before producing clean water that can be discharged into the river. On the other hand, Indonesia has the potential of pineapple fruit can be harvested throughout the year in all of Indonesia. In 2010, production reached 1,406,445 tons of pineapple in Indonesia or about 9.36 percent of the total fruit production in Indonesia. Increased productivity is directly proportional to the amount of pineapple waste pineapple leaves are kept continuous and usually just dumped in the ground or disposed of with other waste at the final disposal. Through Eco-Nanofiltration Membrane-Based Fiber Pineapple leaves Waste so that environmental problems can be solved efficiently. Nanofiltration is a process that uses pressure as a driving force that can be either convection or diffusion of each molecule. Nanofiltration membranes that can split water to nano size so as to separate the waste processed residual economic value that N and P were higher as a raw material for the manufacture of NPK fertilizer to overcome the crisis in Indonesia. The raw materials were used to manufacture Eco-Nanofiltration Membrane is cellulose from pineapple fiber which processed into cellulose acetate which is biodegradable and only requires a change of the membrane every 6 months. Expected output target is Green eco-technology so with nanofiltration membranes not only treat waste rubber industry in an effective, efficient and environmentally friendly but also lowers the cost of waste treatment compared to conventional methods.

Keywords: biodegradable, cellulose diacetate, fertilizers, pineapple, rubber

Procedia PDF Downloads 419
296 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber

Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim

Abstract:

The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.

Keywords: rubber, silane coupling agent, synthesis, water-soluble

Procedia PDF Downloads 273
295 Municipal Sewage Sludge as Co-Substrate in Anaerobic Digestion of Vegetable Waste and Biogas Yield

Authors: J. V. Thanikal, M. Torrijos, Philipe Sousbie, S. M. Rizwan, R. Senthil Kumar, Hatem Yezdi

Abstract:

Co-digestion is one of the advantages of anaerobic digestion process because; several wastes having complimentary characteristics can be treated in a single process. The anaerobic co-digestion process, which can be defined as the simultaneous treatment of two –or more – organic biodegradable waste streams by anaerobic digestion offers great potential for the proper disposal of the organic fraction of solid waste coming from source or separate collection systems. The results of biogas production for sewage sludge, when used as a single substrate, were low (350ml/d), and also the biodegradation rate was slow. Sewage sludge as a co-substrate did not show much effect on biogas yield. The vegetable substrates (Potato, Carrot, Spinach) with a total charge of 27–36 g VS, with a HRT starting from 3 days and ending with 1 day, shown a considerable increase in biogas yield 3.5-5 l/d.

Keywords: anaerobic digestion, co-digestion, vegetable substrate, sewage sludge

Procedia PDF Downloads 545
294 Municipal Solid Waste Management in an Unplanned Hill Station in India

Authors: Moanaro Ao, Nzanthung Ngullie

Abstract:

Municipal solid waste management (MSWM) has unique challenges in hilly urban settlements. Efforts have been taken by municipalities, private players, non-governmental organizations, etc. for managing solid waste by preventing its generation, reusing, and recovering them into useful products to the extent possible, thereby minimizing its impact on the environment and human health. However, there are many constraints that lead to inadequate management of solid waste. Kohima is an unplanned hill station city in the North Eastern Region of India. The city is facing numerous issues due to the mismanagement of the MSW generated. Kohima Municipal Council (KMC) is the Urban Local Body (ULB) responsible for providing municipal services. The present MSWM system in Kohima comprises of collection, transportation, and disposal of waste without any treatment. Several efforts and experimental projects on waste management have been implemented without any success. Waste management in Kohima city is challenging due to its remote location, difficult topography, dispersed settlements within the city, sensitive ecosystem, etc. Furthermore, the narrow road network in Kohima with limited scope for expansion, inadequate infrastructure facilities, and financial constraints of the ULB add up to the problems faced in managing solid waste. This hill station also has a unique system of traditional local self-governance. Thus, shifting from a traditional system to a modern system in implementing systematic and scientific waste management is also a challenge in itself. This study aims to analyse the existing situation of waste generation, evaluate the effectiveness of the existing management system of MSW, and evolve a strategic approach to achieve a sustainable and resilient MSWM system. The results from the study show that a holistic approach, including social aspects, technical aspects, environmental aspects, and financial aspects, is needed to reform the MSWM system. Stringent adherence to source segregation is required by encouraging public participation through awareness programs. Active involvement of community-based organizations (CBOs) has brought a positive change in sensitizing the public. A waste management model was designed to be adopted at a micro-level such as composting household biodegradable waste and incinerator plants at the community level for non-biodegradable waste. Suitable locations for small waste stations were identified using geographical information system (GIS) tools for waste recovery and recycling. Inculcating the sense of responsibility in every waste generator towards waste management by implementing incentive-based strategies at the Ward level was explored. Initiatives based on the ‘polluters pay principle’ were also explored to make the solid waste management model “self-sustaining”.

