Search results for: slice thickness accuracy
2327 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 2752326 Discussing Concept Gratitude of Muslim Consumers Based on Islamic Law: A Confirmation on the Theory of Consumer Satisfaction through Imam Al-Ghazali's Thought
Authors: Suprihatin Soewarto
Abstract:
The background of writing this paper is to assess the truth of rejection of some Muslim scholars who develop Islamic economics on the concept of consumer satisfaction and replace it with the concept of maslahah. In the perspective of Islamic law, this rejection attitude needs to be verified in order to know the accuracy of the replacement of this concept of satisfaction with maslahah as part of consumer behavior. This is done so that replacement of rejection of the term satisfaction with maslahah is objective. This objective replacement of the term will surely be more enlightening and more just than the subjective substitution. Therefore the writing of this paper aims to get an answer whether the concept of satisfaction needs to be replaced? is it possible for Islamic law to confirm the theory of consumer satisfaction? The method of writing this paper using the method of literature with a critical analysis approach. The results of this study is an explanation of the similarities and differences of consumer satisfaction theory and consumer theory maslahah according to Islamic law. disclosure of the concept of consumer gratitude according to Islamic law and its implementation in Muslim consumer demand theory.Keywords: consumer's gratitude, islamic law, confirmation, satisfaction consumer's
Procedia PDF Downloads 2102325 University of Sciences and Technology of Oran Mohamed Boudiaf (USTO-MB)
Authors: Patricia Mikchaela D. L. Feliciano, Ciela Kadeshka A. Fuentes, Bea Trixia B. Gales, Ethel Princess A. Gepulango, Martin R. Hernandez, Elina Andrea S. Lantion, Jhoe Cynder P. Legaspi, Peter F. Quilala, Gina C. Castro
Abstract:
Propolis is a resin-like material used by bees to fill large gap holes in the beehive. It has been found to possess anti-inflammatory property, which stimulates hair growth in rats by inducing hair keratinocytes proliferation, causing water retention and preventing damage caused by heat, ultraviolet rays, and other microorganisms without abnormalities in hair follicles. The present study aimed to formulate 10% and 30% Propolis Hair Cream for use in enhancing hair properties. Raw propolis sample was tested for heavy metals using Atomic Absorption Spectroscopy; zinc and chromium were found to be present. Likewise, propolis was extracted in a percolator using 70% ethanol and concentrated under vacuum using a rotary evaporator. The propolis extract was analyzed for total flavonoid content. Compatibility of the propolis extract with excipients was evaluated using Differential Scanning Calorimetry (DSC). No significant changes in organoleptic properties, pH and viscosity of the formulated creams were noted after four weeks of storage at 2-8°C, 30°C, and 40°C. The formulated creams were found to be non-irritating based on the Modified Draize Rabbit Test. In vivo efficacy was evaluated based on thickness and tensile strength of hair grown on previously shaved rat skin. Results show that the formulated 30% propolis-based cream had greater hair enhancing properties than the 10% propolis cream, which had a comparable effect with minoxidil.Keywords: atomic absorption spectroscopy, differential scanning calorimetry (DSC), modified draize rabbit test, propolis
Procedia PDF Downloads 3512324 Cryogenic Machining of Sawdust Incorporated Polypropylene Composites
Authors: K. N. Umesh
Abstract:
Wood Polymer Composites (WPC) were synthesized artificially by combining polypropylene, wood and resin. It is difficult to obtain a good surface finish by conventional machining on WPC because of material degradation due to excessive heat generated during the process. In order to preserve the material property and deliver a better surface finish and accuracy, a proper solution is devised for the machining of wood composites at low temperature. This research focuses on studying the effects of parameters of cryogenic machining on sawdust incorporated polypropylene composite material, in view of evolving the most suitable composition and an appropriate combination of process parameters. The machining characteristics of the six different compositions of WPC were evaluated by analyzing the trend. An attempt is made to determine proper combinations material composition and process control parameters, through process capability studies. A WPC of 80%-wood (saw dust particles), 20%-polypropylene and 0%-resin was found to be the best alternative for obtaining the best surface finish under cryogenic machining conditions.Keywords: Cryogenic Machining, Process Capability, Surface Finish, Wood Polymer Composites
