Search results for: content based image retrieval (CBIR)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33858

Search results for: content based image retrieval (CBIR)

30918 The Impact of Illegal Firearms Possession, Limited Security Staff and Porosity of Border on Human Security in Ipokia Local Government Area, Ogun State

Authors: Ogunmefun Folorunsho Muyideen, Aluko Tolulope Evelyn

Abstract:

One of the trending menaces faced in the world today is centered on the porosity of borders and proliferation of illegal weapons among the state members without the state authorizations. The proliferation of weapons along porous borders remains a germane and unsolvable question among developed and developing nations due to crisis degenerated from the menace (loss of lives, properties, traumatization, civil unrest and retrogressive economic development). A mixed method was adopted while the survey method was used for communities’ selection (Oke-Odan, Ajilete, Illaise, Lanlate) at Ipokia Local Government as a sample frame. Multi-stage sampling was employed to break down the site into wards, streets, and different house numbers before randomizing administration of the questionnaires using face to face method, while purposive sampling was used for collecting verbal information through an in-depth interviews method. The population size for the site is 150.398, while 399 was the sample size derived from the use of Yamane sample size formula. After retrieval of structured questionnaires, 346 were found useful, while 10 percent (399) of the quantitative instruments was summed to 30 participants that were interviewed using the in-depth interviews technique. The result of the first hypothesis shows a composite relationship between the variables tested (independents and dependent). The result indicated that the porosity of the border, illegal possession of guns, and limited security staff jointly predispose insecurity among the residents of the selected study site. The result of the second hypothesis deciphers that the illegal gun possession (independent) variable predict business outcome among the residents of the study site because sporadic gun shoot will regress the business activities in the study area. The result of third result indicated that the independent (porosity of borders) variable predict social bonding network because a high level of insecurity will destroy the level of trust in the communication among the residents of the study area. The last questions give comprehensive meaning to one of the recommendations derived using content systematic analysis, which explains that out of 30 participants interviewed, 18 submitted individual involvement in monitoring communities will solve the problem, 7 out of 30 opines that governmental agents are to be trained for effective combat, 3 participants out 30 submits that the fight is for both government and the citizens while 2 participants out of 30 claimed that there must be an agreement between Nigerian and neighbouring countries on border security. International donors must totally control the sales of weapons to unauthorized personalities. Criminal cases must be treated with deterrence measures and target hardened procedures through decoying and blending, stakeout, and sting tactics.

Keywords: human security, illegal weapons, porous borders, development

Procedia PDF Downloads 179
30917 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction

Procedia PDF Downloads 340
30916 Detection of the Effectiveness of Training Courses and Their Limitations Using CIPP Model (Case Study: Isfahan Oil Refinery)

Authors: Neda Zamani

Abstract:

The present study aimed to investigate the effectiveness of training courses and their limitations using the CIPP model. The investigations were done on Isfahan Refinery as a case study. From a purpose point of view, the present paper is included among applied research and from a data gathering point of view, it is included among descriptive research of the field type survey. The population of the study included participants in training courses, their supervisors and experts of the training department. Probability-proportional-to-size (PPS) was used as the sampling method. The sample size for participants in training courses included 195 individuals, 30 supervisors and 11 individuals from the training experts’ group. To collect data, a questionnaire designed by the researcher and a semi-structured interview was used. The content validity of the data was confirmed by training management experts and the reliability was calculated through 0.92 Cronbach’s alpha. To analyze the data in descriptive statistics aspect (tables, frequency, frequency percentage and mean) were applied, and inferential statistics (Mann Whitney and Wilcoxon tests, Kruskal-Wallis test to determine the significance of the opinion of the groups) have been applied. Results of the study indicated that all groups, i.e., participants, supervisors and training experts, absolutely believe in the importance of training courses; however, participants in training courses regard content, teacher, atmosphere and facilities, training process, managing process and product as to be in a relatively appropriate level. The supervisors also regard output to be at a relatively appropriate level, but training experts regard content, teacher and managing processes as to be in an appropriate and higher than average level.