Keywords: municipal solid waste management, public participation, source segregation, sustainable

Procedia PDF Downloads 45
293 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 57
292 Improving Utilization of Sugarcane by Replacing Ordinary Propagation Material with Small Chips of Sugarcane Planted in Paper Pots

Authors: C. Garcia, C. Andreasen

Abstract:

Sugarcane is an important resource for bioenergy. Fields are usually established by using 15-20 cm pieces of sugarcane stalks as propagation material. An alternative method is to use small chips with nodes from sugarcane stalks. Plants from nodes are often established in plastic pots, but plastic pots could be replaced with biodegradable paper pots. This would be a more sustainable solution, reducing labor costs and avoiding pollution with plastic. We compared the establishment of plants from nodes taken from three different part of the sugarcane plant. The nodes were planted in plastic and paper pots. There was no significant difference between plants established in the two pot types. Nodes from different part of the stalk had different sprouting capacity. Nodes from the top parts sprouted significantly better than nodes taken from the middle or nodes taken closed to the ground in two experiments. Nodes with a length of 3 cm performed better than nodes with a length of 2 cm.

Keywords: nodes, paper pots, propagation material, sugarcane

Procedia PDF Downloads 187
291 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface

Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan

Abstract:

We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.

Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability

Procedia PDF Downloads 56
290 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells

Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik

Abstract:

Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable,  semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.

Keywords: poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblast, rat vascular smooth muscle cells, human stem cells

Procedia PDF Downloads 208
289 A Variable Speed DC Motor Using a Converter DC-DC

Authors: Touati Mawloud

Abstract:

Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.

Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices

Procedia PDF Downloads 415
288 Comparison of Different Activators Impact on the Alkali-Activated Aluminium-Silicate Composites

Authors: Laura Dembovska, Ina Pundiene, Diana Bajare

Abstract:

Alkali-activated aluminium-silicate composites (AASC) can be used in the production of innovative materials with a wide range of properties and applications. AASC are associated with low CO₂ emissions; in the production process, it is possible to use industrial by-products and waste, thereby minimizing the use of a non-renewable natural resource. This study deals with the preparation of heat-resistant porous AASC based on chamotte for high-temperature applications up to 1200°C. Different fillers, aluminium scrap recycling waste as pores forming agent and alkali activation with 6M sodium hydroxide (NaOH) and potassium hydroxide (KOH) solution were used. Sodium hydroxide (NaOH) is widely used for the synthesis of AASC compared to potassium hydroxide (KOH), but comparison of using different activator for geopolymer synthesis is not well established. Changes in chemical composition of AASC during heating were identified and quantitatively analyzed by using DTA, dimension changes during the heating process were determined by using HTOM, pore microstructure was examined by SEM, and mineralogical composition of AASC was determined by XRD. Lightweight porous AASC activated with NaOH have been obtained with density in range from 600 to 880 kg/m³ and compressive strength from 0.8 to 2.7 MPa, but for AAM activated with KOH density was in range from 750 to 850 kg/m³ and compressive strength from 0.7 to 2.1 MPa.

