Search results for: Waste water treatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16266

Search results for: Waste water treatment

15996 Well Water Pollution Caused by Central Batik Industry in Kliwonan, Sragen, Central Java, Indonesia in Ecofeminism Perspective

Authors: Intan Purnama Sari, Fitri Damayanti, Nabiila Yumna Ghina

Abstract:

Kliwonan, Sragen is a famous central batik industry village. In the process of the industry, women are placed into the central role but marginalized in economic mode. Women have the double burden on domestic sector and public sector (work as craftsmen batik). The existence of the batik industry bring on issues related to the pollution of water resources as a result of waste water with the marginalized of women. This research aims to examine the relevance of the pollution of the water from the well in Kliwonan with women as the biggest role holders through ecofeminism perspective. To examine these aspects then made observations, documentation, and interview against women batik craftsmen. The results of the study showed that the wells as sources of water to the inhabitants of contaminated because the liquid waste water batik industry. The impact of women must buy clean water each month to meet the needs of the household water with the reward that is obtained from the result of labor as much as Rp 12,000 per day. It proves the marginalized women on economic mode. Based on the results of research done, it can be concluded that the required environmental planning to promote how women do the rescue environment. The implementation requires kelor (Moringa oleifera seeds) as such as natural coagulants of sources of water-saving and easy to use.

Keywords: well water pollution, ecofeminism, environmental planning, Moringa oleifera

Procedia PDF Downloads 253
15995 Solid Waste Management Policy Implementation in Imus, Cavite

Authors: Michael John S. Maceda

Abstract:

Waste has been a global concern aggravated by climate change. In the case of Imus, Cavite which in the past has little or no regard to waste experienced heavy flooding during August 19, 2013. This event led to a full blown implementation of Municipal Solid Waste Management integrating participation and the use of low-cost technology to reduce the amount of waste generated. The methodology employed by the city of Imus, provided a benchmark in the province of Cavite. Reducing the amount of waste generated and Solid Waste Management Cost.

Keywords: SWM, IMUS, composting, policy

Procedia PDF Downloads 770
15994 Food Waste Utilization: A Contemporary Prospect of Meeting Energy Crisis Using Microbial Fuel Cell

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi, Chang-Ping Yu

Abstract:

Increased production of food waste (FW) is a global issue that is receiving more attention due to its environmental and economic impacts. The generation of electricity from food waste, known as energy recovery, is one of the effective solutions in food waste management. Food waste has high energy content which seems ideal to achieve dual benefits in terms of energy recovery and waste stabilization. Microbial fuel cell (MFC) is a promising technology for treating food waste and generate electricity. In this work, we will review energy utilization from different kind of food waste using MFC and factors which affected the process. We have studied the key technology of energy generated from food waste using MFC to enhance the food waste management. The power density and electricity production by each kind of food waste and challenges were identified. This work explored the conversion of FW into energy from different type of food waste, which aim to provide a theoretical analysis for energy utilization of food waste.

Keywords: energy generation, food waste, microbial fuel cell, power density

Procedia PDF Downloads 199
15993 TiO2 Adsorbed on Cement Balls for Effective Photomineralization of Organic Pollutants under UV Light Irradiation

Authors: Tarun Jain, Lovnish Gupta, Soumen Basu

Abstract:

Organic pollutants like phenols and organic dyes present in industrial waste water are posing a hazardous threat to aquatic ecosystem. Several measures have been adopted for the neutralization and photodecomposition of these harmful organic moieties, among these semiconductor photocatalysis has been provided a major thrust after the discovery of Honda-Fujishema effect. Present study demonstrates the adsorption of TiO2- P25 in nano size (~36 nm) on cement balls for effective photodegradation of Alizarin and penta chlorophenol (PCP) under UV light illumination. Triton-X was used as a stabilizer for effective adsorption of TiO2 on cement balls (TCB) followed by calcination at ~300oC for 4 h. The TCB’s were dispersed randomly in a self designed reactor for phototcatalytic performance as shown in scheme 1. The change in concentration of alizarin and PCP was observed under UV-Vis spectroscopy, PCP was detoxified within 40 min while alizarin photodecomposed within 15 min of UV light irradiation. Taking into consideration the go green slogan and future prospective this technique can be also utilized under visible light and on mass scale because this is an effective tool for environmental remediation and waste water treatment.

