Search results for: machine readable format
409 Engineering Study on the Handling of Date Palm Fronds to Reduce Waste and Used as Energy Environmentally Friendly Fuel
Authors: Ayman H. Amer Eissa, Abdul Rahman O. Alghannam
Abstract:
The agricultural crop residuals are considered one of the most important problems faced by the environmental life and farmers in the world. A study was carried out to evaluate the physical characteristics of chopped date palm stalks (fronds and leaflets). These properties are necessary to apply normal design procedures such as pneumatic conveying, fluidization, drying, and combustion. The mechanical treatment by cutting, crushing or chopping and briquetting processes are the primary step and the suitable solution for solving this problem and recycling these residuals to be transformed into useful products. So the aim of the present work to get a high quality for agriculture residues such as date palm stalks (fronds), date palm leaflets briquettes. The results obtained from measuring the mechanical properties (average shear and compressive strength) for date palm stalks at different moisture content (12.63, 33.21 and 60.54%) was (6.4, 4.7 and 3.21MPa) and (3.8, 3.18 and 2.86MPa) respectively. The modulus of elasticity and toughness were evaluated as a function of moisture content. As the moisture content of the stalk regions increased the modulus of elasticity and toughness decreased indicating a reduction in the brittleness of the stalk regions. Chopped date palm stalks (palm fronds), date palm leaflets having moisture content of 8, 10 and 12% and 8, 10 and 12.8% w.b. were dandified into briquettes without binder and with binder (urea-formaldehyde) using a screw press machine. Quality properties for briquettes were durability, compression ratio hardness, bulk density, compression ratio, resiliency, water resistance and gases emission. The optimum quality properties found for briquettes at 8 % moisture content and without binder. Where the highest compression stress and durability were 8.95, 10.39 MPa and 97.06 %, 93.64 % for date palm stalks (palm fronds), date palm leaflets briquettes, respectively. The CO and CO2 emissions for date palm stalks (fronds), date palm leaflets briquettes were less than these for loose residuals.Keywords: residues, date palm stalks, chopper, briquetting, quality properties
Procedia PDF Downloads 551408 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers
Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist
Abstract:
Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden
Procedia PDF Downloads 112407 Sentiment Analysis of Social Media Responses: A Comparative Study of (NDA) and Indian National Developmental Inclusive Alliance (INDIA) during Indian General Elections 2024
Authors: Pankaj Dhiman, Simranjeet Kaur
Abstract:
This research paper presents a comprehensive sentiment analysis of social media responses to videos on Facebook, YouTube, Twitter, and Instagram during the 2024 Indian general elections. The study focuses on the sentiment patterns of voters towards the National Democratic Alliance (NDA) and The Indian National Developmental Inclusive Alliance (INDIA) on these platforms. The analysis aims to understand the impact of social media on voter sentiment and its correlation with the election outcome. The study employed a mixed-methods approach, combining both quantitative and qualitative methods. With a total of 200 posts analysed during general election-2024 final phase, the sentiment analysis was conducted using natural language processing (NLP) techniques, including sentiment dictionaries and machine learning algorithms. The results show that NDA received significantly more positive sentiment responses across all platforms, with a positive sentiment score of 47% compared to INDIA's score of 38.98 %. The analysis also revealed that Twitter and YouTube were the most influential platforms in shaping voter sentiment, with 60% of the total sentiment score coming from these two platforms. The study's findings suggest that social media sentiment analysis can be a valuable tool for understanding voter sentiment and predicting election outcomes. The results also highlight the importance of social media in shaping public opinion and the need for political parties to engage effectively with voters on these platforms. The study's implications are significant, as they indicate that social media can be a key factor in determining the outcome of elections. The findings also underscore the need for political parties to develop effective social media strategies to engage with voters and shape public opinion.Keywords: Indian Elections-2024, NDA, INDIA, sentiment analysis, social media, democracy
Procedia PDF Downloads 56406 The Impact of Legislation on Waste and Losses in the Food Processing Sector in the UK/EU
Authors: David Lloyd, David Owen, Martin Jardine
Abstract:
Introduction: European weight regulations with respect to food products require a full understanding of regulation guidelines to assure regulatory compliance. It is suggested that the complexity of regulation leads to practices which result to over filling of food packages by food processors. Purpose: To establish current practices by food processors and the financial, sustainable and societal impacts on the food supply chain of ineffective food production practices. Methods: An analysis of food packing controls with 10 companies of varying food categories and quantitative based research of a further 15 food processes on the confidence in weight control analysis of finished food packs within their organisation. Results: A process floor analysis of manufacturing operations focussing on 10 products found over fill of packages ranging from 4.8% to 20.2%. Standard deviation figures for all products showed a potential for reducing average weight of the pack whilst still retain the legal status of the product. In 20% of cases, an automatic weight analysis machine was in situ however weight packs were still significantly overweight. Collateral impacts noted included the effect of overfill on raw material purchase and added food miles often on a global basis with one raw material alone creating 10,000 extra food miles due to the poor weight control of the processing unit. A case study of a meat and bakery product will be discussed with the impact of poor controls resulting from complex legislation. The case studies will highlight extra energy costs in production and the impact of the extra weight on fuel usage. If successful a risk assessment model used primarily on food safety but adapted to identify waste /sustainability risks will be discussed within the presentation.Keywords: legislation, overfill, profile, waste
