Search results for: electrochemical measurements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3449

Search results for: electrochemical measurements

509 The ‘Quartered Head Technique’: A Simple, Reliable Way of Maintaining Leg Length and Offset during Total Hip Arthroplasty

Authors: M. Haruna, O. O. Onafowokan, G. Holt, K. Anderson, R. G. Middleton

Abstract:

Background: Requirements for satisfactory outcomes following total hip arthroplasty (THA) include restoration of femoral offset, version, and leg length. Various techniques have been described for restoring these biomechanical parameters, with leg length restoration being the most predominantly described. We describe a “quartered head technique” (QHT) which uses a stepwise series of femoral head osteotomies to identify and preserve the centre of rotation of the femoral head during THA in order to ensure reconstruction of leg length, offset and stem version, such that hip biomechanics are restored as near to normal as possible. This study aims to identify whether using the QHT during hip arthroplasty effectively restores leg length and femoral offset to within acceptable parameters. Methods: A retrospective review of 206 hips was carried out, leaving 124 hips in the final analysis. Power analysis indicated a minimum of 37 patients required. All operations were performed using an anterolateral approach by a single surgeon. All femoral implants were cemented, collarless, polished double taper CPT® stems (Zimmer, Swindon, UK). Both cemented, and uncemented acetabular components were used (Zimmer, Swindon, UK). Leg length, version, and offset were assessed intra-operatively and reproduced using the QHT. Post-operative leg length and femoral offset were determined and compared with the contralateral native hip, and the difference was then calculated. For the determination of leg length discrepancy (LLD), we used the method described by Williamson & Reckling, which has been shown to be reproducible with a measurement error of ±1mm. As a reference, the inferior margin of the acetabular teardrop and the most prominent point of the lesser trochanter were used. A discrepancy of less than 6mm LLD was chosen as acceptable. All peri-operative radiographs were assessed by two independent observers. Results: The mean absolute post-operative difference in leg length from the contralateral leg was +3.58mm. 84% of patients (104/124) had LLD within ±6mm of the contralateral limb. The mean absolute post-operative difference in offset from contralateral leg was +3.88mm (range -15 to +9mm, median 3mm). 90% of patients (112/124) were within ±6mm offset of the contralateral limb. There was no statistical difference noted between observer measurements. Conclusion: The QHT provides a simple, inexpensive yet effective method of maintaining femoral leg length and offset during total hip arthroplasty. Combining this technique with pre-operative templating or other techniques described may enable surgeons to reduce even further the discrepancies between pre-operative state and post-operative outcome.

Keywords: leg length discrepancy, technical tip, total hip arthroplasty, operative technique

Procedia PDF Downloads 79
508 Chronological Skin System Aging: Improvements in Reversing Markers with Different Routes of Green Tea Extract Administration

Authors: Aliaa Mahmoud Issa

Abstract:

Green tea may provide an alternative treatment for many skin system disorders. Intrinsic or chronological aging represents the structural, functional, and metabolic changes in the skin, which depend on the passage of time per se. The aim of the present study is to compare the effect of green tea extract administration, in drinking water or topically, on the chronological changes of the old Swiss albino mice skin. A total number of forty Swiss albino female mice (Mus musculus) were used; thirty were old females, 50-52 weeks old and the remaining ten young females were about 10 weeks old. The skin of the back of all the studied mice was dehaired with a topical depilatory cream. Treatment with green tea extract was applied in two different ways: in the drinking water (0.5mg/ml/day) or topically, applied to the skin of the dorsal side (6mg/ml water). They were divided into four main groups each of 10 animals: Group I: young untreated, Group II: old untreated groups, Group III: tea-drinking (TD) group, and Group IV: topical tea (TT) group. The animals were euthanized after 3 and 6 weeks from the beginning of green tea extract treatment. The skin was subject to morphometric (epidermal, dermal, and stratum corneum thicknesses; collagen and elastin content) studies. The skin ultrastructure of the groups treated for 6 weeks with the green tea extract was also examined. The old mouse skin was compared to the young one to investigate the chronological changes of the tissue. The results revealed that the skin of mice treated with green tea extract, either topically or to less extent in drinking water, showed a reduction in the aging features manifested by a numerical but statistically insignificant improvement in the morphometric measurements. A remarkable amelioration in the ultrastructure of the old skin was also observed. Generally, green tea extract in the drinking water revealed inconsistent results. The topical application of green tea extract to the skin revealed that the epidermal, dermal and stratum corneum thicknesses and the elastin content, that were statistically significant, approach those of the young group. The ultrastructural study revealed the same observations. The disjunction of the lower epidermal keratinocytes was reduced. It could be concluded that the topical application of green tea extract to the skin of old mice showed improvement in reversing markers of skin system aging more than using the extract in the drinking water.

Keywords: aging, green tea extract, morphometry, skin, ultrastructure

Procedia PDF Downloads 131
507 Understanding Magnetic Properties of Cd1-xSnxCr2Se4 Using Local Structure Probes

Authors: P. Suchismita Behera, V. G. Sathe, A. K. Nigam, P. A. Bhobe

Abstract:

Co-existence of long-range ferromagnetism and semi-conductivity with correlated behavior of structural, magnetic, optical and electrical properties in various sites doping at CdCr2Se4 makes it a most promising candidate for spin-based electronic applications and magnetic devices. It orders ferromagnetically below TC = 130 K with a direct band gap of ~ 1.5 eV. The magnetic ordering is believed to result from strong competition between the direct antiferromagnetic Cr-Cr spin couplings and the ferromagnetic Cr-Se-Cr exchange interactions. With an aim of understanding the influence of crystal structure on its magnetic properties without disturbing the magnetic site, we investigated four compositions with 3%, 5%, 7% and 10% of Sn-substitution at Cd-site. Partial substitution of Cd2+ (0.78Å) by small sized nonmagnetic ion, Sn4+ (0.55Å), is expected to bring about local lattice distortion as well as a change in electronic charge distribution. The structural disorder would affect the Cd/Sn – Se bonds thus affecting the Cr-Cr and Cr-Se-Cr bonds. Whereas, the charge imbalance created due to Sn4+ substitution at Cd2+ leads to the possibility of Cr mixed valence state. Our investigation of the local crystal structure using the EXAFS, Raman spectroscopy and magnetic properties using SQUID magnetometry of the Cd1-xSnxCr2Se4 series reflects this premise. All compositions maintain the Fd3m cubic symmetry with tetrahedral distribution of Sn at Cd-site, as confirmed by XRD analysis. Lattice parameters were determined from the Rietveld refinement technique of the XRD data and further confirmed from the EXAFS spectra recorded at Cr K-edge. Presence of five Raman-active phonon vibrational modes viz. (T2g (1), T2g (2), T2g (3), Eg, A1g) in the Raman spectra further confirms the crystal symmetry. Temperature dependence of the Raman data provides interesting insight to the spin– phonon coupling, known to dominate the magneto-capacitive properties in the parent compound. Below the magnetic ordering temperature, the longitudinal damping of Eg mode associated with Se-Cd/Sn-Se bending and T2g (2) mode associated to Cr-Se-Cr interaction, show interesting deviations with respect to increase in Sn substitution. Besides providing the estimate of TC, the magnetic measurements recorded as a function of field provide the values of total magnetic moment for all the studied compositions indicative of formation of multiple Cr valences.