Keywords: organic pollutants, TiO2 cement balls, photodegradation, UV light irradiation

Procedia PDF Downloads 228
15992 Environmental Pollution and Treatment Technology

Authors: R. Berrached, H. Ait Mahamed, A. Iddou

Abstract:

Water pollution is nowadays a serious problem, due to the increasing scarcity of water and thus to the impact induced by such pollution on the human health. Various techniques are made use of to deal with water pollution. Among the most used ones, some can be enumerated: the bacterian bed, the activated mud, the Lagunage as biological processes and coagulation-floculation as a physic-chemical process. These processes are very expensive and an treatment efficiency which decreases along with the increase of the initial pollutants’ concentration. This is the reason why research has been reoriented towards the use of a process by adsorption as an alternative solution instead of the other traditional processes. In our study, we have tempted to exploit the characteristics of two metallic hydroxides Al and Fe to purify contaminated water by two industrial dyes SBL blue and SRL-150 orange. Results have shown the efficiency of the two materials on the blue SBL dye.

Keywords: metallic hydroxydes, industrial dyes, purificatıon,

Procedia PDF Downloads 295
15991 The Influence of Characteristics of Waste Water on Properties of Sewage Sludge

Authors: Catalina Iticescu, Lucian P. Georgescu, Mihaela Timofti, Gabriel Murariu, Catalina Topa

Abstract:

In the field of environmental protection in the EU and also in Romania, strict and clear rules are imposed that are respected. Among those, mandatory municipal wastewater treatment is included. Our study involved Municipal Wastewater Treatment Plant (MWWTP) of Galati. MWWTP began its activity by the end of 2011 and technology is one of the most modern used in the EU. Moreover, to our knowledge, it is the first technology of this kind used in the region. Until commissioning, municipal wastewater was discharged directly into the Danube without any treatment. Besides the benefits of depollution, a new problem has arisen: the accumulation of increasingly large sewage sludge. Therefore, it is extremely important to find economically feasible and environmentally friendly solutions. One of the most feasible methods of disposing of sewage sludge is their use on agricultural land. Sewage sludge can be used in agriculture if monitored in terms of physicochemical properties (pH, nutrients, heavy metals, etc.), in order not to contribute to pollution in soils and not to affect chemical and biological balances, which are relatively fragile. In this paper, 16 physico-chemical parameters were monitored. Experimental testings were realised on waste water samples, sewage sludge results and treated water samples. Testing was conducted with electrochemichal methods (pH, conductivity, TDS); parameters N-total (mg/L), P-total (mg/L), N-NH4 (mg/L), N-NO2 (mg/L), N-NO3 (mg/L), Fe-total (mg/L), Cr-total (mg/L), Cu (mg/L), Zn (mg/L), Cd (mg/L), Pb (mg/L), Ni (mg/L) were determined by spectrophotometric methods using a spectrophotometer NOVA 60 and specific kits. Analyzing the results, we concluded that Sewage sludges, although containing heavy metals, are in small quantities and will not affect the land on which they will be deposited. Also, the amount of nutrients contained are appreciable. These features indicate that the sludge can be safely used in agriculture, with the advantage that they represent a cheap fertilizer. Acknowledgement: This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation – UEFISCDI, PNCDI III project, 79BG/2017, Efficiency of the technological process for obtaining of sewage sludge usable in agriculture, Efficient.

Keywords: municipal wastewater, physico-chemical properties, sewage sludge, technology

Procedia PDF Downloads 174
15990 A System For A Sustainable Electronic Waste Marketplace

Authors: Arya Sarukkai

Abstract:

Due to increased technological advances and the high use of phones, tablets, computers, and other electronics, we continue to see rapid growth in the volume of e-waste. There are millions just throwing out their old devices, millions who have many devices and don’t know what to do with them, and there are millions who would benefit from receiving those devices. The thesis of this paper is that by creating an ecosystem of donors and recipients and providing the right incentives, we can reduce e-waste. We discuss a system for sustainable e-waste by building a marketplace between donors and recipients. We also summarize experimental results comparing different incentives and present a live web service that allows for e-waste supplies to reach schools and nonprofit institutions.