Procedia PDF Downloads 408405 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 71404 The Guideline of Overall Competitive Advantage Promotion with Key Success Paths
Authors: M. F. Wu, F. T. Cheng, C. S. Wu, M. C. Tan
Abstract:
It is a critical time to upgrade technology and increase value added with manufacturing skills developing and management strategies that will highly satisfy the customers need in the precision machinery global market. In recent years, the supply side, each precision machinery manufacturers in each country are facing the pressures of price reducing from the demand side voices that pushes the high-end precision machinery manufacturers adopts low-cost and high-quality strategy to retrieve the market. Because of the trend of the global market, the manufacturers must take price reducing strategies and upgrade technology of low-end machinery for differentiations to consolidate the market. By using six key success factors (KSFs), customer perceived value, customer satisfaction, customer service, product design, product effectiveness and machine structure quality are causal conditions to explore the impact of competitive advantage of the enterprise, such as overall profitability and product pricing power. This research uses key success paths (KSPs) approach and f/s QCA software to explore various combinations of causal relationships, so as to fully understand the performance level of KSFs and business objectives in order to achieve competitive advantage. In this study, the combination of a causal relationships, are called Key Success Paths (KSPs). The key success paths guide the enterprise to achieve the specific outcomes of business. The findings of this study indicate that there are thirteen KSPs to achieve the overall profitability, sixteen KSPs to achieve the product pricing power and seventeen KSPs to achieve both overall profitability and pricing power of the enterprise. The KSPs provide the directions of resources integration and allocation, improve utilization efficiency of limited resources to realize the continuous vision of the enterprise.Keywords: precision machinery industry, key success factors (KSFs), key success paths (KSPs), overall profitability, product pricing power, competitive advantages
Procedia PDF Downloads 268403 Valorization of Sargassum: Use of Twin-Screw Extrusion to Produce Biomolecules and Biomaterials
Authors: Bauta J., Raynaud C., Vaca-Medina G., Simon V., Roully A., Vandenbossche V.
Abstract:
Sargassum is a brown algae, originally found in the Sargasso Sea, located in the Caribbean region and the Gulf of Mexico. The flow of Sargassum is becoming a critical environmental problem all over the Caribbean islands particularly. In Guadeloupe alone, around 80,000 tons of seaweed are stranded during the season. Since the appearance of the first waves of Sargassum algae, several measures have been taken to collect them to keep the beaches clean. Nevertheless, 90% of the collected algae are currently stored without recovery. The lack of research initiative demands a more in-depth exploration of Sargassum algae chemistry, targeted towards added value applications and their development. In this context, the aim of the study was to develop a biorefinery process to valorize Sargassum as a source of bioactive natural substances and as raw material to produce biomaterials simultaneously. The technology used was the twin-screw extrusion, which allows to achieve continuously in the same machine different unit fractionation operations. After the identification of the molecules of interest in Sargassum algae, different operating conditions of thermo-mechanical treatment were applied in a twin-screw extruder. The nature of the solvent, the configuration of the extruder, the screw profile, and the temperature profile were studied in order to fractionate the algal biomass and to allow the recovery of a bioactive liquid fraction of interest and a solid residue suitable for the production of biomaterials. Each bioactive liquid fraction was characterized and strategic ways of adding value were proposed. In parallel, the possibility of using the solid residue to produce biomaterials was studied by setting up Dynamic Vapour Sorption (DVS) and basic Pressure-Volume-Temperature (PVT) analyses. The solid residue was molded by compression cooking. The obtained materials were finally characterized mechanically. The results obtained were very comforting and gave some perspectives to find an interesting valorization for the Sargassum algae.Keywords: seaweeds, twin-screw extrusion, fractionation, bioactive compounds, biomaterials, biomass
Procedia PDF Downloads 127402 Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data
Authors: Manish Pandey, Gurinderjit Kaur, Meenu Talwar, Sachin Chauhan, Jagbir Gill
Abstract:
Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model.Keywords: health-care management systems, fuzzy regression, data mining, forecasting, fuzzy membership function
Procedia PDF Downloads 280401 Coils and Antennas Fabricated with Sewing Litz Wire for Wireless Power Transfer
Authors: Hikari Ryu, Yuki Fukuda, Kento Oishi, Chiharu Igarashi, Shogo Kiryu