Keywords: exchange interactions, EXAFS, ferromagnetism, Raman spectroscopy, spinel chalcogenides

Procedia PDF Downloads 274
506 Exploring the Applicability of a Rapid Health Assessment in India

Authors: Claudia Carbajal, Jija Dutt, Smriti Pahwa, Sumukhi Vaid, Karishma Vats

Abstract:

ASER Centre, the research and assessment arm of Pratham Education Foundation sees measurement as the first stage of action. ASER uses primary research to push and give empirical foundations to policy discussions at a multitude of levels. At a household level, common citizens use a simple assessment (a floor-level test) to measure learning across rural India. This paper presents the evidence on the applicability of an ASER approach to the health sector. A citizen-led assessment was designed and executed that collected information from young mothers with children up to a year of age. The pilot assessments were rolled-out in two different models: Paid surveyors and student volunteers. The survey covered three geographic areas: 1,239 children in the Jaipur District of Rajasthan, 2,086 in the Rae Bareli District of Uttar Pradesh, and 593 children in the Bhuj Block in Gujarat. The survey tool was designed to study knowledge of health-related issues, daily practices followed by young mothers and access to relevant services and programs. It provides insights on behaviors related to infant and young child feeding practices, child and maternal nutrition and supplementation, water and sanitation, and health services. Moreover, the survey studies the reasons behind behaviors giving policy-makers actionable pathways to improve implementation of social sector programs. Although data on health outcomes are available, this approach could provide a rapid annual assessment of health issues with indicators that are easy to understand and act upon so that measurements do not become an exclusive domain of experts. The results give many insights into early childhood health behaviors and challenges. Around 98% of children are breastfed, and approximately half are not exclusively breastfed (for the first 6 months). Government established diet diversity guidelines are met for less than 1 out of 10 children. Although most households are satisfied with the quality of drinking water, most tested households had contaminated water.

Keywords: citizen-led assessment, rapid health assessment, Infant and Young Children Feeding, water and sanitation, maternal nutrition, supplementation

Procedia PDF Downloads 168
505 Magnitude and Determinants of Overweight and Obesity among High School Adolescents in Addis Ababa, Ethiopia

Authors: Mulugeta Shegaze, Mekitie Wondafrash, Alemayehu A. Alemayehu, Shikur Mohammed, Zewdu Shewangezaw, Mukerem Abdo, Gebresilasea Gendisha

Abstract:

Background: The 2004 World Health Assembly called for specific actions to halt the overweight and obesity epidemic that is currently penetrating urban populations in the developing world. Adolescents require particular attention due to their vulnerability to develop obesity and the fact that adolescent weight tracks strongly into adulthood. However, there is scarcity of information on the modifiable risk factors to be targeted for primary intervention among urban adolescents in Ethiopia. This study was aimed at determining the magnitude and risk factors of overweight and obesity among high school adolescents in Addis Ababa. Methods: An institution-based cross-sectional study was conducted in February and March 2014 on 456 randomly selected adolescents from 20 high schools in Addis Ababa city.  Demographic data and other risk factors of overweight and obesity were collected using self-administered structured questionnaire, whereas anthropometric measurements of weight and height were taken using calibrated equipment and standardized techniques. The WHO STEPS instrument for chronic disease risk was applied to assess dietary habit and physical activity. Overweight and obesity status was determined based on BMI-for-age percentiles of WHO 2007 reference population. Results: The prevalence rates of overweight, obesity, and overall overweight/ obesity among high school adolescents in Addis Ababa were 9.7% (95%CI = 6.9-12.4%), 4.2% (95%CI = 2.3-6.0%), and 13.9% (95%CI = 10.6-17.1%), respectively. Overweight/obesity prevalence was highest among female adolescents, in private schools, and in the higher wealth category. In multivariable regression model, being female [AOR(95%CI) = 5.4(2.5,12.1)], being from private school [AOR(95%CI) = 3.0(1.4,6.2)], having >3 regular meals [AOR(95%CI) = 4.0(1.3,13.0)], consumption of sweet foods [AOR(95%CI) = 5.0(2.4,10.3)] and spending >3 hours/day sitting [AOR(95%CI) = 3.5(1.7,7.2)] were found to increase overweight/ obesity risk, whereas high Total Physical Activity level [AOR(95%CI) = 0.21(0.08,0.57)] and better nutrition knowledge [AOR(95%CI) = 0.160.07,0.37)] were found protective. Conclusions: More than one in ten of the high school adolescents were affected by overweight/obesity with dietary habit and physical activity are important modifiable risk factors. Well-tailored nutrition education program targeting lifestyle change should be initiated with more emphasis to female adolescents and students in private schools.

Keywords: adolescents, NCDs, overweight, obesity

Procedia PDF Downloads 307
504 Evaluation of Potential of Crop Residues for Energy Generation in Nepal

Authors: Narayan Prasad Adhikari

Abstract:

In Nepal, the crop residues have often been considered as one of the potential sources of energy to cope with prevailing energy crisis. However, the lack of systematic studies about production and various other competent uses of crop production is the main obstacle to evaluate net potential of the residues for energy production. Under this background, this study aims to assess the net annual availability of crop residues for energy production by undertaking three different districts with the representation of country’s three major regions of lowland, hill, and mountain. The five major cereal crops of paddy, wheat, maize, millet, and barley are considered for the analysis. The analysis is based upon two modes of household surveys. The first mode of survey is conducted to total of 240 households to obtain key information about crop harvesting and livestock management throughout a year. Similarly, the quantification of main crops along with the respective residues on fixed land is carried out to 45 households during second mode. The range of area of such fixed land is varied from 50 to 100 m2. The measurements have been done in air dry basis. The quantity for competitive uses of respective crop residues is measured on the basis of respondents’ feedback. There are four major competitive uses of crop residues at household which are building material, burning, selling, and livestock fodder. The results reveal that the net annual available crop residues per household are 4663 kg, 2513 kg, and 1731 kg in lowland, hill, and mountain respectively. Of total production of crop residues, the shares of dedicated fodder crop residues (except maize stalk and maize cob) are 94 %, 62 %, and 89 % in lowland, hill, and mountain respectively and of which the corresponding shares of fodder are 87 %, 91 %, and 82 %. The annual percapita energy equivalent from net available crop residues in lowland, hill, and mountain are 2.49 GJ, 3.42 GJ, and 0.44 GJ which represent 30 %, 33 %, and 3 % of total annual energy consumption respectively whereas the corresponding current shares of crop residues are only 23 %, 8 %, and 1 %. Hence, even utmost exploitation of available crop residues can hardly contribute to one third of energy consumption at household level in lowland, and hill whereas this is limited to particularly negligible in mountain. Moreover, further analysis has also been done to evaluate district wise supply-demand context of dedicated fodder crop residues on the basis of presence of livestock. The high deficit of fodder crop residues in hill and mountain is observed where the issue of energy generation from these residues will be ludicrous. As a contrary, the annual production of such residues for livestock fodder in lowland meets annual demand with modest surplus even if entire fodder to be derived from the residues throughout a year and thus there seems to be further potential to utilize the surplus residues for energy generation.