Keywords: E-waste ecosystems, marketplaces, e-waste web app, online services

Procedia PDF Downloads 158
15989 Environmental and Health Risks Associated with Dental Waste Management: A Review

Authors: Y. Y. Babanyara, B. A. Gana, T. Garba, M. A. Batari

Abstract:

Proper management of dental waste is a crucial issue for maintaining human health and the environment. The waste generated in the dental clinics has the potential for spreading infections and causing diseases, so improper disposal of these dental wastes can cause harm to the dentist, the people in immediate vicinity of the dentist, waste handlers, general public and the environment through production of toxins or as by-products of the destruction process. Staff that provide dental healthcare ought to be aware of the proper handling and the system of management of dental waste used by different dental hospitals. The method of investigation adopted in the paper involved a desk study in which documents and records relating to dental waste handling were studied to obtain background information on existing dental waste management in Nigeria other countries of the world are also mentioned as examples. Additionally, information on generation, handling, segregation, risk associated during handling and treatment of dental medical waste were sought in order to determine the best method for safe disposal. This article provides dentists with the information they need to properly dispose of mercury and amalgam waste, and provides suggestions for managing the other wastes that result from the day-to-day activities of a dental office such as: used X-ray fixers and developers; cleaners for X-ray developer systems; lead foils, shields and aprons; chemiclave/chemical sterilant solutions; disinfectants, cleaners, and other chemicals; and, general office waste. Additionally, this study may be beneficial for authorities and researchers of developing countries to work towards improving their present dental waste management system.

Keywords: clinic, dental, disposal, environment, waste management

Procedia PDF Downloads 292
15988 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel

Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul

Abstract:

Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.

Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel

Procedia PDF Downloads 127
15987 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste

Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.

Keywords: condensation, radioactive liquid waste, solidification, STRAD project

Procedia PDF Downloads 121
15986 Improvement of Water Distillation Plant by Using Statistical Process Control System

Authors: Qasim Kriri, Harsh B. Desai

Abstract:

Water supply and sanitation in Saudi Arabia is portrayed by difficulties and accomplishments. One of the fundamental difficulties is water shortage. With a specific end goal to beat water shortage, significant ventures have been attempted in sea water desalination, water circulation, sewerage, and wastewater treatment. The motivation behind Statistical Process Control (SPC) is to decide whether the execution of a procedure is keeping up an acceptable quality level [AQL]. SPC is an analytical decision-making method. A fundamental apparatus in the SPC is the Control Charts, which follow the inconstancy in the estimations of the item quality attributes. By utilizing the suitable outline, administration can decide whether changes should be made with a specific end goal to keep the procedure in charge. The two most important quality factors in the distilled water which were taken into consideration were pH (Potential of Hydrogen) and TDS (Total Dissolved Solids). There were three stages at which the quality checks were done. The stages were as follows: (1) Water at the source, (2) water after chemical treatment & (3) water which is sent for packing. The upper specification limit, central limit and lower specification limit are taken as per Saudi water standards. The procedure capacity to accomplish the particulars set for the quality attributes of Berain water Factory chose to be focused by the proposed SPC system.

Keywords: acceptable quality level, statistical quality control, control charts, process charts

Procedia PDF Downloads 160
15985 Toxicity Depletion Rates of Water Lettuce (Pistia stratoites) in an Aquaculture Effluent Hydroponic System

Authors: E. A. Kiridi, A. O. Ogunlela

Abstract:

The control of ammonia build-up and its by-product is a limiting factor for a successful commercial aquaculture in a developing country like Nigeria. The technology for an advanced treatment of fish tank effluent is uneconomical to local fish farmers which have led to indiscriminate disposal of aquaculture wastewater, thereby increasing the concentrations of these nitrogenous compound and other contaminants in surface and groundwater above the permissible level. Phytoremediation using water lettuce could offer cheaper and sustainable alternative. On the first day of experimentation, approximately 100 g of water lettuce were replicated in four hydroponic units containing aquaculture effluents. The water quality parameters measured were concentration of ammonium–nitrogen (NH4+-N), nitrite-nitrogen (NO2--N), nitrate-nitrogen (NO3--N), and phosphate–phosphorus (PO43--P). Others were total suspended solids (TSS), pH, electrical conductivity (EC), and biomass value. At phytoremediation intervals of 7, 14, 21 and 28 days, the biomass recorded were 361.2 g, 498.7 g, 561.2 g, and 623.7 g. Water lettuce was able to reduce the pollutant concentration of all the selected parameter. The percentage reduction of pH ranged from 3.9% to 14.4%, EC from 49.8% to 96.2%, TDS from 50.4% to 96.2%, TSS from 38.3% to 81.7%, NH4+-N from 38.9% to 90.7%, NO2--N from 0% to 74.9%, NO3--N from 63.2% to 95.9% and PO43--P from 0% to 76.3%. At 95% confidence level, the analysis of variance shows that F(critical) is less than F(cal) and p < 0.05; therefore, it can be concluded statistically that the inequality between the pre-treatment and post-treatment values are significant. This suggests the potency of water lettuce for remediation of aquaculture effluent.