Abstract:
Recently, wireless power transfer has been developed in various fields. Magnetic coupling is popular for feeding power at a relatively short distance and at a lower frequency. Electro-magnetic wave coupling at a high frequency is used for long-distance power transfer. The wireless power transfer has attracted attention in e-textile fields. Rigid batteries are required for many body-worn electric systems at the present time. The technology enables such batteries to be removed from the systems. Flexible coils have been studied for such applications. Coils with a high Q factor are required in the magnetic-coupling power transfer. Antennas with low return loss are needed for the electro-magnetic coupling. Litz wire is so flexible to fabricate coils and antennas sewn on fabric and has low resistivity. In this study, the electric characteristics of some coils and antennas fabricated with the Litz wire by using two sewing techniques are investigated. As examples, a coil and an antenna are described. Both were fabricated with 330/0.04 mm Litz wire. The coil was a planar coil with a square shape. The outer side was 150 mm, the number of turns was 15, and the pitch interval between each turn was 5 mm. The Litz wire of the coil was overstitched with a sewing machine. The coil was fabricated as a receiver coil for a magnetic coupled wireless power transfer. The Q factor was 200 at a frequency of 800 kHz. A wireless power system was constructed by using the coil. A power oscillator was used in the system. The resonant frequency of the circuit was set to 123 kHz, where the switching loss of power FETs was small. The power efficiencies were 0.44 – 0.99, depending on the distance between the transmitter and receiver coils. As an example of an antenna with a sewing technique, a fractal pattern antenna was stitched on a 500 mm x 500 mm fabric by using a needle punch method. The pattern was the 2nd-oder Vicsec fractal. The return loss of the antenna was -28 dB at a frequency of 144 MHz.Keywords: e-textile, flexible coils and antennas, Litz wire, wireless power transfer
Procedia PDF Downloads 136400 A Distributed Mobile Agent Based on Intrusion Detection System for MANET
Authors: Maad Kamal Al-Anni
Abstract:
This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)
Procedia PDF Downloads 195399 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education
Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue
Abstract:
In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education
Procedia PDF Downloads 109398 The Effect of the Adhesive Ductility on Bond Characteristics of CFRP/Steel Double Strap Joints Subjected to Dynamic Tensile Loadings
Authors: Haider Al-Zubaidy, Xiao-Ling Zhao, Riadh Al-Mahaidi
Abstract:
In recent years, the technique adhesively-bonded fibre reinforced polymer (FRP) composites has found its way into civil engineering applications and it has attracted a widespread attention as a viable alternative strategy for the retrofitting of civil infrastructure such as bridges and buildings. When adopting this method, adhesive has a significant role and controls the general performance and degree of enhancement of the strengthened and/or upgraded structures. This is because the ultimate member strength is highly affected by the failure mode which is considerably dependent on the utilised adhesive. This paper concerns with experimental investigations on the effect of the adhesive used on the bond between CFRP patch and steel plate under medium impact tensile loading. Experiment were conducted using double strap joints and these samples were prepared using two different types of adhesives, Araldite 420 and MBrace saturant. Drop mass rig was used to carry out dynamic tests at impact speeds of 3.35, 4.43 and m/s while quasi-static tests were implemented at 2mm/min using Instrone machine. In this test program, ultimate load-carrying capacity and failure modes were examined for all loading speeds. For both static and dynamic tests, the adhesive type has a significant effect on ultimate joint strength. It was found that the double strap joints prepared using Araldite 420 showed higher strength than those prepared utilising MBrace saturant adhesive. Failure mechanism for joints prepared using Araldite 420 is completely different from those samples prepared utilising MBrace saturant. CFRP failure is the most common failure pattern for joints with Araldite 420, whereas the dominant failure for joints with MBrace saturant adhesive is adhesive failure.Keywords: CFRP/steel double strap joints, adhesives of different ductility, dynamic tensile loading, bond between CFRP and steel
Procedia PDF Downloads 236397 GAILoc: Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 76396 Intrusion Detection in SCADA Systems
Authors: Leandros A. Maglaras, Jianmin Jiang
Abstract:
The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection
Procedia PDF Downloads 555395 Portuguese Guitar Strings Characterization and Comparison
Authors: P. Serrão, E. Costa, A. Ribeiro, V. Infante
Abstract:
The characteristic sonority of the Portuguese guitar is in great part what makes Fado so distinguishable from other traditional song styles. The Portuguese guitar is a pear-shaped plucked chordophone with six courses of double strings. This study compares the two types of plain strings available for Portuguese guitar and used by the musicians. One is stainless steel spring wire, the other is high carbon spring steel (music wire). Some musicians mention noticeable differences in sound quality between these two string materials, such as a little more brightness and sustain in the steel strings. Experimental tests were performed to characterize string tension at pitch; mechanical strength and tuning stability using the universal testing machine; dimensional control and chemical composition analysis using the scanning electron microscope. The string dynamical behaviour characterization experiments, including