Keywords: crop residues, hill, lowland, mountain

Procedia PDF Downloads 470
503 Aerosol Radiative Forcing Over Indian Subcontinent for 2000-2021 Using Satellite Observations

Authors: Shreya Srivastava, Sushovan Ghosh, Sagnik Dey

Abstract:

Aerosols directly affect Earth’s radiation budget by scattering and absorbing incoming solar radiation and outgoing terrestrial radiation. While the uncertainty in aerosol radiative forcing (ARF) has decreased over the years, it is still higher than that of greenhouse gas forcing, particularly in the South Asian region, due to high heterogeneity in their chemical properties. Understanding the Spatio-temporal heterogeneity of aerosol composition is critical in improving climate prediction. Studies using satellite data, in-situ and aircraft measurements, and models have investigated the Spatio-temporal variability of aerosol characteristics. In this study, we have taken aerosol data from Multi-angle Imaging Spectro-Radiometer (MISR) level-2 version 23 aerosol products retrieved at 4.4 km and radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 21 years (2000-2021) over the Indian subcontinent. MISR aerosol product includes size and shapes segregated aerosol optical depth (AOD), Angstrom exponent (AE), and single scattering albedo (SSA). Additionally, 74 aerosol mixtures are included in version 23 data that is used for aerosol speciation. We have seasonally mapped aerosol optical and microphysical properties from MISR for India at quarter degrees resolution. Results show strong Spatio-temporal variability, with a constant higher value of AOD for the Indo-Gangetic Plain (IGP). The contribution of small-size particles is higher throughout the year, spatially during winter months. SSA is found to be overestimated where absorbing particles are present. The climatological map of short wave (SW) ARF at the top of the atmosphere (TOA) shows a strong cooling except in only a few places (values ranging from +2.5o to -22.5o). Cooling due to aerosols is higher in the absence of clouds. Higher negative values of ARF are found over the IGP region, given the high aerosol concentration above the region. Surface ARF values are everywhere negative for our study domain, with higher values in clear conditions. The results strongly correlate with AOD from MISR and ARF from CERES.

Keywords: aerosol Radiative forcing (ARF), aerosol composition, single scattering albedo (SSA), CERES

Procedia PDF Downloads 52
502 Investigating the Sloshing Characteristics of a Liquid by Using an Image Processing Method

Authors: Ufuk Tosun, Reza Aghazadeh, Mehmet Bülent Özer

Abstract:

This study puts forward a method to analyze the sloshing characteristics of liquid in a tuned sloshing absorber system by using image processing tools. Tuned sloshing vibration absorbers have recently attracted researchers’ attention as a seismic load damper in constructions due to its practical and logistical convenience. The absorber is liquid which sloshes and applies a force in opposite phase to the motion of structure. Experimentally characterization of the sloshing behavior can be utilized as means of verifying the results of numerical analysis. It can also be used to identify the accuracy of assumptions related to the motion of the liquid. There are extensive theoretical and experimental studies in the literature related to the dynamical and structural behavior of tuned sloshing dampers. In most of these works there are efforts to estimate the sloshing behavior of the liquid such as free surface motion and total force applied by liquid to the wall of container. For these purposes the use of sensors such as load cells and ultrasonic sensors are prevalent in experimental works. Load cells are only capable of measuring the force and requires conducting tests both with and without liquid to obtain pure sloshing force. Ultrasonic level sensors give point-wise measurements and hence they are not applicable to measure the whole free surface motion. Furthermore, in the case of liquid splashing it may give incorrect data. In this work a method for evaluating the sloshing wave height by using camera records and image processing techniques is presented. In this method the motion of the liquid and its container, made of a transparent material, is recorded by a high speed camera which is aligned to the free surface of the liquid. The video captured by the camera is processed frame by frame by using MATLAB Image Processing toolbox. The process starts with cropping the desired region. By recognizing the regions containing liquid and eliminating noise and liquid splashing, the final picture depicting the free surface of liquid is achieved. This picture then is used to obtain the height of the liquid through the length of container. This process is verified by ultrasonic sensors that measured fluid height on the surface of liquid.

Keywords: fluid structure interaction, image processing, sloshing, tuned liquid damper

Procedia PDF Downloads 344
501 Identification of Accumulated Hydrocarbon Based on Heat Propagation Analysis in Order to Develop Mature Field: Case Study in South Sumatra Basin, Indonesia

Authors: Kukuh Suprayogi, Muhamad Natsir, Olif Kurniawan, Hot Parulian, Bayu Fitriana, Fery Mustofa

Abstract:

The new approach by utilizing the heat propagation analysis carried out by studying and evaluating the effect of the presence of hydrocarbons to the flow of heat that goes from the bottom surface to surface. Heat propagation is determined by the thermal conductivity of rocks. The thermal conductivity of rock itself is a quantity that describes the ability of a rock to deliver heat. This quantity depends on the constituent rock lithology, large porosity, and pore fluid filler. The higher the thermal conductivity of a rock, the more easily the flow of heat passing through these rocks. With the same sense, the heat flow will more easily pass through the rock when the rock is filled with water than hydrocarbons, given the nature of the hydrocarbons having more insulator against heat. The main objective of this research is to try to make the model the heat propagation calculations in degrees Celsius from the subsurface to the surface which is then compared with the surface temperature is measured directly at the point of location. In calculating the propagation of heat, we need to first determine the thermal conductivity of rocks, where the rocks at the point calculation are not composed of homogeneous but consist of strata. Therefore, we need to determine the mineral constituent and porosity values of each stratum. As for the parameters of pore fluid filler, we assume that all the pores filled with water. Once we get a thermal conductivity value of each unit of the rock, then we begin to model the propagation of heat profile from the bottom to the surface. The initial value of the temperature that we use comes from the data bottom hole temperature (BHT) is obtained from drilling results. Results of calculations per depths the temperature is displayed in plotting temperature versus depth profiles that describe the propagation of heat from the bottom of the well to the surface, note that pore fluid is water. In the technical implementation, we can identify the magnitude of the effect of hydrocarbons in reducing the amount of heat that crept to the surface based on the calculation of propagation of heat at a certain point and compared with measurements of surface temperature at that point, assuming that the surface temperature measured is the temperature that comes from the asthenosphere. This publication proves that the accumulation of hydrocarbon can be identified by analysis of heat propagation profile which could be a method for identifying the presence of hydrocarbons.