Procedia PDF Downloads 2522323 Automatic Identification of Pectoral Muscle
Authors: Ana L. M. Pavan, Guilherme Giacomini, Allan F. F. Alves, Marcela De Oliveira, Fernando A. B. Neto, Maria E. D. Rosa, Andre P. Trindade, Diana R. De Pina
Abstract:
Mammography is a worldwide image modality used to diagnose breast cancer, even in asymptomatic women. Due to its large availability, mammograms can be used to measure breast density and to predict cancer development. Women with increased mammographic density have a four- to sixfold increase in their risk of developing breast cancer. Therefore, studies have been made to accurately quantify mammographic breast density. In clinical routine, radiologists perform image evaluations through BIRADS (Breast Imaging Reporting and Data System) assessment. However, this method has inter and intraindividual variability. An automatic objective method to measure breast density could relieve radiologist’s workload by providing a first aid opinion. However, pectoral muscle is a high density tissue, with similar characteristics of fibroglandular tissues. It is consequently hard to automatically quantify mammographic breast density. Therefore, a pre-processing is needed to segment the pectoral muscle which may erroneously be quantified as fibroglandular tissue. The aim of this work was to develop an automatic algorithm to segment and extract pectoral muscle in digital mammograms. The database consisted of thirty medio-lateral oblique incidence digital mammography from São Paulo Medical School. This study was developed with ethical approval from the authors’ institutions and national review panels under protocol number 3720-2010. An algorithm was developed, in Matlab® platform, for the pre-processing of images. The algorithm uses image processing tools to automatically segment and extract the pectoral muscle of mammograms. Firstly, it was applied thresholding technique to remove non-biological information from image. Then, the Hough transform is applied, to find the limit of the pectoral muscle, followed by active contour method. Seed of active contour is applied in the limit of pectoral muscle found by Hough transform. An experienced radiologist also manually performed the pectoral muscle segmentation. Both methods, manual and automatic, were compared using the Jaccard index and Bland-Altman statistics. The comparison between manual and the developed automatic method presented a Jaccard similarity coefficient greater than 90% for all analyzed images, showing the efficiency and accuracy of segmentation of the proposed method. The Bland-Altman statistics compared both methods in relation to area (mm²) of segmented pectoral muscle. The statistic showed data within the 95% confidence interval, enhancing the accuracy of segmentation compared to the manual method. Thus, the method proved to be accurate and robust, segmenting rapidly and freely from intra and inter-observer variability. It is concluded that the proposed method may be used reliably to segment pectoral muscle in digital mammography in clinical routine. The segmentation of the pectoral muscle is very important for further quantifications of fibroglandular tissue volume present in the breast.Keywords: active contour, fibroglandular tissue, hough transform, pectoral muscle
Procedia PDF Downloads 3552322 Simulation and Experimental Study on Tensile Force Measurement of PS Tendons Using an Embedded EM Sensor
Authors: ByoungJoon Yu, Junkyeong Kim, Seunghee Park
Abstract:
The tensile force estimation PS tendons is in great demand on monitoring the structural health condition of PSC girder bridges. Measuring the tensile force of the PS tendons inside the PSC girder using conventional methods is hard due to its location. In this paper, an embedded EM sensor based tensile force estimation of PS tendon was carried out by measuring the permeability of the PS tendons in PSC girder. The permeability is changed due to the induced tensile force by the magneto-elastic effect and the effect then lead to the gradient change of the B-H curve. An experiment was performed to obtain the signals from the EM sensor using three down-scaled PSC girder models. The permeability of PS tendons was proportionally decreased according to the increase of the tensile forces. To verify the experiment results, a simulation of tensile force estimation will be conducted in further study. Consequently, it is expected that both the experiment results and the simulation results increase the accuracy of the tensile force estimation, and then it could be one of the solutions for evaluating the performance of PSC girder.Keywords: tensile force estimation, embedded EM sensor, PSC girder, EM sensor simulation, cross section loss