Keywords: aquaculture effluent, nitrification, phytoremediation, water lettuce

Procedia PDF Downloads 189
15984 Recycling of Plastic Waste into Composites Using Kaolin as Reinforcement

Authors: Gloria P. Manu, Johnson K. Efavi, Abu Yaya, Grace K. Arkorful, Frank Godson

Abstract:

Plastics have been used extensively in both food and water packaging and other applications because of their inherent properties of low bulk densities and inertness as well as its low cost. Waste management of these plastics after usage is troubling in Ghana. One way of addressing the environmental problems associated with these plastic wastes is by recycling into useful products such as composites for energy and construction applications using natural or local materials as reinforcement. In this work, composites have been formed from waste low-density polyethylene (LDPE) and kaolin at temperatures as low as 70 ֯C using low-cost solvents like kerosene. Chemical surface modifications have been employed to improve the interfacial bonding resulting in the enhancement of properties of the composites. Kaolin particles of sizes ≤ 90µm were dispersed in the polyethylene matrix. The content of the LDPE was varied between 10, 20, 30, 40, 50, 60, and 70 %wt. Results obtained indicated that all the composites exhibited impressive compressive and flexural strengths with the 50%wt. composition having the highest strength. The hardness value of the composites increased as the polyethylene composition reduces and that of the kaolin increased. The average density and water of absorption of the composites were 530kg/m³ and 1.3% respectively.

Keywords: polyethylene, recycling, waste, composite, kaolin

Procedia PDF Downloads 141
15983 Techno-Economic Assessment of Aluminum Waste Management

Authors: Hamad Almohamadi, Abdulrahman AlKassem, Majed Alamoudi

Abstract:

Dumping Aluminum (Al) waste into landfills causes several health and environmental problems. The pyrolysis process could treat Al waste to produce AlCl₃ and H₂. Using the Aspen Plus software, a techno-economic and feasibility assessment has been performed for Al waste pyrolysis. The Aspen Plus simulation was employed to estimate the plant's mass and energy balance, which was assumed to process 100 dry metric tons of Al waste per day. This study looked at two cases of Al waste treatment. The first case produces 355 tons of AlCl₃ per day and 9 tons of H₂ per day without recycling. The conversion rate must be greater than 50% in case 1 to make a profit. In this case, the MSP for AlCl₃ is $768/ton. The plant would generate $25 million annually if the AlCl₃ were sold at $1000 per ton. In case 2 with recycling, the conversion has less impact on the plant's profitability than in case 1. Moreover, compared to case 1, the MSP of AlCl₃ has no significant influence on process profitability. In this scenario, if AlCl₃ were sold at $1000/ton, the process profit would be $58 million annually. Case 2 is better than case 1 because recycling Al generates a higher yield than converting it to AlCl₃ and H₂.

Keywords: aluminum waste, aspen plus, process modelling, fast pyrolysis, techno-economic assessment

Procedia PDF Downloads 57
15982 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process

Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi

Abstract:

Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.

Keywords: whey treatment, dairy industry, precipitation, protein, mineral

Procedia PDF Downloads 387
15981 Study of the Removal of a Red Dye Acid and Sodium Bentonite Raw

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Wastewater from manufacturing industries are responsible for many organic micropollutants such as some detergents and dyes. It is estimated that 10-15 % of these chemical compounds in the effluents are discharged. In the method of dyeing the dyes are often used in excess to improve the dye and thereby the waste water are highly concentrated dye. The treatment of effluents containing dye has become a necessity given its negative repercussions on ecosystems mainly due to the pollutant nature of synthetic dyes and particularly soluble dyes such as acid dyes. Technology adsorptive separation is now a separation technologies of the most important treatments. The choice led to the use of bentonite occurs in order to use an equally effective and less costly than replacing charcoal. This choice is also justified by the importance of the material developed by, the possibility of cation exchange and high availability in our country surface. During this study, therefore, we test the clay, the main constituent is montmorillonite, whose most remarkable properties are its swelling resulting from the presence of water in the space between the sheets and the fiber structure to the adsorption of acid dye "red Bemacid. "The study of various parameters i.e. time, temperature, and pH showed that the adsorption is more favorable to the temperature of 19 °C for 240 minutes at a Ph equal to 2.More styles and Langmuir adsorption Freundlich were applied to describe the isotherms. The results show that sodium bentonite seems to affect the ability and effectiveness to adsorb colorant.Les ultimate quantities are respectively 0.629 mg/g and 0.589 mg/g for sodium bentonite and bentonite gross.