Keywords: thermal conductivity, rock, pore fluid, heat propagation

Procedia PDF Downloads 107
500 Aerosol Direct Radiative Forcing Over the Indian Subcontinent: A Comparative Analysis from the Satellite Observation and Radiative Transfer Model

Authors: Shreya Srivastava, Sagnik Dey

Abstract:

Aerosol direct radiative forcing (ADRF) refers to the alteration of the Earth's energy balance from the scattering and absorption of solar radiation by aerosol particles. India experiences substantial ADRF due to high aerosol loading from various sources. These aerosols' radiative impact depends on their physical characteristics (such as size, shape, and composition) and atmospheric distribution. Quantifying ADRF is crucial for understanding aerosols’ impact on the regional climate and the Earth's radiative budget. In this study, we have taken radiation data from Clouds and the Earth’s Radiant Energy System (CERES, spatial resolution=1ox1o) for 22 years (2000-2021) over the Indian subcontinent. Except for a few locations, the short-wave DARF exhibits aerosol cooling at the TOA (values ranging from +2.5 W/m2 to -22.5W/m2). Cooling due to aerosols is more pronounced in the absence of clouds. Being an aerosol hotspot, higher negative ADRF is observed over the Indo-Gangetic Plain (IGP). Aerosol Forcing Efficiency (AFE) shows a decreasing seasonal trend in winter (DJF) over the entire study region while an increasing trend over IGP and western south India during the post-monsoon season (SON) in clear-sky conditions. Analysing atmospheric heating and AOD trends, we found that only the aerosol loading is not governing the change in atmospheric heating but also the aerosol composition and/or their vertical profile. We used a Multi-angle Imaging Spectro-Radiometer (MISR) Level-2 Version 23 aerosol products to look into aerosol composition. MISR incorporates 74 aerosol mixtures in its retrieval algorithm based on size, shape, and absorbing properties. This aerosol mixture information was used for analysing long-term changes in aerosol composition and dominating aerosol species corresponding to the aerosol forcing value. Further, ADRF derived from this method is compared with around 35 studies across India, where a plane parallel Radiative transfer model was used, and the model inputs were taken from the OPAC (Optical Properties of Aerosols and Clouds) utilizing only limited aerosol parameter measurements. The result shows a large overestimation of TOA warming by the latter (i.e., Model-based method).

Keywords: aerosol radiative forcing (ARF), aerosol composition, MISR, CERES, SBDART

Procedia PDF Downloads 51
499 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt

Authors: Sammar Zain Allam

Abstract:

Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.

Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density

Procedia PDF Downloads 425
498 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 72
497 The Relationship Between Weight Gain, Cyclicality of Diabetologic Education and the Experienced Stress: A Study Involving Pregnant Women

Authors: Agnieszka Rolinska, Marta Makara-Studzinska

Abstract:

Introduction: In recent years, there has been an intensive development of research into the physiological relationships between the experienced stress and obesity. Moreover, strong chronic stress leads to the disorganization of a person’s activeness on various levels of functioning, including the behavioral and cognitive sphere (also in one’s diet). Aim: The present work addresses the following research questions: Is there a relationship between an increase in stress related to the disease and the need for the cyclicality of diabetologic education in gestational diabetes? Are there any differences in terms of the experienced stress during the last three months of pregnancy in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Are there any differences in terms of stress coping styles in women with gestational diabetes and in normal pregnancy between the patients with normal weight gains and those with abnormal weight gains? Method: The study involved pregnant women with gestational diabetes (treated with diet, without insulin therapy) and in normal pregnancy – 206 women in total. The following psychometric tools were employed: Perceived Stress Scale (PSS; Cohen, Kamarck, Mermelstein), Coping Inventory for Stressful Situations (CISS; Endler, Parker) and authors’ own questionnaire. Gestational diabetes mellitus was diagnosed on the basis of the results of fasting oral glucose tolerance test (75 g OGTT). Body weight measurements were confirmed in a diagnostic interview, taking into account medical data. Regularities in weight gains in pregnancy were determined according to the recommendations of the Polish Gynecological Society and American norms determined by the Institute of Medicine (IOM). Conclusions: An increase in stress related to the disease varies in patients with differing requirements for the cyclical nature of diabetologic education (i.e. education which is systematically repeated). There are no differences in terms of recently experienced stress and stress coping styles between women with gestational diabetes and those in normal pregnancy. There is a relationship between weight gains in pregnancy and the stress experienced in life as well as stress coping styles – both in pregnancy complicated by diabetes and in physiological pregnancy. In the discussion of the obtained results, the authors refer to scientific reports from English-language magazines of international range.

Keywords: diabetologic education, gestational diabetes, stress, weight gain in pregnancy

Procedia PDF Downloads 307
496 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 124
495 Fabrication and Characterisation of Additive Manufactured Ti-6Al-4V Parts by Laser Powder Bed Fusion Technique

Authors: Norica Godja, Andreas Schindel, Luka Payrits, Zsolt Pasztor, Bálint Hegedüs, Petr Homola, Jan Horňas, Jiří Běhal, Roman Ruzek, Martin Holzleitner, Sascha Senck

Abstract:

In order to reduce fuel consumption and CO₂ emissions in the aviation sector, innovative solutions are being sought to reduce the weight of aircraft, including additive manufacturing (AM). Of particular importance are the excellent mechanical properties that are required for aircraft structures. Ti6Al4V alloys, with their high mechanical properties in relation to weight, can reduce the weight of aircraft structures compared to structures made of steel and aluminium. Currently, conventional processes such as casting and CNC machining are used to obtain the desired structures, resulting in high raw material removal, which in turn leads to higher costs and impacts the environment. Additive manufacturing (AM) offers advantages in terms of weight, lead time, design, and functionality and enables the realisation of alternative geometric shapes with high mechanical properties. However, there are currently technological shortcomings that have led to AM not being approved for structural components with high safety requirements. An assessment of damage tolerance for AM parts is required, and quality control needs to be improved. Pores and other defects cannot be completely avoided at present, but they should be kept to a minimum during manufacture. The mechanical properties of the manufactured parts can be further improved by various treatments. The influence of different treatment methods (heat treatment, CNC milling, electropolishing, chemical polishing) and operating parameters were investigated by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX), X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and measurements with a focused ion beam (FIB), taking into account surface roughness, possible anomalies in the chemical composition of the surface and possible cracks. The results of the characterisation of the constructed and treated samples are discussed and presented in this paper. These results were generated within the framework of the 3TANIUM project, which is financed by EU with the contract number 101007830.

Keywords: Ti6Al4V alloys, laser powder bed fusion, damage tolerance, heat treatment, electropolishing, potential cracking

Procedia PDF Downloads 83
494 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study

Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen

Abstract:

Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.

Keywords: anesthesia nurses, burnout, job, turnover intention

Procedia PDF Downloads 293
493 A Bottom-Up Approach for the Synthesis of Highly Ordered Fullerene-Intercalated Graphene Hybrids

Authors: A. Kouloumpis, P. Zygouri, G. Potsi, K. Spyrou, D. Gournis

Abstract:

Much of the research effort on graphene focuses on its use as building block for the development of new hybrid nanostructures with well-defined dimensions and behavior suitable for applications among else in gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biology. Towards this aim, here we describe a new bottom-up approach, which combines the self-assembly with the Langmuir Schaefer technique, for the production of fullerene-intercalated graphene hybrid materials. This new method uses graphene nanosheets as a template for the grafting of various fullerene C60 molecules (pure C60, bromo-fullerenes, C60Br24, and fullerols, C60(OH)24) in a bi-dimensional array, and allows for perfect layer-by-layer growth with control at the molecular level. Our film preparation approach involves a bottom-up layer-by-layer process that includes the formation of a hybrid organo-graphene Langmuir film hosting fullerene molecules within its interlayer spacing. A dilute water solution of chemically oxidized graphene (GO) was used as subphase on the Langmuir-Blodgett deposition system while an appropriate amino surfactant (that binds covalently with the GO) was applied for the formation of hybridized organo-GO. After the horizontal lift of a hydrophobic substrate, a surface modification of the GO platelets was performed by bringing the surface of the transferred Langmuir film in contact with a second amino surfactant solution (capable to interact strongly with the fullerene derivatives). In the final step, the hybrid organo-graphene film was lowered in the solution of the appropriate fullerene derivative. Multilayer films were constructed by repeating this procedure. Hybrid fullerene-based thin films deposited on various hydrophobic substrates were characterized by X-ray diffraction (XRD) and X-ray reflectivity (XRR), FTIR, and Raman spectroscopies, Atomic Force Microscopy, and optical measurements. Acknowledgments. This research has been co‐financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF)‐Research Funding Program: THALES. Investing in knowledge society through the European Social Fund (no. 377285).