Procedia PDF Downloads 4862321 Determination of Iron, Zinc, Copper, Cadmium and Lead in Different Cigarette Brands in Yemen by Atomic Absorption Spectrometry
Authors: Ali A. Mutair
Abstract:
The concentration levels of iron (Fe), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in different cigarette brands commonly produced and sold in Yemen were determined. Convenient sample treatment for cigarette tobacco of freshly opened packs was achieved by a sample preparation method based on dry digestion, and the concentrations of the analysed metals were measured by Flame Atomic Absorption Spectrometry (FAAS). The mean values obtained for Fe, Zn, Cu, Cd, and Pb in different Yemeni cigarette tobacco were 311, 52.2, 10.11, 1.71 and 4.06 µg/g dry weight, respectively. There is no more significant difference among cigarette brands tested. It was found that Fe was at the highest concentration, followed by Zn, Cu, Pb and Cd. The average relative standard deviation (RSD) ranged from 1.77% to 19.34%. The accuracy and precision of the results were checked by blank and recovery tests. The results show that Yemeni cigarettes contain heavy metal concentration levels that are similar to those in foreign cigarette brands reported by other studies in the worldwide.Keywords: iron, zinc, copper, lead, cadmium, tobacco, Yemeni cigarette brands, atomic absorption spectrometry
Procedia PDF Downloads 3612320 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map
Authors: Hao Zhang, Hongyang Yu
Abstract:
Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.Keywords: RGB-D, SLAM, dense depth, depth map
Procedia PDF Downloads 1442319 Performance Analysis of Modified Solar Water Heating System for Climatic Condition of Allahabad, India
Authors: Kirti Tewari, Rahul Dev
Abstract:
Solar water heating is a thermodynamic process of heating water using sunlight with the help of solar water heater. Thus, solar water heater is a device used to harness solar energy. In this paper, a modified solar water heating system (MSWHS) has been proposed over flat plate collector (FPC) and Evacuated tube collector (ETC). The modifications include selection of materials other than glass, and glass wool which are conventionally used for fabricating FPC and ETC. Some modifications in design have also been proposed. Its collector is made of double layer of semi-cylindrical acrylic tubes and fibre reinforced plastic (FRP) insulation base. Water tank is made of double layer of acrylic sheet except base and north wall. FRP is used in base and north wall of the water tank. A concept of equivalent thickness has been utilised for calculating the dimensions of collector plate, acrylic tube and tank. A thermal model for the proposed design of MSWHS is developed and simulation is carried out on MATLAB for the capacity of 200L MSWHS having collector area of 1.6 m2, length of acrylic tubes of 2m at an inclination angle 25° which is taken nearly equal to the latitude of the given location. Latitude of Allahabad is 24.45° N. The results show that the maximum temperature of water in tank and tube has been found to be 71.2°C and 73.3°C at 17:00hr and 16:00hr respectively in March for the climatic data of Allahabad. Theoretical performance analysis has been carried out by varying number of tubes of collector, the tank capacity and climatic data for given months of winter and summer.Keywords: acrylic, fibre reinforced plastic, solar water heating, thermal model, conventional water heaters
Procedia PDF Downloads 3392318 Linear and Nonlinear Resonance of Flat Bottom Hole in an Aluminum Plate
Authors: Biaou Jean-Baptiste Kouchoro, Anissa Meziane, Philippe Micheau, Mathieu Renier, Nicolas Quaegebeur
Abstract:
Numerous experimental and numerical studies have shown the interest of the local defects resonance (LDR) for the Non-Destructive Testing of metallic and composite plates. Indeed, guided ultrasonic waves such as Lamb waves, which are increasingly used for the inspection of these flat structures, enable the generation of local resonance phenomena by their interaction with a damaged area, allowing the detection of defects. When subjected to a large amplitude motion, a nonlinear behavior can predominate in the damaged area. This work presents a 2D Finite Element Model of the local resonance of a 12 mm long and 5 mm deep Flat Bottom Hole (FBH) in a 6 mm thick aluminum plate under the excitation induced by an incident A0 Lamb mode. The analysis of the transient response of the FBH enables the precise determination of its resonance frequencies and the associate modal deformations. Then, a linear parametric study varying the geometrical properties of the FBH highlights the sensitivity of the resonance frequency with respect to the plate thickness. It is demonstrated that the resonance effect disappears when the ratio of thicknesses between the FBH and the plate is below 0.1. Finally, the nonlinear behavior of the FBH is considered and studied introducing geometrical (taken into account the nonlinear component of the strain tensor) nonlinearities that occur at large vibration amplitudes. Experimental analysis allows observation of the resonance effects and nonlinear response of the FBH. The differences between these experimental results and the numerical results will be commented on. The results of this study are promising and allow to consider more realistic defects such as delamination in composite materials.Keywords: guided waves, non-destructive testing, dynamic field testing, non-linear ultrasound/vibration
Procedia PDF Downloads 1382317 A Study of Surface of Titanium Targets for Neutron Generators
Authors: Alexey Yu. Postnikov, Nikolay T. Kazakovskiy, Valery V. Mokrushin, Irina A. Tsareva, Andrey A. Potekhin, Valentina N. Golubeva, Yuliya V. Potekhina, Maxim V. Tsarev
Abstract:
The development of tritium and deuterium targets for neutron tubes and generators is a part of the activities in All-Russia Research Institute of Experimental Physics (RFNC-VNIIEF). These items contain a metal substrate (for example, copper) with a titanium film with a few microns thickness deposited on it. Then these metal films are saturated with tritium, deuterium or their mixtures. The significant problem in neutron tubes and neutron generators is the characterization of substrate surface before a deposition of titanium film on it, and analysis of the deposited titanium film’s surface before hydrogenation and after a saturation of the film with hydrogen isotopes. The performance effectiveness of neutron tube and generator also depends on upon the quality parameters of the surface of the initial substrate, deposited metal film and hydrogenated target. The objective of our work is to study the target prototype samples, that have differ by various approaches to the preliminary chemical processing of a copper substrate, and to analyze the integrity of titanium film after its saturation with deuterium. The research results of copper substrate and the surface of deposited titanium film with the use of electron microscopy, X-ray spectral microanalysis and laser-spark methods of analyses are presented. The causes of surface defects appearance have been identified. The distribution of deuterium and some impurities (oxygen and nitrogen) along the surface and across the height of the hydrogenated film in the target has been established. This allows us to evaluate the composition homogeneity of the samples and consequently to estimate the quality of hydrogenated samples. As the result of this work the propositions on the advancement of production technology and characterization of target’s surface have been presented.Keywords: tritium and deuterium targets, titanium film, laser-spark methods, electron microscopy
Procedia PDF Downloads 4472316 Secondary Radiation in Laser-Accelerated Proton Beamline (LAP)
Authors: Seyed Ali Mahdipour, Maryam Shafeei Sarvestani
Abstract:
Radiation pressure acceleration (RPA) and target normal sheath acceleration (TNSA) are the most important methods of Laser-accelerated proton beams (LAP) planning systems.LAP has inspired novel applications that can benefit from proton bunch properties different from conventionally accelerated proton beams. The secondary neutron and photon produced in the collision of protons with beamline components are of the important concern in proton therapy. Various published Monte Carlo researches evaluated the beamline and shielding considerations for TNSA method, but there is no studies directly address secondary neutron and photon production from RPA method in LAP. The purpose of this study is to calculate the flux distribution of neutron and photon secondary radiations on the first area ofLAP and to determine the optimize thickness and radius of the energyselector in a LAP planning system based on RPA method. Also, we present the Monte Carlo calculations to determine the appropriate beam pipe for shielding a LAP planning system. The GEANT4 Monte Carlo toolkit has been used to simulate a secondary radiation production in LAP. A section of new multifunctional LAP beamlinehas been proposed, based on the pulsed power solenoid scheme as a GEANT4 toolkit. The results show that the energy selector is the most important source of neutron and photon secondary particles in LAP beamline. According to the calculations, the pure Tungsten energy selector not be the proper case, and using of Tungsten+Polyethylene or Tungsten+Graphitecomposite selectors will reduce the production of neutron and photon intensities by approximately ~10% and ~25%, respectively. Also the optimal radiuses of energy selectors were found to be ~4 cm and ~6 cm for a 3 degree and 5 degree proton deviation angles, respectively.Keywords: neutron, photon, flux distribution, energy selector, GEANT4 toolkit
Procedia PDF Downloads 1082315 Using Machine Learning Techniques for Autism Spectrum Disorder Analysis and Detection in Children
Authors: Norah Mohammed Alshahrani, Abdulaziz Almaleh
Abstract:
Autism Spectrum Disorder (ASD) is a condition related to issues with brain development that affects how a person recognises and communicates with others which results in difficulties with interaction and communication socially and it is constantly growing. Early recognition of ASD allows children to lead safe and healthy lives and helps doctors with accurate diagnoses and management of conditions. Therefore, it is crucial to develop a method that will achieve good results and with high accuracy for the measurement of ASD in children. In this paper, ASD datasets of toddlers and children have been analyzed. We employed the following machine learning techniques to attempt to explore ASD and they are Random Forest (RF), Decision Tree (DT), Na¨ıve Bayes (NB) and Support Vector Machine (SVM). Then Feature selection was used to provide fewer attributes from ASD datasets while preserving model performance. As a result, we found that the best result has been provided by the Support Vector Machine (SVM), achieving 0.98% in the toddler dataset and 0.99% in the children dataset.Keywords: autism spectrum disorder, machine learning, feature selection, support vector machine
Procedia PDF Downloads 1562314 The Structure of Southern Tunisian Atlas Deformation Front: Integrated Geological and Geophysical Interpretation
Authors: D. Manai, J. Alvarez-Marron, M. Inoubli
Abstract:
The southern Tunisian Atlas is a part of the wide Cenozoic intracontinental deformation that affected North Africa as a result of convergence between African and Eurasian plates. The Southern Tunisian Atlas Front (STAF) corresponds to the chotts area that covers several hundreds of Km² and represents a 60 km wide transition between the deformed Tunisian Atlas to the North and the undeformed Saharan platform to the South. It includes three morphostructural alignments, a fold and thrust range in the North, a wide depression in the middle and a monocline to horizontal zone to the south. Four cross-sections have been constructed across the chotts area to illustrate the structure of the Southern Tunisian Atlas Front based on integrated geological and geophysical data including geological maps, petroleum wells, and seismic data. The fold and thrust zone of the northern chotts is interpreted as related to a detachment level near the Triassic-Jurassic contact. The displacement of the basal thrust seems to die out progressively under the Fejej antiform and it is responsible to the south dipping of the southern chotts range. The restoration of the cross-sections indicates that the Southern Tunisian Atlas front is a weakly deformed wide zone developed during the Cenozoic inversion with a maximum calculated shortening in the order of 1000 m. The wide structure of this STAF has been influenced by a pre-existing large thickness of upper Jurassic-Aptian sediments related to the rifting episodes associated to the evolution of Tethys in the Maghreb. During Jurassic to Aptian period, the chotts area corresponded to a highly subsiding basin.Keywords: Southern Tunisian Atlas Front, subsident sub- basin, wide deformation, balanced cross-sections.