Keywords: alkali activation, alkali activated materials, elevated temperature application, heat resistance

Procedia PDF Downloads 158
287 Exploring the Efficacy of Nitroglycerin in Filler-Induced Facial Skin Ischemia: A Narrative ‎Review

Authors: Amir Feily, Hazhir Shahmoradi Akram, Mojtaba Ghaedi, Farshid Javdani, Naser Hatami, Navid Kalani, Mohammad Zarenezhad

Abstract:

Background: Filler-induced facial skin ischemia is a potential complication of dermal filler injections that can result in tissue damage and necrosis. Nitroglycerin has been suggested as a treatment option due to its vasodilatory effects, but its efficacy in this context is unclear. Methods: A narrative review was conducted to examine the available evidence on the efficacy of nitroglycerin in filler-induced facial skin ischemia. Relevant studies were identified through a search of electronic databases and manual searching of reference lists. Results: The review found limited evidence supporting the efficacy of nitroglycerin in this context. While there were case reports where the combination of nitroglycerin and hyaluronidase was successful in treating filler-induced facial skin ischemia, there was only one case report where nitroglycerin alone was successful. Furthermore, a rat model did not demonstrate any benefits of nitroglycerin and showed harmful results. Conclusion: The evidence regarding the efficacy of nitroglycerin in filler-induced facial skin ischemia is inconclusive and seems to be against its application. Further research is needed to determine the effectiveness of nitroglycerin alone and in combination with other treatments for this condition. Clinicians should consider limited evidence bases when deciding on treatment options for patients with filler-induced facial skin ischemia.

Keywords: nitroglycerin, facial, skin ischemia, fillers, efficacy, narrative review

Procedia PDF Downloads 51
286 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 437
285 Synthesis and Characterization of Chromenoformimidate

Authors: Houcine Ammar

Abstract:

Chromenederivatives are an important class of heterocycles that are found in a wide range of natural products. Chromenes are commonly used as cosmetics, food additives, and possibly biodegradable agrochemicals. Recently, the synthesis of chromene derivatives has drawn more attention due to their pharmacological and biological applications. In the present work, we are interested in the synthesis and characterization of chromeno [2,3-b] pyridin-4-yl) formimidate, carried out in 4 steps: (i) the synthesis of 3-cyanoiminocoumarins is realized first by Knœvenagel reaction by reacting malonitrile with variously substituted o-phenolic benzaldehydes. In order to undergo reduction by sodium tetraborohydride NaBH4 to lead to new 2-amino-3-cyano-4H-chromenes, these compounds were easily transformed by the action of malonitrile leading to 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile under microwave activation. For the final step, the action of triethylorthoformate on 2,4-diamino-5H-chromeno [2,3-b] pyridine-3-carbonitrile leads to new chromeno [2,3-b] pyridinheterocycles. -4-yl) formimidate. The synthesized compounds have been characterized by different spectroscopic techniques 1 H-NMR, 13 C-NMR, and IRTF.

Keywords: chromene, microwave, knovenagel condensation, chromeno [2, 3-b] pyridine

Procedia PDF Downloads 63
284 Development of Composite Material for Thermal and Electrical Insulation

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Recycling has been greatly stimulated by the market. There are already several products that are produced with recycled materials and various wastes have been studied in various forms of applications. The vast majority of insulation applications in domestic, commercial and industrial systems in the range of low and medium temperatures (up to 180 ° C), using the aggressive nature materials such as glass wool, rock wool, polyurethane, polystyrene. Such materials, while retaining the effectiveness of the heat flux, are disposed as expensive and take years too absorbed by nature. Thus, trying to adapt to a global policy on the preservation of the environment, a study in order to develop an insulating compound of natural / industrial waste and biodegradable materials conducted. Thus, this research presents the development of a composite material based zest tire and latex for thermal and electrical insulation.

Keywords: composite, latex, scrapes tire, insulation, electrical

Procedia PDF Downloads 512
283 Poly(N-Vinylcaprolactam) Based Degradable Microgels for Controlled Drug Delivery

Authors: G. Agrawal, R. Agrawal, A. Pich

Abstract:

The pH and temperature responsive biodegradable poly(N-vinylcaprolactam) (PVCL) based microgels functionalized with itaconic acid (IA) units are prepared via precipitation polymerization for drug delivery applications. Volume phase transition temperature (VPTT) of the obtained microgels is influenced by both IA content and pH of the surrounding medium. The developed microgels can be degraded under acidic conditions due to the presence of hydrazone based crosslinking points inside the microgel network. The microgel particles are able to effectively encapsulate doxorubicin (DOX) drug and exhibit low drug leakage under physiological conditions. At low pH, rapid DOX release is observed due to the changes in electrostatic interactions along with the degradation of particles. The results of the cytotoxicity assay further display that the DOX-loaded microgel exhibit effective antitumor activity against HeLa cells demonstrating their great potential as drug delivery carriers for cancer therapy.