Keywords: hybrids, graphene oxide, fullerenes, langmuir-blodgett, intercalated structures

Procedia PDF Downloads 326
492 “Multi-Sonic Timbre” of the Biula: The Integral Role of of Tropical Tonewood in Bajau Sama Dilaut Bowed Lute Acoustics

Authors: Wong Siew Ngan, Lee Chie Tsang, Lee See Ling, Lim Ho Yi

Abstract:

The selection of Tonewood is critical in defining tonal and acoustic qualities of string instruments, yet limited research exists on indigenous instruments utilizing tropical woods. This gap is addressed by analyzing the "multi-sonic timbre" of the Biula (Bajau Sama Dilaut), crafted by rainforest indigenous communities using locally accessible tropical species such as jackfruit and coconut, whose distinctive grain patterns, density, and moisture content, significantly contribute to the instrument’s rich harmonic spectrum and dynamic range. Unlike Western violins that utilize temperate woods like Maple and Spruce, the Biula's sound is shaped by the unique acoustic properties of these tropical tonewoods. To further investigate the impact of tropical tonewoods on the biula’s acoustics, frequency response tests were conducted on instruments constructed from various local species using SPEAR (Sinusoidal Partial Editing Analysis and Resynthesis) software for spectral analysis, measurements were taken of resonance frequencies, harmonic content, and sound decay rates. These analyses reveal that jackfruit wood produces warmer tones with enhanced lower frequencies, while coconut wood contributes to brighter timbres with pronounced higher harmonics. Building upon these findings, the materials and construction methods of biula bows were also examined. The study found that the variations in tropical hardwoods and locally sourced bow hair significantly influence the instrument's responsiveness and articulation, shaping its distinctive 'multi-sonic timbre.' These findings deepen the understanding of indigenous instrument acoustics, offering valuable insights for modern luthiers interested in tropical tonewoods. By documenting traditional crafting techniques, this research supports the preservation of cultural heritage and promotes appreciation of indigenous craftsmanship.

Keywords: multi-sonic timbre, biula (bajau sama dilaut bowed lute), tropical tonewoods, spectral analysis, indigenous instrument acoustics

Procedia PDF Downloads 7
491 The Interactive Effects among Supervisor Support, Academic Emotion, and Positive Mental Health: An Evidence Based on Longitudinal Cross-Lagged Panel Data Analysis on Postgraduates in China

Authors: Jianzhou Ni, Hua Fan

Abstract:

It has been determined that supervisor support has a major influence on postgraduate students' academic emotions and is considered a method of successfully anticipating postgraduates' good psychological well-being levels. As a result, by assessing the mediating influence upon academic emotions for contemporary postgraduates in China, this study investigated the tight reciprocal relationship between psychological empowerment and positive mental well-being among postgraduates. To that end, a help enables a theoretical analysis of role clarity, academic emotion, and positive psychological health was developed, and its validity and reliability were demonstrated for the first time using the normalized postgrad relationship with supervisor scale, academic emotion scale, and positive mental scale, as well as questionnaire data from Chinese postgraduate students. This study used the cross-lagged (ARCL) panel model data to longitudinally measure 798 valid data from two survey questions polls taken in 2019 (T1) and 2021 (T2) to investigate the link between supervisor support and positive graduate student mental well-being in a bidirectional relationship of influence. The study discovered that mentor assistance could have a considerable beneficial impact on graduate students' academic emotions and, as a result, indirectly help learners attain positive mental health development. This verifies the theoretical premise that academic emotions partially mediate the effect of mentor support on positive mental health development and argues for the coexistence of the two. The outcomes of this study can help researchers gain a better knowledge of the dynamic interplay among three different research variables: supervisor support, academic emotions, and positive mental health, as well as fill gaps in previous research. In this regard, the study indicated that mentor assistance directly stimulates students' academic drive and assists graduate students in developing good academic emotions, which contributes to the development of positive mental health. However, given the restricted measurement time in this study's cross-lagged panel data and the potential effect of moderating effects other than academic mood on graduate students' good mental health, the results of this study need to be more fully understood and validated.

Keywords: supervisor support, academic emotions, positive mental health, interaction effects, longitudinal cross-lagged measurements

Procedia PDF Downloads 85
490 Mesoporous Titania Thin Films for Gentamicin Delivery and Bone Morphogenetic Protein-2 Immobilization

Authors: Ane Escobar, Paula Angelomé, Mihaela Delcea, Marek Grzelczak, Sergio Enrique Moya

Abstract:

The antibacterial capacity of bone-anchoring implants can be improved by the use of antibiotics that can be delivered to the media after the surgery. Mesoporous films have shown great potential in drug delivery for orthopedic applications, since pore size and thickness can be tuned to produce different surface area and free volume inside the material. This work shows the synthesis of mesoporous titania films (MTF) by sol-gel chemistry and evaporation-induced self-assembly (EISA) on top of glass substrates. Pores with a diameter of 12nm were observed by Transmission Electron Microscopy (TEM). A film thickness of 100 nm was measured by Scanning Electron Microscopy (SEM). Gentamicin was used to study the antibiotic delivery from the film by means of High-performance liquid chromatography (HPLC). The Staphilococcus aureus strand was used to evaluate the effectiveness of the penicillin loaded films toward inhibiting bacterial colonization. MC3T3-E1 pre-osteoblast cell proliferation experiments proved that MTFs have a good biocompatibility and are a suitable surface for MC3T3-E1 cell proliferation. Moreover, images taken by Confocal Fluorescence Microscopy using labeled vinculin, showed good adhesion of the MC3T3-E1 cells to the MTFs, as well as complex actin filaments arrangement. In order to improve cell proliferation Bone Morphogenetic Protein-2 (BMP-2) was adsorbed on top of the mesoporous film. The deposition of the protein was proved by measurements in the contact angle, showing an increment in the hydrophobicity while the protein concentration is higher. By measuring the dehydrogenase activity in MC3T3-E1 cells cultured in dually functionalized mesoporous titatina films with gentamicin and BMP-2 is possible to find an improvement in cell proliferation. For this purpose, the absorption of a yellow-color formazan dye, product of a water-soluble salt (WST-8) reduction by the dehydrogenases, is measured. In summary, this study proves that by means of the surface modification of MTFs with proteins and loading of gentamicin is possible to achieve an antibacterial effect and a cell growth improvement.