Procedia PDF Downloads 1532313 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Yasmine Abu Adla, Racha Soubra, Milana Kasab, Mohamad O. Diab, Aly Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals, out of which 11 were chosen based on their intraclass correlation coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, 5 features were introduced to the linear discriminant analysis classifier, and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90%, respectively.Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia PDF Downloads 1642312 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels
Authors: Foad Hassaninejadafarahani, Scott Ormiston
Abstract:
Reflux condensation occurs in a vertical channels and tubes when there is an upward core flow of vapor (or gas-vapor mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapor-gas mixture (or pure vapor) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapor core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction.Keywords: Reflux, Condensation, CFD-Two Phase, Nusselt number
Procedia PDF Downloads 3682311 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1482310 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics
Authors: Anas H. Aljemely, Jianping Xuan
Abstract:
Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features
Procedia PDF Downloads 2172309 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 2572308 Seismic Performance of Steel Shear Wall Using Experimental and Numerical Analysis
Authors: Wahab Abdul Ghafar, Tao Zhong, Baba Kalan Enamullah
Abstract:
Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic Performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high Performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study.
Procedia PDF Downloads 1132307 Framework for Socio-Technical Issues in Requirements Engineering for Developing Resilient Machine Vision Systems Using Levels of Automation through the Lifecycle
Authors: Ryan Messina, Mehedi Hasan
Abstract:
This research is to examine the impacts of using data to generate performance requirements for automation in visual inspections using machine vision. These situations are intended for design and how projects can smooth the transfer of tacit knowledge to using an algorithm. We have proposed a framework when specifying machine vision systems. This framework utilizes varying levels of automation as contingency planning to reduce data processing complexity. Using data assists in extracting tacit knowledge from those who can perform the manual tasks to assist design the system; this means that real data from the system is always referenced and minimizes errors between participating parties. We propose using three indicators to know if the project has a high risk of failing to meet requirements related to accuracy and reliability. All systems tested achieved a better integration into operations after applying the framework.Keywords: automation, contingency planning, continuous engineering, control theory, machine vision, system requirements, system thinking
Procedia PDF Downloads 2122306 URM Infill in-Plane and out-of-Plane Interaction in Damage Evaluation of RC Frames
Authors: F. Longo, G. Granello, G. Tecchio, F. Da Porto
Abstract:
Unreinforced masonry (URM) infill walls are widely used throughout the world, also in seismic prone regions, as partitions in reinforced concrete building frames. Even if they do not represent structural elements, they can dramatically affect both strength and stiffness of RC structures by acting as a diagonal strut, modifying shear and displacements distribution along the building height, with uncertain consequences on structural safety. In the last decades, many refined models have been developed to describe infill walls effect on frame structural behaviour, but generally restricted to in-plane actions. Only very recently some new approaches were implemented to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In the present work, a particularly promising macro-model was adopted for the progressive collapse analysis of infilled RC frames. The model allows to consider the bi-directional interaction in terms of displacement and strength capacity for URM infills, and to remove the infill contribution when the URM wall is supposed to fail during the analysis process. The model was calibrated on experimental data regarding two different URM panels thickness, modelling with particular care the post-critic softening branch. A frame specimen set representing the most common Italian structures was built considering two main normative approaches: a traditional design philosophy, corresponding to structures erected between 50’s-80’s basically designed to support vertical loads, and a seismic design philosophy, corresponding to current criteria that take into account horizontal actions. Non-Linear Static analyses were carried out on the specimen set and some preliminary evaluations were drawn in terms of different performance exhibited by the RC frame when the contemporary effect of the out-of-plane damage is considered for the URM infill.Keywords: infill Panels macromodels, in plane-out of plane interaction, RC frames, URM infills
Procedia PDF Downloads 5192305 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1492304 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2372303 Filtering and Reconstruction System for Grey-Level Forensic Images
Authors: Ahd Aljarf, Saad Amin
Abstract:
Images are important source of information used as evidence during any investigation process. Their clarity and accuracy is essential and of the utmost importance for any investigation. Images are vulnerable to losing blocks and having noise added to them either after alteration or when the image was taken initially, therefore, having a high performance image processing system and it is implementation is very important in a forensic point of view. This paper focuses on improving the quality of the forensic images. For different reasons packets that store data can be affected, harmed or even lost because of noise. For example, sending the image through a wireless channel can cause loss of bits. These types of errors might give difficulties generally for the visual display quality of the forensic images. Two of the images problems: noise and losing blocks are covered. However, information which gets transmitted through any way of communication may suffer alteration from its original state or even lose important data due to the channel noise. Therefore, a developed system is introduced to improve the quality and clarity of the forensic images.Keywords: image filtering, image reconstruction, image processing, forensic images
Procedia PDF Downloads 3682302 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 4522301 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 872300 Utility Assessment Model for Wireless Technology in Construction
Authors: Yassir AbdelRazig, Amine Ghanem
Abstract:
Construction projects are information intensive in nature and involve many activities that are related to each other. Wireless technologies can be used to improve the accuracy and timeliness of data collected from construction sites and shares it with appropriate parties. Nonetheless, the construction industry tends to be conservative and shows hesitation to adopt new technologies. A main concern for owners, contractors or any person in charge on a job site is the cost of the technology in question. Wireless technologies are not cheap. There are a lot of expenses to be taken into consideration, and a study should be completed to make sure that the importance and savings resulting from the usage of this technology is worth the expenses. This research attempts to assess the effectiveness of using the appropriate wireless technologies based on criteria such as performance, reliability, and risk. The assessment is based on a utility function model that breaks down the selection issue into alternatives attribute. Then the attributes are assigned weights and single attributes are measured. Finally, single attribute are combined to develop one single aggregate utility index for each alternative.Keywords: analytic hierarchy process, decision theory, utility function, wireless technologies
Procedia PDF Downloads 3462299 Kinetics of Growth Rate of Microalga: The Effect of Carbon Dioxide Concentration
Authors: Retno Ambarwati Sigit Lestari
Abstract:
Microalga is one of the organisms that can be considered ideal and potential for raw material of bioenergy production, because the content of lipids in microalga is relatively high. Microalga is an aquatic organism that produces complex organic compounds from inorganic molecules using carbon dioxide as a carbon source, and sunlight for energy supply. Microalga-CO₂ fixation has potential advantages over other carbon captures and storage approaches, such as wide distribution, high photosynthetic rate, good environmental adaptability, and ease of operation. The rates of growth and CO₂ capture of microalga are influenced by CO₂ concentration and light intensity. This study quantitatively investigates the effects of CO₂ concentration on the rates of growth and CO₂ capture of a type of microalga, cultivated in bioreactors. The works include laboratory experiments as well as mathematical modelling. The mathematical models were solved numerically and the accuracy of the model was tested by the experimental data. It turned out that the mathematical model proposed can well quantitatively describe the growth and CO₂ capture of microalga, in which the effects of CO₂ concentration can be observed.Keywords: Microalga, CO2 concentration, photobioreactor, mathematical model
Procedia PDF Downloads 1302298 Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber
Authors: Man-Hong Lai, Dinusha S. Gunawardena, Kok-Sing Lim, Harith Ahmad
Abstract:
In this paper, we have reported birefringence manipulation in regenerated high-birefringent fiber Bragg grating (RPMG) by using CO2 laser annealing method. The results indicate that the birefringence of RPMG remains unchanged after CO2 laser annealing followed by a slow cooling process, but reduced after the fast cooling process (~5.6×10-5). After a series of annealing procedures with different cooling rates, the obtained results show that slower the cooling rate, higher the birefringence of RPMG. The volume, thermal expansion coefficient (TEC) and glass transition temperature (Tg) change of stress applying part in RPMG during the cooling process are responsible for the birefringence change. Therefore, these findings are important to the RPMG sensor in high and dynamic temperature environment. The measuring accuracy, range and sensitivity of RPMG sensor are greatly affected by its birefringence value. This work also opens up a new application of CO2 laser for fiber annealing and birefringence modification.Keywords: birefringence, CO2 laser annealing, regenerated gratings, thermal stress
Procedia PDF Downloads 463