Keywords: Bentonite, treatment of polluted water, acid dyes, adsorption

Procedia PDF Downloads 233
15980 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 219
15979 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 367
15978 Sorption Properties of Biological Waste for Lead Ions from Aqueous Solutions

Authors: Lucia Rozumová, Ivo Šafařík, Jana Seidlerová, Pavel Kůs

Abstract:

Biosorption by biological waste materials from agriculture industry could be a cost-effective technique for removing metal ions from wastewater. The performance of new biosorbent systems, consisting of the waste matrixes which were magnetically modified by iron oxide nanoparticles, for the removal of lead ions from an aqueous solution was tested. The use of low-cost and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods. This article deals with the removal of metal ions from aqueous solutions by modified waste products - orange peels, sawdust, peanuts husks, used tea leaves and ground coffee sediment. Magnetically modified waste materials were suspended in methanol and then was added ferrofluid (magnetic iron oxide nanoparticles). This modification process gives the predictions for the formation of the smart materials with new properties. Prepared material was characterized by using scanning electron microscopy, specific surface area and pore size analyzer. Studies were focused on the sorption and desorption properties. The changes of iron content in magnetically modified materials after treatment were observed as well. Adsorption process has been modelled by adsorption isotherms. The results show that magnetically modified materials during the dynamic sorption and desorption are stable at the high adsorbed amount of lead ions. The results of this study indicate that the biological waste materials as sorbent with new properties are highly effective for the treatment of wastewater.

Keywords: biological waste, sorption, metal ions, ferrofluid

Procedia PDF Downloads 107
15977 Waste Management and Education: The Case of York, UK

Authors: Ruijie Fan, Hao Xu

Abstract:

Due to the increasing demand for resources, solid waste disposal is becoming an increasingly important issue to be addressed. Solid waste is not only hazardous to human health but also has a negative impact on the environment. The main sources of solid waste are metals, glass, food, plastics, paper, and electrical waste. Different types of waste may require different treatments. The UK currently lags behind other countries, such as Japan and Germany, in terms of waste management. Although the UK is catching up through various incentives, waste management education in the UK still faces challenges. Education requires a lot of work before the UK can achieve a circular economy. This paper first presents the latest information on the five main types of solid waste in the UK today. It delves into the current state of waste paper management in the UK, in addition to gathering information from the literature on the current state of waste management education in the UK as a whole. Potential barriers to the disposal of each waste type in the UK are identified, along with potential barriers to education in the UK. This study was based on a pragmatic philosophy to find possible solutions for these barriers, including questionnaires to conduct an in-depth investigation. In addition, the questionnaire analysis reveals a correlation between educational attainment and individual waste management behaviour and attitudes. This research guides inspiration on the current problems of waste management in the UK.

Keywords: circular economy, education, solid waste, waste management

Procedia PDF Downloads 150
15976 Cobalt Ions Adsorption by Quartz and Illite and Calcite from Waste Water

Authors: Saad A. Aljlil

Abstract:

Adsorption of cobalt ions on quartz and illite and calcite from waste water was investigated. The effect of pH on the adsorption of cobalt ions was studied. The maximum capacities of cobalt ions of the three adsorbents increase with increasing cobalt solution temperature. The maximum capacities were (4.66) mg/g for quartz, (3.94) mg/g for illite, and (3.44) mg/g for calcite. The enthalpy, Gibbs free energy, and entropy for adsorption of cobalt ions on the three adsorbents were calculated. It was found that the adsorption process of the cobalt ions of the adsorbent was an endothermic process. consequently increasing the temperature causes the increase of the cobalt ions adsorption of the adsorbents. Therefore, the adsorption process is preferred at high temperature levels. The equilibrium adsorption data were correlated using Langmuir model, Freundlich model. The experimental data of cobalt ions of the adsorbents correlated well with Freundlich model.