Keywords: antibacterial, biocompatibility, bone morphogenetic protein-2, cell proliferation, gentamicin, implants, mesoporous titania films, osteoblasts

Procedia PDF Downloads 161
489 Comparison of Iodine Density Quantification through Three Material Decomposition between Philips iQon Dual Layer Spectral CT Scanner and Siemens Somatom Force Dual Source Dual Energy CT Scanner: An in vitro Study

Authors: Jitendra Pratap, Jonathan Sivyer

Abstract:

Introduction: Dual energy/Spectral CT scanning permits simultaneous acquisition of two x-ray spectra datasets and can complement radiological diagnosis by allowing tissue characterisation (e.g., uric acid vs. non-uric acid renal stones), enhancing structures (e.g. boost iodine signal to improve contrast resolution), and quantifying substances (e.g. iodine density). However, the latter showed inconsistent results between the 2 main modes of dual energy scanning (i.e. dual source vs. dual layer). Therefore, the present study aimed to determine which technology is more accurate in quantifying iodine density. Methods: Twenty vials with known concentrations of iodine solutions were made using Optiray 350 contrast media diluted in sterile water. The concentration of iodine utilised ranged from 0.1 mg/ml to 1.0mg/ml in 0.1mg/ml increments, 1.5 mg/ml to 4.5 mg/ml in 0.5mg/ml increments followed by further concentrations at 5.0 mg/ml, 7mg/ml, 10 mg/ml and 15mg/ml. The vials were scanned using Dual Energy scan mode on a Siemens Somatom Force at 80kV/Sn150kV and 100kV/Sn150kV kilovoltage pairing. The same vials were scanned using Spectral scan mode on a Philips iQon at 120kVp and 140kVp. The images were reconstructed at 5mm thickness and 5mm increment using Br40 kernel on the Siemens Force and B Filter on Philips iQon. Post-processing of the Dual Energy data was performed on vendor-specific Siemens Syngo VIA (VB40) and Philips Intellispace Portal (Ver. 12) for the Spectral data. For each vial and scan mode, the iodine concentration was measured by placing an ROI in the coronal plane. Intraclass correlation analysis was performed on both datasets. Results: The iodine concentrations were reproduced with a high degree of accuracy for Dual Layer CT scanner. Although the Dual Source images showed a greater degree of deviation in measured iodine density for all vials, the dataset acquired at 80kV/Sn150kV had a higher accuracy. Conclusion: Spectral CT scanning by the dual layer technique has higher accuracy for quantitative measurements of iodine density compared to the dual source technique.

Keywords: CT, iodine density, spectral, dual-energy

Procedia PDF Downloads 118
488 Urban Furniture in a New Setting of Public Spaces within the Kurdistan Region: Educational Targets and Course Design Process

Authors: Sinisa Prvanov

Abstract:

This research is an attempt to analyze the existing urban form of outdoor public space of Duhok city and to give proposals for their improvements in terms of urban seating. The aim of this research is to identify the main urban furniture elements and behaviour of users of three central parks of Duhok city, recognizing their functionality and the most common errors. Citizens needs, directly related to the physical characteristics of the environment, are categorized in terms of contact with nature. Parks as significant urban environments express their aesthetic preferences, as well as the need for recreation and play. Citizens around the world desire to contact with nature and places where they can socialize, play and practice different activities, but also participate in building their community and feeling the identity of their cities. The aim of this research is also to reintegrate these spaces in the wider urban context of the city of Duhok, to develop new functions by designing new seating patterns, more improved urban furniture, and necessary supporting facilities and equipment. Urban furniture is a product that uses an enormous number of people in public space. It has a high level of wear and damage due to intense use, exposure to sunlight and weather conditions. Iraq has a hot and dry climate characterized by long, warm, dry summers and short, cold winters. The climate is determined by the Iraq location at the crossroads of Arab desert areas and the subtropical humid climate of the Persian Gulf. The second part of this analysis will describe the possibilities of traditional and contemporary materials as well as their advantages in urban furniture production, providing users protection from extreme local climate conditions, but also taking into account solidities and unwelcome consequences, such as vandalism. In addition, this research represents a preliminary stage in the development of IND307 furniture design course for needs of the Department of Interior design, at the American University in Duhok. Based on results obtained in this research, the course would present a symbiosis between people and technology, promotion of new street furniture design that perceives pedestrian activities in an urban setting, and practical use of anthropometric measurements as a tool for technical innovations.

Keywords: Furniture design, Street furniture, Social interaction, Public space

Procedia PDF Downloads 134
487 Nitrogen Fixation of Soybean Approaches for Enhancing under Saline and Water Stress Conditions

Authors: Ayman El Sabagh, AbdElhamid Omar, Dekoum Assaha, Khair Mohammad Youldash, Akihiro Ueda, Celaleddin Barutçular, Hirofumi Saneoka

Abstract:

Drought and salinity stress are a worldwide problem, constraining global crop production seriously. Hence, soybean is susceptible to yield loss from water deficit and salinity stress. Therefore, different approaches have been suggested to solve these issues. Osmoprotectants play an important role in protection the plants from various environmental stresses. Moreover, organic fertilization has several beneficial effects on agricultural fields. Presently, efforts to maximize nitrogen fixation in soybean are critical because of widespread increase in soil degradation in Egypt. Therefore, a greenhouse research was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan for assessing the impact of exogenous osmoregulators and compost application in alleviating the adverse effects of salinity and water stress on soybean. Treatments was included (i) water stress treatments (different soil moisture levels consisting of (100%, 75%, and 50% of field water holding capacity), (ii) salinity concentrations (0 and 15 mM) were applied in fully developed trifoliolate leaf node (V1), (iii) compost treatments (0 and 24 t ha-1) and (iv) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each, was applied at two growth stages (V1 and R1). The seeds of soybean cultivar Giza 111, was sown into basin from wood (length10 meter, width 50cm, height 50cm and depth 350cm) containing a soil mixture of granite regosol soil and perlite (2:1 v/v). The nitrogen-fixing activity was estimated by using gas chromatography and all measurements were made in three replicates. The results showed that water deficit and salinity stress reduced biological nitrogen fixation and specific nodule activity than normal irrigation conditions. Exogenous osmoprotectants were improved biological nitrogen fixation and specific nodule activity as well as, applying of compost led to improving many of biological nitrogen fixation and specific nodule activity with superiority than stress conditions. The combined application compost fertilizer and exogenous osmoprotectants were more effective in alleviating the adverse effect of stress to improve biological nitrogen fixation and specific nodule activity of Soybean.