frequency response, inharmonicity, transient response, damping phenomena and were made in a monochord test set-up designed and built in-house. Damping factor was determined for the fundamental frequency. As musicians are able to detect very small damping differences, an accurate a characterization of the damping phenomena for all harmonics was necessary. With that purpose, another improved monochord was set and a new system identification methodology applied. Due to the complexity of this task several adjustments were necessary until obtaining good experimental data. In a few cases, dynamical tests were repeated to detect any evolution in damping parameters after break-in period when according to players experience a new string sounds gradually less dull until reaching the typically brilliant timbre. Finally, each set of strings was played on one guitar by a distinguished player and recorded. The recordings which include individual notes, scales, chords and a study piece, will be analysed to potentially characterize timbre variations.Keywords: damping factor, music wire, portuguese guitar, string dynamics
Procedia PDF Downloads 553394 Taguchi-Based Surface Roughness Optimization for Slotted and Tapered Cylindrical Products in Milling and Turning Operations
Authors: Vineeth G. Kuriakose, Joseph C. Chen, Ye Li
Abstract:
The research follows a systematic approach to optimize the parameters for parts machined by turning and milling processes. The quality characteristic chosen is surface roughness since the surface finish plays an important role for parts that require surface contact. A tapered cylindrical surface is designed as a test specimen for the research. The material chosen for machining is aluminum alloy 6061 due to its wide variety of industrial and engineering applications. HAAS VF-2 TR computer numerical control (CNC) vertical machining center is used for milling and HAAS ST-20 CNC machine is used for turning in this research. Taguchi analysis is used to optimize the surface roughness of the machined parts. The L9 Orthogonal Array is designed for four controllable factors with three different levels each, resulting in 18 experimental runs. Signal to Noise (S/N) Ratio is calculated for achieving the specific target value of 75 ± 15 µin. The controllable parameters chosen for turning process are feed rate, depth of cut, coolant flow and finish cut and for milling process are feed rate, spindle speed, step over and coolant flow. The uncontrollable factors are tool geometry for turning process and tool material for milling process. Hypothesis testing is conducted to study the significance of different uncontrollable factors on the surface roughnesses. The optimal parameter settings were identified from the Taguchi analysis and the process capability Cp and the process capability index Cpk were improved from 1.76 and 0.02 to 3.70 and 2.10 respectively for turning process and from 0.87 and 0.19 to 3.85 and 2.70 respectively for the milling process. The surface roughnesses were improved from 60.17 µin to 68.50 µin, reducing the defect rate from 52.39% to 0% for the turning process and from 93.18 µin to 79.49 µin, reducing the defect rate from 71.23% to 0% for the milling process. The purpose of this study is to efficiently utilize the Taguchi design analysis to improve the surface roughness.Keywords: surface roughness, Taguchi parameter design, CNC turning, CNC milling
Procedia PDF Downloads 158393 Acoustic Emission for Tool-Chip Interface Monitoring during Orthogonal Cutting
Authors: D. O. Ramadan, R. S. Dwyer-Joyce
Abstract:
The measurement of the interface conditions in a cutting tool contact is essential information for performance monitoring and control. This interface provides the path for the heat flux to the cutting tool. This elevate in the cutting tool temperature leads to motivate the mechanism of tool wear, thus affect the life of the cutting tool and the productivity. This zone is representative by the tool-chip interface. Therefore, understanding and monitoring this interface is considered an important issue in machining. In this paper, an acoustic emission (AE) technique was used to find the correlation between AE parameters and the tool-chip interface. For this reason, a response surface design (RSD) has been used to analyse and optimize the machining parameters. The experiment design was based on the face centered, central composite design (CCD) in the Minitab environment. According to this design, a series of orthogonal cutting experiments for different cutting conditions were conducted on a Triumph 2500 lathe machine to study the sensitivity of the acoustic emission (AE) signal to change in tool-chip contact length. The cutting parameters investigated were the cutting speed, depth of cut, and feed and the experiments were performed for 6082-T6 aluminium tube. All the orthogonal cutting experiments were conducted unlubricated. The tool-chip contact area was investigated using a scanning electron microscope (SEM). The results obtained in this paper indicate that there is a strong dependence of the root mean square (RMS) on the cutting speed, where the RMS increases with increasing the cutting speed. A dependence on the tool-chip contact length has been also observed. However there was no effect observed of changing the cutting depth and feed on the RMS. These dependencies have been clarified in terms of the strain and temperature in the primary and secondary shear zones, also the tool-chip sticking and sliding phenomenon and the effect of these mechanical variables on dislocation activity at high strain rates. In conclusion, the acoustic emission technique has the potential to monitor in situ the tool-chip interface in turning and consequently could indicate the approaching end of life of a cutting tool.Keywords: Acoustic emission, tool-chip interface, orthogonal cutting, monitoring