Keywords: adsorption, Langmuir, Freundlich, quartz, illite, calcite, waste water

Procedia PDF Downloads 340
15975 Experimental Study on Recycled Aggregate Pervious Concrete

Authors: Ji Wenzhan, Zhang Tao, Li Guoyou

Abstract:

Concrete is the most widely used building material in the world. At the same time, the world produces a large amount of construction waste each year. Waste concrete is processed and treated, and the recycled aggregate is used to make pervious concrete, which enables the construction waste to be recycled. Pervious concrete has many advantages such as permeability to water, protection of water resources, and so on. This paper tests the recycled aggregate obtained by crushing high-strength waste concrete (TOU) and low-strength waste concrete (PU), and analyzes the effect of porosity, amount of cement, mineral admixture and recycled aggregate on the strength of permeable concrete. The porosity is inversely proportional to the strength, and the amount of cement used is proportional to the strength. The mineral admixture can effectively improve the workability of the mixture. The quality of recycled aggregates had a significant effect on strength. Compared with concrete using "PU" aggregates, the strength of 7d and 28d concrete using "TOU" aggregates increased by 69.0% and 73.3%, respectively. Therefore, the quality of recycled aggregates should be strictly controlled during production, and the mix ratio should be designed according to different use environments and usage requirements. This test prepared a recycled aggregate permeable concrete with a compressive strength of 35.8 MPa, which can be used for light load roads and provides a reference for engineering applications.

Keywords: recycled aggregate, permeable concrete, compressive strength, permeability

Procedia PDF Downloads 185
15974 Contamination of the Groundwater by the Flow of the Discharge in Khouribga City (Morocco) and the Danger It Presents to the Health of the Surrounding Population.

Authors: Najih Amina

Abstract:

Our study focuses on monitoring the spatial evolution of a number of physico-chemical parameters of wells waters located at different distances from the discharge of the city of Khouribga (S0 upstream station, S1, S2 et S3 are respectively located at 5.5, 7.5, 11 Km away from solid waste discharge of the city). The absence of a source of drinking water in this region involves the population to feeding on its groundwater wells. Through the results, we note that most of the analyzed parameters exceed the potable water standards from S1. At this source of water, we find that the conductivity (1290 μmScm-1; Standard 1000 μmScm-1), Total Hardness TH (67.2°F/ Standard 50° F), Ca2 + (146 mg l-1 standard 60 mg l-1), Cl- (369 mg l-1 standard 150 mg l-1), NaCl (609 mgl-1), Methyl orange alakanity “M. alk” (280 mg l-1) greatly exceed the drinking water standards. By following these parameters, it is obvious that some values have decreased in the downstream stations, while others become important. We find that the conductivity is always higher than 950 μmScm-1; the TH registers 72°F in S3; Ca 2+ is in the range of 153 mg l-1 in S3, Cl- and NaCl- reached 426 mg l-1 and 702 mg l-1 respectively in S2, M alk becomes higher and reaches 430 to 350 in S3. At the wells S2, we found that the nitrites are well beyond the standard 1.05 mg l-1. Whereas, at the control station S0, the values are lower or at the limit of drinking water standards: conductivity (452 μmScm-1), TH (34 F°), Ca2+ (68 mg l-1), Cl- (157 mg l-1), NaCl- (258 mg l-1), M alk (220 mg l-1). Thus, the diagnosis reveals the presence of a high pollution caused by the leachates of the household waste discharge and by the effluents of the sewage waste water plant (SWWP). The phenomenon of the water hardness could, also, be generated by the processes of erosion, leaching and soil infiltration in the region (phosphate layers, intercalated layers of marl and limestone), phenomenons also caused by the acidity due to this surrounding pollution. The source S1 is the nearest surrounding site of the discharge and the most affected by the phenomenon of pollution, especially, it is near to a superficial water source S’1 polluted by the effluents coming from the sewage waste water plant of the city. In the light of these data, we can deduce that the consumption of this water from S1 does not conform the standards of drinking waters, and could affect the human health.

Keywords: physico-chemical parameters, ground water wells, infiltration, leaching, pollution, leachate discharge effluent SWWP, human health.