Keywords: a biotic stress, biological nitrogen fixation, compost, osmoprotectants, specific nodule activity, soybean

Procedia PDF Downloads 306
486 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 307
485 Characterizing Solid Glass in Bending, Torsion and Tension: High-Temperature Dynamic Mechanical Analysis up to 950 °C

Authors: Matthias Walluch, José Alberto Rodríguez, Christopher Giehl, Gunther Arnold, Daniela Ehgartner

Abstract:

Dynamic mechanical analysis (DMA) is a powerful method to characterize viscoelastic properties and phase transitions for a wide range of materials. It is often used to characterize polymers and their temperature-dependent behavior, including thermal transitions like the glass transition temperature Tg, via determination of storage and loss moduli in tension (Young’s modulus, E) and shear or torsion (shear modulus, G) or other testing modes. While production and application temperatures for polymers are often limited to several hundred degrees, material properties of glasses usually require characterization at temperatures exceeding 600 °C. This contribution highlights a high temperature setup for rotational and oscillatory rheometry as well as for DMA in different modes. The implemented standard convection oven enables the characterization of glass in different loading modes at temperatures up to 950 °C. Three-point bending, tension and torsional measurements on different glasses, with E and G moduli as a function of frequency and temperature, are presented. Additional tests include superimposing several frequencies in a single temperature sweep (“multiwave”). This type of test results in a considerable reduction of the experiment time and allows to evaluate structural changes of the material and their frequency dependence. Furthermore, DMA in torsion and tension was performed to determine the complex Poisson’s ratio as a function of frequency and temperature within a single test definition. Tests were performed in a frequency range from 0.1 to 10 Hz and temperatures up to the glass transition. While variations in the frequency did not reveal significant changes of the complex Poisson’s ratio of the glass, a monotonic increase of this parameter was observed when increasing the temperature. This contribution outlines the possibilities of DMA in bending, tension and torsion for an extended temperature range. It allows the precise mechanical characterization of material behavior from room temperature up to the glass transition and the softening temperature interval. Compared to other thermo-analytical methods, like Dynamic Scanning Calorimetry (DSC) where mechanical stress is neglected, the frequency-dependence links measurement results (e.g. relaxation times) to real applications

Keywords: dynamic mechanical analysis, oscillatory rheometry, Poisson's ratio, solid glass, viscoelasticity

Procedia PDF Downloads 80
484 Effect of Male and Female Early Childhood Teacher's Educational Practices on Child' Social Adaptation

Authors: Therese Besnard

Abstract:

Internationally in early childhood education (ECE), the great majority of teachers are women. Some groups believe that a greater male teacher presence in ECE would be beneficial for children, specifically for boys as it could offer a positive male model. It is a common belief that children would benefit from being exposed to both male and female models. Some believe that women are naturally better suited to offer quality care to young children comparatively to men. Some authors bring forth that after equivalent training, differences in the educational practices are purely individual and do not depend on the teacher’s gender. Others believe that a greater male presence in ECE would increase the risk of pedophilia or child abuse. The few scientific studies in this area suggest that differences could exist between male and female ECE teacher, in particular when it comes to play which is the mainstay of the ECE educational program. Male teachers describe themselves as being more playful and having a greater tendency to initiate physical and turbulent play comparatively to female teachers, who describe themselves as favoring games that are calmer and focused on social interaction. Observed directly, male teachers appear more actively engaged in play with children and propose more motor play than female teachers. Furthermore children who have both male and female teachers for one year show less behavior difficulties when compared to children with only female teachers. Despite a variety of viewpoints we don’t know if the educational practices of male ECE teachers, (emotional support, classroom organization or instructional support) are different than the educational practices of female teachers and if these practices are linked with children’s adaptation. This study compares the educational practices of 37 ECE teachers (57 % male) and analyses the link with children' social adaptation (n=221). Educational practices were assessed through observational measurements with the Classroom Assessment Scoring System (CLASS) in a natural class environment. Child social adaptation was assessed with the Social Competence and Behavior Evaluation (SCBE). Observational data reveals no differences between men's and women's scale of the CLASS. Results using Multilevel models analyses suggest that the ability to propose good classroom organization and give good instructional support are linked with better child' social adaptation, and that is always true for men and women teachers. The results are discussed on the basis of their potential impact on future educational interventions.

Keywords: child social adaptation, early childhood education, educational practices, men teacher

Procedia PDF Downloads 372
483 Structure and Magnetic Properties of M-Type Sr-Hexaferrite with Ca, La Substitutions

Authors: Eun-Soo Lim, Young-Min Kang

Abstract:

M-type Sr-hexaferrite (SrFe₁₂O₁₉) have been studied during the past decades because it is the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. Many attempts have been made to improve the intrinsic magnetic properties of M-type Sr-hexaferrites (SrM), such as by improving the saturation magnetization (MS) and crystalline anisotropy by cation substitution. It is well proved that the Ca-La-Co substitutions are one of the most successful approaches, which lead to a significant enhancement in the crystalline anisotropy without reducing MS, and thus the Ca-La-Co-doped SrM have been commercialized in high-grade magnet products. In this research, the effect of respective doping of Ca and La into the SrM lattices were studied with assumptions that these elements could substitute both of Fe and Sr sites. The hexaferrite samples of stoichiometric SrFe₁₂O₁₉ (SrM) and the Ca substituted SrM with formulae of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓCaₓOₐ (x = 0.1, 0.2, 0.3, 0.4), and also La substituted SrM of Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.1, 0.2, 0.3, 0.4) were prepared by conventional solid state reaction processes. X-ray diffraction (XRD) with a Cu Kα radiation source (λ=0.154056 nm) was used for phase analysis. Microstructural observation was conducted with a field emission scanning electron microscopy (FE-SEM). M-H measurements were performed using a vibrating sample magnetometer (VSM) at 300 K. Almost pure M-type phase could be obtained in the all series of hexaferrites calcined at > 1250 ºC. Small amount of Fe₂O₃ phases were detected in the XRD patterns of Sr₁₋ₓCaₓFe₁₂Oₐ (x = 0.2, 0.3, 0.4) and Sr₁₋ₓLaₓFe₁₂Oₐ (x = 0.1, 0.2, 0.3, 0.4) samples. Also, small amount of unidentified secondary phases without the Fe₂O₃ phase were found in the samples of SrFe₁₂₋ₓCaₓOₐ (x = 0.4) and SrFe₁₂₋ₓLaₓOₐ (x = 0.3, 0.4). Although the Ca substitution (x) into SrM structure did not exhibit a clear tendency in the cell parameter change in both series of samples, Sr₁₋ₓCaₓFe₁₂Oₐ and SrFe₁₂₋ₓCaₓOₐ , the cell volume slightly decreased with doping of Ca in the Sr₁₋ₓCaₓFe₁₂Oₐ samples and increased in the SrFe₁₂₋ₓCaₓOₐ samples. Considering relative ion sizes between Sr²⁺ (0.113 nm), Ca²⁺ (0.099 nm), Fe³⁺ (0.064 nm), these results imply that the Ca substitutes both of Sr and Fe in the SrM. A clear tendency of cell parameter change was observed in case of La substitution into Sr site of SrM ( Sr₁₋ₓLaₓFe₁₂Oₐ); the cell volume decreased with increase of x. It is owing to the similar but smaller ion size of La³⁺ (0.106 nm) than that of Sr²⁺. In case of SrFe₁₂₋ₓLaₓOₐ, the cell volume first decreased at x = 0.1 and then remained almost constant with increase of x from 0.2 to 0.4. These results mean that La only substitutes Sr site in the SrM structure. Besides, the microstructure and magnetic properties of these samples, and correlation between them will be revealed.