Procedia PDF Downloads 488392 Education-based, Graphical User Interface Design for Analyzing Phase Winding Inter-Turn Faults in Permanent Magnet Synchronous Motors
Authors: Emir Alaca, Hasbi Apaydin, Rohullah Rahmatullah, Necibe Fusun Oyman Serteller
Abstract:
In recent years, Permanent Magnet Synchronous Motors (PMSMs) have found extensive applications in various industrial sectors, including electric vehicles, wind turbines, and robotics, due to their high performance and low losses. Accurate mathematical modeling of PMSMs is crucial for advanced studies in electric machines. To enhance the effectiveness of graduate-level education, incorporating virtual or real experiments becomes essential to reinforce acquired knowledge. Virtual laboratories have gained popularity as cost-effective alternatives to physical testing, mitigating the risks associated with electrical machine experiments. This study presents a MATLAB-based Graphical User Interface (GUI) for PMSMs. The GUI offers a visual interface that allows users to observe variations in motor outputs corresponding to different input parameters. It enables users to explore healthy motor conditions and the effects of short-circuit faults in the one-phase winding. Additionally, the interface includes menus through which users can access equivalent circuits related to the motor and gain hands-on experience with the mathematical equations used in synchronous motor calculations. The primary objective of this paper is to enhance the learning experience of graduate and doctoral students by providing a GUI-based approach in laboratory studies. This interactive platform empowers students to examine and analyze motor outputs by manipulating input parameters, facilitating a deeper understanding of PMSM operation and control.Keywords: magnet synchronous motor, mathematical modelling, education tools, winding inter-turn fault
Procedia PDF Downloads 53391 Development of a Computer Aided Diagnosis Tool for Brain Tumor Extraction and Classification
Authors: Fathi Kallel, Abdulelah Alabd Uljabbar, Abdulrahman Aldukhail, Abdulaziz Alomran
Abstract:
The brain is an important organ in our body since it is responsible about the majority actions such as vision, memory, etc. However, different diseases such as Alzheimer and tumors could affect the brain and conduct to a partial or full disorder. Regular diagnosis are necessary as a preventive measure and could help doctors to early detect a possible trouble and therefore taking the appropriate treatment, especially in the case of brain tumors. Different imaging modalities are proposed for diagnosis of brain tumor. The powerful and most used modality is the Magnetic Resonance Imaging (MRI). MRI images are analyzed by doctor in order to locate eventual tumor in the brain and describe the appropriate and needed treatment. Diverse image processing methods are also proposed for helping doctors in identifying and analyzing the tumor. In fact, a large Computer Aided Diagnostic (CAD) tools including developed image processing algorithms are proposed and exploited by doctors as a second opinion to analyze and identify the brain tumors. In this paper, we proposed a new advanced CAD for brain tumor identification, classification and feature extraction. Our proposed CAD includes three main parts. Firstly, we load the brain MRI. Secondly, a robust technique for brain tumor extraction is proposed. This technique is based on both Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA). DWT is characterized by its multiresolution analytic property, that’s why it was applied on MRI images with different decomposition levels for feature extraction. Nevertheless, this technique suffers from a main drawback since it necessitates a huge storage and is computationally expensive. To decrease the dimensions of the feature vector and the computing time, PCA technique is considered. In the last stage, according to different extracted features, the brain tumor is classified into either benign or malignant tumor using Support Vector Machine (SVM) algorithm. A CAD tool for brain tumor detection and classification, including all above-mentioned stages, is designed and developed using MATLAB guide user interface.Keywords: MRI, brain tumor, CAD, feature extraction, DWT, PCA, classification, SVM
Procedia PDF Downloads 251390 Radar Track-based Classification of Birds and UAVs
Authors: Altilio Rosa, Chirico Francesco, Foglia Goffredo
Abstract:
In recent years, the number of Unmanned Aerial Vehicles (UAVs) has significantly increased. The rapid development of commercial and recreational drones makes them an important part of our society. Despite the growing list of their applications, these vehicles pose a huge threat to civil and military installations: detection, classification and neutralization of such flying objects become an urgent need. Radar is an effective remote sensing tool for detecting and tracking flying objects, but scenarios characterized by the presence of a high number of tracks related to flying birds make especially challenging the drone detection task: operator PPI is cluttered with a huge number of potential threats and his reaction time can be severely affected. Flying birds compared to UAVs show similar velocity, RADAR cross-section and, in general, similar characteristics. Building from the absence of a single feature that is able to distinguish UAVs and birds, this paper uses a multiple features approach where an original feature selection technique is developed to feed binary classifiers trained to distinguish birds and UAVs. RADAR tracks acquired on the field and related to different UAVs and birds performing various trajectories were used to extract specifically designed target movement-related features based on velocity, trajectory and signal strength. An optimization strategy based on a genetic algorithm is also introduced to select the optimal subset of features and to estimate the performance of several classification algorithms (Neural network, SVM, Logistic regression…) both in terms of the number of selected features and misclassification error. Results show that the proposed methods are able to reduce the dimension of the data space and to remove almost all non-drone false targets with a suitable classification accuracy (higher than 95%).Keywords: birds, classification, machine learning, UAVs