Procedia PDF Downloads 385
15973 Fate of Organic Waste, Refuse and Inert from Municipal Discards as Source of Energy and Nutrient in India: A Brief Review

Authors: Kunwar Paritosh, Vivekanand Vivekanand, Nidhi Pareek

Abstract:

Presently, India depends primarily on fossil fuels for its acute energy demand. The swift in development of India in last two decades is accentuating its natural resources and compelling expenditures to cope energy security for the habitats. A total inhabitant of 1.2 billion, observing growing industrialization; is generating 68.8 million tonnes of municipal solid waste per year, 53.7 million tonnes is collected, and only trifling amount of 10.3 million tonnes of waste is treated per year that integrates to a massive amount of unimaginable land hill. In India, waste is mostly landfilled and/or incinerated with low technology and is poorly managed. Underutilization of this waste not only gulps resources but also stresses environment, public health and bionetwork thus affecting the bioeconomy negatively. It also creates conditions that invoke inevitable expenditures and loss of its renewable energy potential. The non-scientific approach to manage waste may lead to an economy downfall, underutilization and degradation of natural resources. Waste treatment technologies must be scientifically tailored and engineered as per the type of waste where it may be utilized as a source of energy (here biogas) and nutrients employing anaerobic digestion to the sorted waste. This paper presents a brief review on current practices, key achievements and forthcoming aspects of harnessing energy from municipal solid waste in Indian scenario.

Keywords: municipal discards, organic waste, anaerobic digestion, incineration, energy

Procedia PDF Downloads 228
15972 Gypsum Composites with CDW as Raw Material

Authors: R. Santos Jiménez, A. San-Antonio-González, M. del Río Merino, M. González Cortina, C. Viñas Arrebola

Abstract:

On average, Europe generates around 890 million tons of construction and demolition waste (CDW) per year and only 50% of these CDW are recycled. This is far from the objectives determined in the European Directive for 2020 and aware of this situation, the European Countries are implementing national policies to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In Spain, one of these measures has been the development of a CDW recycling guide for the manufacture of mortar, concrete, bricks and lightweight aggregates. However, there is still not enough information on the possibility of incorporating CDW materials in the manufacture of gypsum products. In view of the foregoing, the Universidad Politécnica de Madrid is creating a database with information on the possibility of incorporating CDW materials in the manufacture of gypsum products. The objective of this study is to improve this database by analysing the feasibility of incorporating two different CDW in a gypsum matrix: ceramic waste bricks (perforated brick and double hollow brick), and extruded polystyrene (XPS) waste. Results show that it is possible to incorporate up to 25% of ceramic waste and 4% of XPS waste over the weight of gypsum in a gypsum matrix. Furhtermore, with the addition of ceramic waste an 8% of surface hardness increase and a 25% of capillary water absorption reduction can be obtained. On the other hand, with the addition of XPS, a 26% reduction of density and a 37% improvement of thermal conductivity can be obtained.

Keywords: CDW, waste materials, ceramic waste, XPS, construction materials, gypsum

Procedia PDF Downloads 479
15971 Plasma Treatment of Poppy and Flax Seeds in Fluidized Bed Reactor

Authors: Jakub Perner, Jindrich Matousek, Hana Malinska

Abstract:

Adverse environmental conditions at planting (especially water shortage) can lead into reduced germination rate of seeds. The plasma treatment is one of the possibilities that can solve this problem. Such treatment can increase the germination rate of seeds and make germs grow faster due to increased wettability of seeds surface or disrupted seed coat. This could lead to enhanced oxygen and water transport into the seed and improve germination. Poppy and flax seeds were treated in fluidized bed reactor, and discharge power ranging from 10 to 40 W was used. The working gas was air at pressure 100 Pa. Poppy seeds were then planted into Petri dishes on 7 layers of filter paper saturated with water, and the number of germinated seeds was observed from 3 to 6 days after planting. Every plasma treated sample showed improved germination rate compared to untreated seeds (75.5%) six days after planting. Samples treated in 40W discharge had the highest germination rate (81.2%). The decreased contact angle of water on treated poppy seeds was observed from 85° (untreated) to 30–35° (treated). Untreated flax seeds have a germination rate over 98%; therefore, the weight of seeds was taken to be a measure of the successful germination. Treated flax seeds had a slightly higher weight than untreated. Also, the contact angle of water decreased from 99° (untreated) to 65-73° (treated); therefore the treatment of both species is considered to be successful.