Keywords: M-type hexaferrite, substitution, cell parameter, magnetic properties

Procedia PDF Downloads 210
482 GC-MS-Based Untargeted Metabolomics to Study the Metabolism of Pectobacterium Strains

Authors: Magdalena Smoktunowicz, Renata Wawrzyniak, Malgorzata Waleron, Krzysztof Waleron

Abstract:

Pectobacterium spp. were previously classified into the Erwinia genus founded in 1917 to unite at that time all Gram-negative, fermentative, nonsporulating and peritrichous flagellated plant pathogenic bacteria. After work of Waldee (1945), on Approved Lists of Bacterial Names and bacteriology manuals in 1980, they were described either under the species named Erwinia or Pectobacterium. The Pectobacterium genus was formally described in 1998 of 265 Pectobacterium strains. Currently, there are 21 species of Pectobacterium bacteria, including Pectobacterium betavasculorum since 2003, which caused soft rot on sugar beet tubers. Based on the biochemical experiments carried out for this, it is known that these bacteria are gram-negative, catalase-positive, oxidase-negative, facultatively anaerobic, using gelatin and causing symptoms of soft rot on potato and sugar beet tubers. The mere fact of growing on sugar beet may indicate a metabolism characteristic only for this species. Metabolomics, broadly defined as the biology of the metabolic systems, which allows to make comprehensive measurements of metabolites. Metabolomics, in combination with genomics, are complementary tools for the identification of metabolites and their reactions, and thus for the reconstruction of metabolic networks. The aim of this study was to apply the GC-MS-based untargeted metabolomics to study the metabolism of P. betavasculorum in different growing conditions. The metabolomic profiles of biomass and biomass media were determined. For sample preparation the following protocol was used: extraction with 900 µl of methanol: chloroform: water mixture (10: 3: 1, v: v) were added to 900 µl of biomass from the bottom of the tube and up to 900 µl of nutrient medium from the bacterial biomass. After centrifugation (13,000 x g, 15 min, 4oC), 300µL of the obtained supernatants were concentrated by rotary vacuum and evaporated to dryness. Afterwards, two-step derivatization procedure was performed before GC-MS analyses. The obtained results were subjected to statistical calculations with the use of both uni- and multivariate tests. The obtained results were evaluated using KEGG database, to asses which metabolic pathways are activated and which genes are responsible for it, during the metabolism of given substrates contained in the growing environment. The observed metabolic changes, combined with biochemical and physiological tests, may enable pathway discovery, regulatory inference and understanding of the homeostatic abilities of P. betavasculorum.

Keywords: GC-MS chromatograpfy, metabolomics, metabolism, pectobacterium strains, pectobacterium betavasculorum

Procedia PDF Downloads 78
481 Interpretation of Two Indices for the Prediction of Cardiovascular Risk in Pediatric Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity and weight gain are associated with increased risk of developing cardiovascular diseases and the progression of liver fibrosis. Aspartate transaminase–to-platelet count ratio index (AST-to-PLT, APRI) and fibrosis-4 (FIB-4) were primarily considered as the formulas capable of differentiating hepatitis from cirrhosis. Recently, they have found clinical use as measures of liver fibrosis and cardiovascular risk. However, their status in children has not been evaluated in detail yet. The aim of this study is to determine APRI and FIB-4 status in obese (OB) children and compare them with values found in children with normal body mass index (N-BMI). A total of sixty-eight children examined in the outpatient clinics of the Pediatrics Department in Tekirdag Namik Kemal University Medical Faculty were included in the study. Two groups were constituted. In the first group, thirty-five children with N-BMI, whose age- and sex-dependent BMI indices vary between 15 and 85 percentiles, were evaluated. The second group comprised thirty-three OB children whose BMI percentile values were between 95 and 99. Anthropometric measurements and routine biochemical tests were performed. Using these parameters, values for the related indices, BMI, APRI, and FIB-4, were calculated. Appropriate statistical tests were used for the evaluation of the study data. The statistical significance degree was accepted as p<0.05. In the OB group, values found for APRI and FIB-4 were higher than those calculated for the N-BMI group. However, there was no statistically significant difference between the N-BMI and OB groups in terms of APRI and FIB-4. A similar pattern was detected for triglyceride (TRG) values. The correlation coefficient and degree of significance between APRI and FIB-4 were r=0.336 and p=0.065 in the N-BMI group. On the other hand, they were r=0.707 and p=0.001 in the OB group. Associations of these two indices with TRG have shown that this parameter was strongly correlated (p<0.001) both with APRI and FIB-4 in the OB group, whereas no correlation was calculated in children with N-BMI. Triglycerides are associated with an increased risk of fatty liver, which can progress to severe clinical problems such as steatohepatitis, which can lead to liver fibrosis. Triglycerides are also independent risk factors for cardiovascular disease. In conclusion, the lack of correlation between TRG and APRI as well as FIB-4 in children with N-BMI, along with the detection of strong correlations of TRG with these indices in OB children, was the indicator of the possible onset of the tendency towards the development of fatty liver in OB children. This finding also pointed out the potential risk for cardiovascular pathologies in OB children. The nature of the difference between APRI vs FIB-4 correlations in N-BMI and OB groups (no correlation versus high correlation), respectively, may be the indicator of the importance of involving age and alanine transaminase parameters in addition to AST and PLT in the formula designed for FIB-4.

Keywords: APRI, children, FIB-4, obesity, triglycerides

Procedia PDF Downloads 347
480 Maneuvering Modelling of a One-Degree-of-Freedom Articulated Vehicle: Modeling and Experimental Verification

Authors: Mauricio E. Cruz, Ilse Cervantes, Manuel J. Fabela

Abstract:

The evaluation of the maneuverability of road vehicles is generally carried out through the use of specialized computer programs due to the advantages they offer compared to the experimental method. These programs are based on purely geometric considerations of the characteristics of the vehicles, such as main dimensions, the location of the axles, and points of articulation, without considering parameters such as weight distribution and magnitude, tire properties, etc. In this paper, we address the problem of maneuverability in a semi-trailer truck to navigate urban streets, maneuvering yards, and parking lots, using the Ackerman principle to propose a kinematic model that, through geometric considerations, it is possible to determine the space necessary to maneuver safely. The model was experimentally validated by conducting maneuverability tests with an articulated vehicle. The measurements were made through a GPS that allows us to know the position, trajectory, and speed of the vehicle, an inertial motion unit (IMU) that allows measuring the accelerations and angular speeds in the semi-trailer, and an instrumented steering wheel that allows measuring the angle of rotation of the flywheel, the angular velocity and the torque applied to the flywheel. To obtain the steering angle of the tires, a parameterization of the complete travel of the steering wheel and its equivalent in the tires was carried out. For the tests, 3 different angles were selected, and 3 turns were made for each angle in both directions of rotation (left and right turn). The results showed that the proposed kinematic model achieved 95% accuracy for speeds below 5 km / h. The experiments revealed that that tighter maneuvers increased significantly the space required and that the vehicle maneuverability was limited by the size of the semi-trailer. The maneuverability was also tested as a function of the vehicle load and 3 different load levels we used: light, medium, and heavy. It was found that the internal turning radii also increased with the load, probably due to the changes in the tires' adhesion to the pavement since heavier loads had larger contact wheel-road surfaces. The load was found as an important factor affecting the precision of the model (up to 30%), and therefore I should be considered. The model obtained is expected to be used to improve maneuverability through a robust control system.

Keywords: articuled vehicle, experimental validation, kinematic model, maneuverability, semi-trailer truck

Procedia PDF Downloads 116