Procedia PDF Downloads 224389 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance
Authors: Sokkhey Phauk, Takeo Okazaki
Abstract:
The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.Keywords: academic performance prediction system, educational data mining, dominant factors, feature selection method, prediction model, student performance
Procedia PDF Downloads 107388 Study of Mini Steel Re-Rolling and Pickling Mills for the Reduction of Accidents and Health Hazards
Authors: S. P. Rana
Abstract:
Objectives: For the manufacture of a very thin strip or a strip with a high-quality finish, the stainless steel sheet that is called billet is re-rolled in re-rolling mill to make stainless steel sheet of 18 gauges. The rolls of re-rolling mill exert tremendous pressure over the sheet and there is likely chance of breaking of stainless steel strip from the sheet. The objective of the study was to minimise the number of accidents in steel re-rolling mills due to ejection of stainless steel strip and to minimize the pollution caused by the pickling process used in these units. Methods: Looking into the high rate of frequency and severity of accidents as well as pollution hazard in re-rolling and pickling mills, it becomes essential to make necessary arrangements for prevention of accidents in such type of industry. The author carried out survey/inspections of a large number of re-rolling and pickling mills and allied units. During the course of inspection, the working of these steel re-rolling and pickling mills was closely studied and monitored. A number of accidents involving re-rolling mills were investigated and subsequently remedial measures to prevent the occurrence of such accidents were suggested. Assessment of occupational safety and health system of these units was carried out and compliance level of the statutory requirements was checked. The workers were medically examined and monitored to ascertain their health conditions. Results: Proper use of safety gadgets by workers, machine guarding and regular training brought down the risk to an acceptable level and discharged effluent pollution was brought down to permissible limits. The fatal accidents have been reduced by 83%. Conclusions: Effective enforcement and implementation of the directions/suggestions given to the managements of such units brought down the no. of accidents to a rational level. The number of fatal accidents has reduced by 83% during the study period. The effective implementation of pollution control device curtailed the pollution level to an acceptable level.Keywords: re-rolling mill, hazard, accident, health hazards
Procedia PDF Downloads 443387 Designing the Management Plan for Health Care (Medical) Wastes in the Cities of Semnan, Mahdishahr and Shahmirzad
Authors: Rasouli Divkalaee Zeinab, Kalteh Safa, Roudbari Aliakbar
Abstract:
Introduction: Medical waste can lead to the generation and transmission of many infectious and contagious diseases due to the presence of pathogenic agents, thereby necessitating the need for special management to collect, decontaminate, and finally dispose of such products. This study aimed to design a centralized health care (medical) waste management program for the cities of Semnan, Mahdishahr, and Shahmirzad. Methods: This descriptive-analytical study was conducted for six months in the cities of Semnan, Mahdishahr, and Shahmirzad. In this study, the quantitative and qualitative characteristics of the generated wastes were determined by taking samples from all medical waste production centers. Then, the equipment, devices, and machines required for separate collection of the waste from the production centers and for their subsequent decontamination were estimated. Next, the investment costs, current costs, and working capital required for collection, decontamination, and final disposal of the wastes were determined. Finally, the payment for proper waste management of each category of medical waste-producing centers was determined. Results: 1021 kilograms of medical waste are produced daily in the cities of Semnan, Mahdishahr, and Shahmirzad. It was estimated that a 1000-liter autoclave, a machine for collecting medical waste, four 60-liter bins, four 120-liter bins, and four 1200-liter bins were required for implementing the study plan. Also, the estimated total annual medical waste management costs for Semnan City were determined (23,283,903,720 Iranian Rials). Conclusion: The study results showed that establishing a proper management system for medical wastes generated in the three studied cities will cost between 334,280 and 1,253,715 Iranian Rials in fees for the medical centers. The findings of this study provided comprehensive data regarding medical wastes from the generation point to the landfill site, which is vital for the government and the private sector.Keywords: clinics, decontamination, management, medical waste
Procedia PDF Downloads 79386 Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India
Authors: S. P. Singh, Priya, Komal Sajwan
Abstract:
With the increasing spread of organic farming in India, costs, returns, efficiency, and social and environmental sustainability of organic vis-a-vis conventional farming systems have become topics of interest among agriculture scientists, economists, and policy analysts. A study on technical efficiency estimation under these farming systems, particularly in the Ganga River Basin, where the promotion of organic farming is incentivized, can help to understand whether the inputs are utilized to their maximum possible level and what measures can be taken to improve the efficiency. This paper, therefore, analyses the technical efficiency of wheat farms operating under organic and conventional farming systems. The study is based on a primary survey of 600 farms (300 organic ad 300 conventional) conducted in 2021 in two districts located in the Middle Ganga River Basin, India. Technical, managerial, and scale efficiencies of individual farms are estimated by applying the data envelopment analysis (DEA) methodology. The per hectare value of wheat production is taken as an output variable, and values of seeds, human labour, machine cost, plant nutrients, farm yard manure (FYM), plant protection, and irrigation charges are considered input variables for estimating the farm-level efficiencies. The post-DEA analysis is conducted using the Tobit regression model to know the efficiency determining factors. The results show that technical efficiency is significantly higher in conventional than organic farming systems due to a higher gap in scale efficiency than managerial efficiency. Further, 9.8% conventional and only 1.0% organic farms are found operating at the most productive scale size (MPSS), and 99% organic and 81% conventional farms at IRS. Organic farms perform well in managerial efficiency, but their technical efficiency is lower than conventional farms, mainly due to their relatively lower scale size. The paper suggests that technical efficiency in organic wheat can be increased by upscaling the farm size by incentivizing group/collective farming in clusters.Keywords: organic, conventional, technical efficiency, determinants, DEA, Tobit regression
Procedia PDF Downloads 101385 Artificial Intelligence Impact on Strategic Stability
Authors: Darius Jakimavicius
Abstract:
Artificial intelligence is the subject of intense debate in the international arena, identified both as a technological breakthrough and as a component of the strategic stability effect. Both the kinetic and non-kinetic development of AI and its application in the national strategies of the great powers may trigger a change in the security situation. Artificial intelligence is generally faster, more capable and more efficient than humans, and there is a temptation to transfer decision-making and control responsibilities to artificial intelligence. Artificial intelligence, which, once activated, can select and act on targets without further intervention by a human operator, blurs the boundary between human or robot (machine) warfare, or perhaps human and robot together. Artificial intelligence acts as a force multiplier that speeds up decision-making and reaction times on the battlefield. The role of humans is increasingly moving away from direct decision-making and away from command and control processes involving the use of force. It is worth noting that the autonomy and precision of AI systems make the process of strategic stability more complex. Deterrence theory is currently in a phase of development in which deterrence is undergoing further strain and crisis due to the complexity of the evolving models enabled by artificial intelligence. Based on the concept of strategic stability and deterrence theory, it is appropriate to develop further research on the development and impact of AI in order to assess AI from both a scientific and technical perspective: to capture a new niche in the scientific literature and academic terminology, to clarify the conditions for deterrence, and to identify the potential uses, impacts and possibly quantities of AI. The research problem is the impact of artificial intelligence developed by great powers on strategic stability. This thesis seeks to assess the impact of AI on strategic stability and deterrence principles, with human exclusion from the decision-making and control loop as a key axis. The interaction between AI and human actions and interests can determine fundamental changes in great powers' defense and deterrence, and the development and application of AI-based great powers strategies can lead to a change in strategic stability.Keywords: artificial inteligence, strategic stability, deterrence theory, decision making loop
Procedia PDF Downloads 43384 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder
Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo
Abstract:
Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion
Procedia PDF Downloads 122383 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes
Authors: Chih-Jer Lin, Jian-Hong Hou
Abstract:
Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance
Procedia PDF Downloads 149382 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement
Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer
Abstract:
Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator
Procedia PDF Downloads 226381 Human Factors Interventions for Risk and Reliability Management of Defence Systems
Authors: Chitra Rajagopal, Indra Deo Kumar, Ila Chauhan, Ruchi Joshi, Binoy Bhargavan
Abstract:
Reliability and safety are essential for the success of mission-critical and safety-critical defense systems. Humans are part of the entire life cycle of defense systems development and deployment. The majority of industrial accidents or disasters are attributed to human errors. Therefore, considerations of human performance and human reliability are critical in all complex systems, including defense systems. Defense systems are operating from the ground, naval and aerial platforms in diverse conditions impose unique physical and psychological challenges to the human operators. Some of the safety and mission-critical defense systems with human-machine interactions are fighter planes, submarines, warships, combat vehicles, aerial and naval platforms based missiles, etc. Human roles and responsibilities are also going through a transition due to the infusion of artificial intelligence and cyber technologies. Human operators, not accustomed to such challenges, are more likely