Keywords: flax, germination, plasma treatment, poppy

Procedia PDF Downloads 151
15970 A Case Study on Management of Coal Seam Gas by-Product Water

Authors: Mojibul Sajjad, Mohammad G. Rasul, Md. Sharif Imam Ibne Amir

Abstract:

The rate of natural gas dissociation from the Coal Matrix depends on depressurization of reservoir through removing of the cleat water from the coal seam. These waters are similar to brine and aged of long years. For improving the connectivity through fracking /fracturing, high pressure liquids are pumped off inside the coal body. A significant quantity of accumulated water, a combined mixture of cleat water and fracking fluids (back flow water) is pumped out through gas well. In Queensland Coal Seam Gas industry is in booming state and estimated of 30,000 wells would be active for CSG production forecasting life span of 30 years. Integrated water management along with water softening programs is practiced for subsequent treatment and later on discharge to nearby surface water catchment. Water treatment is an important part of the CSG industry. A case study on a CSG site and review on the test results are discussed for assessing the Standards & Practices for management of CSG by-product water and their subsequent disposal activities. This study was directed toward (i) water management and softening process in Spring Gully Mine field, (ii) Comparative analysis on experimental study and standards and (iii) Disposal of the treated water. This study also aimed for alternative usages and their impact on vegetation, living species as well as long term effects.

Keywords: coal seam gas (CSG), cleat water, hydro-fracking, product water

Procedia PDF Downloads 391
15969 Mapping of Textile Waste Generation across the Value Chains Operating in the Textile Industry

Authors: Veena Nair, Srikanth Prakash, Mayuri Wijayasundara

Abstract:

Globally, the textile industry is a key contributor to the generation of solid waste which gets landfilled. Textile waste generation generally occurs in three stages, namely: producer waste, pre-consumer waste, and post-consumer waste. However, the different processes adopted in textile material extraction, manufacturing, and use have their respective impact in terms of the quantity of waste being diverted to landfills. The study is focused on assessing the value chains of the two most common textile fibres: cotton and polyester, catering to a broad categories of apparel products. This study attempts to identify and evaluate the key processes adopted by the textile industry at each of the stages in their value chain in terms of waste generation. The different processes identified in each of the stages in the textile value chains are mapped to their respective contribution in generating fibre waste which eventually gets diverted to landfill. The results of the study are beneficial for the overall industry in terms of improving the traceability of waste in the value chains and the selection of processes and behaviours facilitating the reduction of environmental impacts associated with landfills.

Keywords: textile waste, textile value chains, landfill waste, waste mapping

Procedia PDF Downloads 168
15968 Low Temperature Biological Treatment of Chemical Oxygen Demand for Agricultural Water Reuse Application Using Robust Biocatalysts

Authors: Vedansh Gupta, Allyson Lutz, Ameen Razavi, Fatemeh Shirazi

Abstract:

The agriculture industry is especially vulnerable to forecasted water shortages. In the fresh and fresh-cut produce sector, conventional flume-based washing with recirculation exhibits high water demand. This leads to a large water footprint and possible cross-contamination of pathogens. These can be alleviated through advanced water reuse processes, such as membrane technologies including reverse osmosis (RO). Water reuse technologies effectively remove dissolved constituents but can easily foul without pre-treatment. Biological treatment is effective for the removal of organic compounds responsible for fouling, but not at the low temperatures encountered at most produce processing facilities. This study showed that the Microvi MicroNiche Engineering (MNE) technology effectively removes organic compounds (> 80%) at low temperatures (6-8 °C) from wash water. The MNE technology uses synthetic microorganism-material composites with negligible solids production, making it advantageously situated as an effective bio-pretreatment for RO. A preliminary technoeconomic analysis showed 60-80% savings in operation and maintenance costs (OPEX) when using the Microvi MNE technology for organics removal. This study and the accompanying economic analysis indicated that the proposed technology process will substantially reduce the cost barrier for adopting water reuse practices, thereby contributing to increased food safety and furthering sustainable water reuse processes across the agricultural industry.

Keywords: biological pre-treatment, innovative technology, vegetable processing, water reuse, agriculture, reverse osmosis, MNE biocatalysts

Procedia PDF Downloads 101
15967 Advances in Membrane Technologies for Wastewater Treatment

Authors: Deniz Sahin

Abstract:

This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.

Keywords: industrial pollution, membrane technologies, metal ions, wastewater

Procedia PDF Downloads 161