Keywords: degradable, drug delivery, hydrazone linkages, microgels, responsive

Procedia PDF Downloads 274
282 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior

Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh

Abstract:

Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.

Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density

Procedia PDF Downloads 280
281 Preparation and Biological Evaluation of 186/188Re-Chitosan for Radiosynovectomy

Authors: N. Ahmadi, H. Yousefnia, A. Bahrami-Samani

Abstract:

Chitosan is a natural and biodegradable polysaccharide with special characteristic for application in intracavital therapy. 166Ho-chitosan has been reported for the treatment of hepatocellular carcinoma and RSV with promising results. The aim of this study was to prepare 186/188Re-chitosan for radiosynovectomy purposes and investigate the probability of its leakage from the knee joint. 186/188Re was produced by neutron irradiation of the natural rhenium in a research reactor. Chemical processing was performed to obtain (186/188Re)-NaReO4- according to the IAEA manual. A stock solution of chitosan was prepared by dissolving in 1 % acetic acid aqueous solution (10 mg/mL). 1.5 mL of this stock solution was added to the vial containing the activity and the mixture was stirred for 5 min in the room temperature. The radiochemical purity of the complex was checked by the ITLC method, showing the purity of higher than 98%. Distribution of the radiolabeled complex was determined after intra-articular injection into the knees of rats. Excellent retention was observed in the joint with approximately no activity in the other organs.

Keywords: chitosan, leakage, radiosynovectomy, rhenium

Procedia PDF Downloads 311
280 Recent Nano technological Advancements in Antimicrobial Edible Films for Food Packaging: A Review

Authors: Raana Babadi Fathipour

Abstract:

Researchers are now focusing on sustainable advancements in active packaging systems to meet the growing consumer demand for high-quality food with Eco-friendly packaging. One significant advancement in this area is the inclusion of antimicrobial agents in bio-polymer-based edible films, which effectively inhibit or kill pathogenic/spoilage microbes that can contaminate food. This technology also helps reduce undesirable flavors caused by active compounds directly incorporated into the food. To further enhance the efficiency of antimicrobial bio-based packaging systems, Nano technological concepts such as bio-nano composites and Nano encapsulation systems have been applied. This review examines the current state and applications of antimicrobial biodegradable films in the food packaging industry, while also highlighting ongoing research on the use of nanotechnology to develop innovative bio-based packaging systems.

Keywords: active packaging, antimicrobial edible films, bioactive agents, biopolymers, bio-nanocomposites

Procedia PDF Downloads 42
279 Use of Microbial Fuel Cell for Metal Recovery from Wastewater

Authors: Surajbhan Sevda

Abstract:

Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.

Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity

Procedia PDF Downloads 184
278 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste

Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci

Abstract:

The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.

Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble

Procedia PDF Downloads 249
277 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis

Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński

Abstract:

The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.

Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell

Procedia PDF Downloads 140
276 The Evaluation of Fuel Desulfurization Performance of Choline-Chloride Based Deep Eutectic Solvents with Addition of Graphene Oxide as Catalyst

Authors: Chiau Yuan Lim, Hayyiratul Fatimah Mohd Zaid, Fai Kait Chong

Abstract:

Deep Eutectic Solvent (DES) is used in various applications due to its simplicity in synthesis procedure, biodegradable, inexpensive and easily available chemical ingredients. Graphene Oxide is a popular catalyst that being used in various processes due to its stacking carbon sheets in layer which theoretically rapid up the catalytic processes. In this study, choline chloride based DESs were synthesized and ChCl-PEG(1:4) was found to be the most effective DES in performing desulfurization, which it is able to remove up to 47.4% of the sulfur content in the model oil in just 10 minutes, and up to 95% of sulfur content after repeat the process for six times. ChCl-PEG(1:4) able to perform up to 32.7% desulfurization on real diesel after 6 multiple stages. Thus, future research works should focus on removing the impurities on real diesel before utilising DESs in petroleum field.