to commit errors, which may lead to accidents or loss events. In such a scenario, it is imperative to understand the human factors in defense systems for better systems performance, safety, and cost-effectiveness. A case study using Task Analysis (TA) based methodology for assessment and reduction of human errors in the Air and Missile Defense System in the context of emerging technologies were presented. Action-oriented task analysis techniques such as Hierarchical Task Analysis (HTA) and Operator Action Event Tree (OAET) along with Critical Action and Decision Event Tree (CADET) for cognitive task analysis was used. Human factors assessment based on the task analysis helps in realizing safe and reliable defense systems. These techniques helped in the identification of human errors during different phases of Air and Missile Defence operations, leading to meet the requirement of a safe, reliable and cost-effective mission.Keywords: defence systems, reliability, risk, safety
Procedia PDF Downloads 136380 Open Science Philosophy, Research and Innovation
Authors: C.Ardil
Abstract:
Open Science translates the understanding and application of various theories and practices in open science philosophy, systems, paradigms and epistemology. Open Science originates with the premise that universal scientific knowledge is a product of a collective scholarly and social collaboration involving all stakeholders and knowledge belongs to the global society. Scientific outputs generated by public research are a public good that should be available to all at no cost and without barriers or restrictions. Open Science has the potential to increase the quality, impact and benefits of science and to accelerate advancement of knowledge by making it more reliable, more efficient and accurate, better understandable by society and responsive to societal challenges, and has the potential to enable growth and innovation through reuse of scientific results by all stakeholders at all levels of society, and ultimately contribute to growth and competitiveness of global society. Open Science is a global movement to improve accessibility to and reusability of research practices and outputs. In its broadest definition, it encompasses open access to publications, open research data and methods, open source, open educational resources, open evaluation, and citizen science. The implementation of open science provides an excellent opportunity to renegotiate the social roles and responsibilities of publicly funded research and to rethink the science system as a whole. Open Science is the practice of science in such a way that others can collaborate and contribute, where research data, lab notes and other research processes are freely available, under terms that enable reuse, redistribution and reproduction of the research and its underlying data and methods. Open Science represents a novel systematic approach to the scientific process, shifting from the standard practices of publishing research results in scientific publications towards sharing and using all available knowledge at an earlier stage in the research process, based on cooperative work and diffusing scholarly knowledge with no barriers and restrictions. Open Science refers to efforts to make the primary outputs of publicly funded research results (publications and the research data) publicly accessible in digital format with no limitations. Open Science is about extending the principles of openness to the whole research cycle, fostering, sharing and collaboration as early as possible, thus entailing a systemic change to the way science and research is done. Open Science is the ongoing transition in how open research is carried out, disseminated, deployed, and transformed to make scholarly research more open, global, collaborative, creative and closer to society. Open Science involves various movements aiming to remove the barriers for sharing any kind of output, resources, methods or tools, at any stage of the research process. Open Science embraces open access to publications, research data, source software, collaboration, peer review, notebooks, educational resources, monographs, citizen science, or research crowdfunding. The recognition and adoption of open science practices, including open science policies that increase open access to scientific literature and encourage data and code sharing, is increasing in the open science philosophy. Revolutionary open science policies are motivated by ethical, moral or utilitarian arguments, such as the right to access digital research literature for open source research or science data accumulation, research indicators, transparency in the field of academic practice, and reproducibility. Open science philosophy is adopted primarily to demonstrate the benefits of open science practices. Researchers use open science applications for their own advantage in order to get more offers, increase citations, attract media attention, potential collaborators, career opportunities, donations and funding opportunities. In open science philosophy, open data findings are evidence that open science practices provide significant benefits to researchers in scientific research creation, collaboration, communication, and evaluation according to more traditional closed science practices. Open science considers concerns such as the rigor of peer review, common research facts such as financing and career development, and the sacrifice of author rights. Therefore, researchers are recommended to implement open science research within the framework of existing academic evaluation and incentives. As a result, open science research issues are addressed in the areas of publishing, financing, collaboration, resource management and sharing, career development, discussion of open science questions and conclusions.Keywords: Open Science, Open Science Philosophy, Open Science Research, Open Science Data
Procedia PDF Downloads 133