Keywords: choline chloride, deep eutectic solvent, fuel desulfurization, graphene oxide

Procedia PDF Downloads 120
275 A Review on Electrical Behavior of Different Substrates, Electrodes and Membranes in Microbial Fuel Cell

Authors: Bharat Mishra, Sanjay Kumar Awasthi, Raj Kumar Rajak

Abstract:

The devices, which convert the energy in the form of electricity from organic matters, are called microbial fuel cell (MFC). Recently, MFCs have been given a lot of attention due to their mild operating conditions, and various types of biodegradable substrates have been used in the form of fuel. Traditional MFCs were included in anode and cathode chambers, but there are single chamber MFCs. Microorganisms actively catabolize substrate, and bioelectricities are produced. In the field of power generation from non-conventional sources, apart from the benefits of this technique, it is still facing practical constraints such as low potential and power. In this study, most suitable, natural, low cost MFCs components are electrodes (anode and cathode), organic substrates, membranes and its design is selected on the basis of maximum potential (voltage) as an electrical parameter, which indicates a vital role of affecting factor in MFC for sustainable power production.

Keywords: substrates, electrodes, membranes, MFCs design, voltage

Procedia PDF Downloads 275
274 Preparation of Biodegradable Methacrylic Nanoparticles by Semicontinuous Heterophase Polymerization for Drugs Loading: The Case of Acetylsalicylic Acid

Authors: J. Roberto Lopez, Hened Saade, Graciela Morales, Javier Enriquez, Raul G. Lopez

Abstract:

Implementation of systems based on nanostructures for drug delivery applications have taken relevance in recent studies focused on biomedical applications. Although there are several nanostructures as drugs carriers, the use of polymeric nanoparticles (PNP) has been widely studied for this purpose, however, the main issue for these nanostructures is the size control below 50 nm with a narrow distribution size, due to they must go through different physiological barriers and avoid to be filtered by kidneys (< 10 nm) or the spleen (> 100 nm). Thus, considering these and other factors, it can be mentioned that drug-loaded nanostructures with sizes varying between 10 and 50 nm are preferred in the development and study of PNP/drugs systems. In this sense, the Semicontinuous Heterophase Polymerization (SHP) offers the possibility to obtain PNP in the desired size range. Considering the above explained, methacrylic copolymer nanoparticles were obtained under SHP. The reactions were carried out in a jacketed glass reactor with the required quantities of water, ammonium persulfate as initiator, sodium dodecyl sulfate/sodium dioctyl sulfosuccinate as surfactants, methyl methacrylate and methacrylic acid as monomers with molar ratio of 2/1, respectively. The monomer solution was dosed dropwise during reaction at 70 °C with a mechanical stirring of 650 rpm. Nanoparticles of poly(methyl methacrylate-co-methacrylic acid) were loaded with acetylsalicylic acid (ASA, aspirin) by a chemical adsorption technique. The purified latex was put in contact with a solution of ASA in dichloromethane (DCM) at 0.1, 0.2, 0.4 or 0.6 wt-%, at 35°C during 12 hours. According to the boiling point of DCM, as well as DCM and water densities, the loading process is completed when the whole DCM is evaporated. The hydrodynamic diameter was measured after polymerization by quasi-elastic light scattering and transmission electron microscopy, before and after loading procedures with ASA. The quantitative and qualitative analyses of PNP loaded with ASA were measured by infrared spectroscopy, differential scattering calorimetry and thermogravimetric analysis. Also, the molar mass distributions of polymers were determined in a gel permeation chromatograph apparatus. The load capacity and efficiency were determined by gravimetric analysis. The hydrodynamic diameter results for methacrylic PNP without ASA showed a narrow distribution with an average particle size around 10 nm and a composition methyl methacrylate/methacrylic acid molar ratio equal to 2/1, same composition of Eudragit S100, which is a commercial compound widely used as excipient. Moreover, the latex was stabilized in a relative high solids content (around 11 %), a monomer conversion almost 95 % and a number molecular weight around 400 Kg/mol. The average particle size in the PNP/aspirin systems fluctuated between 18 and 24 nm depending on the initial percentage of aspirin in the loading process, being the drug content as high as 24 % with an efficiency loading of 36 %. These average sizes results have not been reported in the literature, thus, the methacrylic nanoparticles here reported are capable to be loaded with a considerable amount of ASA and be used as a drug carrier.

Keywords: aspirin, biocompatibility, biodegradable, Eudragit S100, methacrylic nanoparticles

Procedia PDF Downloads 105
273 Peripheral Facial Nerve Palsy after Lip Augmentation

Authors: Sana Ilyas, Kishalaya Mukherjee, Suresh Shetty

Abstract:

Lip Augmentation has become more common in recent years. Patients do not expect to experience facial palsy after having lip augmentation. This poster will present the findings of such a presentation and will discuss the possible pathophysiology and management. (This poster has been published as a paper in the dental update, June 2022) Aim: The aim of the study was to explore the link between facial nerve palsy and lip fillers, to explore the literature surrounding facial nerve palsy, and to discuss the case of a patient who presented with facial nerve palsy with seemingly unknown cause. Methodology: There was a thorough assessment of the current literature surrounding the topic. This included published papers in journals through PubMed database searches and printed books on the topic. A case presentation was discussed in detail of a patient presenting with peripheral facial nerve palsy and associating it with lip augmentation that she had a day prior. Results and Conclusion: Even though the pathophysiology may not be clear for this presentation, it is important to highlight uncommon presentations or complications that may occur after treatment. This can help with understanding and managing similar cases, should they arise.It is also important to differentiate cause and association in order to make an accurate diagnosis. This may be difficult if there is little scientific literature. Therefore, further research can help to improve the understanding of the pathophysiology of similar presentations. This poster has been published as a paper in dental update, June 2022, and therefore shares a similar conclusiom.

Keywords: facial palsy, lip augmentation, causation and correlation, dental cosmetics

Procedia PDF Downloads 118
272 Targeted Delivery of Novel Copper-Based Nanoparticles for Advance Cancer Therapeutics

Authors: Arindam Pramanik, Parimal Karmakar

Abstract:

We have explored the synergistic anti-cancer activity of copper ion and acetylacetone complex containing 1,3 diketone group (like curcumin) in metallorganic compound “Copper acetylacetonate” (CuAA). The cytotoxicity mechanism of CuAA complex was evaluated on various cancer cell lines in vitro. Among these, reactive oxygen species (ROS), glutathione level (GSH) in the cell was found to increase. Further mitochondrial membrane damage was observed. The fate of cell death was found to be induced by apoptosis. For application purpose, we have developed a novel biodegradable, non-toxic polymer-based nanoparticle which has hydrophobically modified core for loading of the CuAA. Folic acid is conjugated on the surface of the polymer (chitosan) nanoparticle for targeting to cancer cells for minimizing toxicity to normal cells in-vivo. Thus, this novel drug CuAA has an efficient anticancer activity which has been targeted specifically to cancer cells through polymer nanoparticle.

Keywords: anticancer, apoptosis, copper nanoparticle, targeted drug delivery

Procedia PDF Downloads 452
271 Chemical and Mechanical Characterization of Composites Reinforced with Coconut Fiber in the Polymeric Matrix of Recycled PVC

Authors: Luiz C. G. Pennafort Jr., Alexandre de S. Rios, Enio P. de Deus

Abstract:

In the search for materials that replace conventional polymers in order to preserve natural resources, combined with the need to minimize the problems arising from environmental pollution generated by plastic waste, comes the recycled materials biodegradable, especially the composites reinforced with natural fibers. However, such materials exhibit properties little known, requiring studies of manufacturing methods and characterization of these composites. This article shows informations about preparation and characterization of a composite produced by extrusion, which consists of recycled PVC derived from the recycling of materials discarded, added of the micronized coconut fiber. The recycled PVC with 5% of micronized fiber were characterized by X-ray diffraction, thermogravimetric, differential scanning calorimetry, mechanical analysis and optical microscopy. The use of fiber in the composite caused a decrease in its specific weight, due to the lower specific weight of fibers and the appearance of porosity, in addition to the decrease of mechanical properties.

Keywords: recycled PVC, coconut fiber, characterization, composites

Procedia PDF Downloads 431