Keywords: training courses, limitations of training effectiveness, CIPP model, Isfahan oil refinery company

Procedia PDF Downloads 75
30915 When Ideological Intervention Backfires: The Case of the Iranian Clerical System’s Intervention in the Pandemic-Era Elementary Education

Authors: Hasti Ebrahimi

Abstract:

This study sheds light on the challenges and difficulties caused by the Iranian clerical system’s intervention in the country’s school education during the COVID-19 pandemic, when schools remained closed for almost two years. The pandemic brought Iranian elementary school education to a standstill for almost 6 months before the country developed a nationwide learning platform – a customized television network. While the initiative seemed to have been welcomed by the majority of Iranian parents, it resented some of the more traditional strata of the society, including the influential Friday Prayer Leaders who found the televised version of the elementary education ‘less spiritual’ and ‘more ‘material’ or science-based. That prompted the Iranian Channel of Education, the specialized television network that had been chosen to serve as a nationally televised school during the pandemic, to try to redefine much of its online elementary school educational content within the religious ideology of the Islamic Republic of Iran. As a result, young clergies appeared on the television screen as preachers of Islamic morality, religious themes and even sociology, history, and arts. The present research delves into the consequences of such an intervention, how it might have impacted the infrastructure of Iranian elementary education and whether or not the new ideology-infused curricula would withstand the opposition of students and mainstream teachers. The main methodology used in this study is Critical Discourse Analysis with a cognitive approach. It systematically finds and analyzes the alternative ideological structures of discourse in the Iranian Channel of Education from September 2021 to July 2022, when the clergy ‘teachers’ replaced ‘regular’ history and arts teachers on the television screen for the first time. It has aimed to assess how the various uses of the alternative ideological discourse in elementary school content have influenced the processes of learning: the acquisition of knowledge, beliefs, opinions, attitudes, abilities, and other cognitive and emotional changes, which are the goals of institutional education. This study has been an effort aimed at understanding and perhaps clarifying the relationships between the traditional textual structures and processing on the one hand and socio-cultural contexts created by the clergy teachers on the other. This analysis shows how the clerical portion of elementary education on the Channel of Education that seemed to have dominated the entire televised teaching and learning process faded away as the pandemic was contained and mainstream classes were restored. It nevertheless reflects the deep ideological rifts between the clerical approach to school education and the mainstream teaching process in Iranian schools. The semantic macrostructures of social content in the current Iranian elementary school education, this study suggests, have remained intact despite the temporary ideological intervention of the ruling clerical elite in their formulation and presentation. Finally, using thematic and schematic frameworks, the essay suggests that the ‘clerical’ social content taught on the Channel of Education during the pandemic cannot have been accepted cognitively by the channel’s target audience, including students and mainstream teachers.

Keywords: televised elementary school learning, Covid 19, critical discourse analysis, Iranian clerical ideology

Procedia PDF Downloads 54
30914 University Students' Perspectives on a Mindfulness-Based App for Weight, Weight Related Behaviors, and Stress: A Qualitative Focus Group Study

Authors: Lynnette Lyzwinski, Liam Caffery, Matthew Bambling, Sisira Edirippulige

Abstract:

Introduction: A novel method of delivering mindfulness interventions for populations at risk of weight gain and stress-related eating, in particular, college students, is through mHealth. While there have been qualitative studies on mHealth for weight loss, there has not been a study on mHealth for weight loss using mindfulness that has explored student perspectives on a student centred mindfulness app and mindfulness-based text messages for eating and stress. Student perspective data will provide valuable information for creating a specific purpose weight management app and mindfulness-based text messages (for the Mindfulness App study). Methods: A qualitative focus group study was undertaken at St Lucia campus at the University of Queensland in March 2017. Students over the age of 18 were eligible to participate. Interviews were audiotaped and transcribed. One week following the focus group, students were sent sample mindfulness-based text messages based on their responses. Students provided written feedback via email. Data were analysed using N Vivo software. Results: The key themes in a future mindfulness-based app are a simple design interface, a focus on education/practical tips, and real-life practical exercises. Social media should be avoided. Key themes surrounding barriers include the perceived difficulty of mindfulness and a lack of proper guidance or knowledge. The mindfulness-based text messages were received positively. Key themes were creating messages with practical tips about how to be mindful and how to integrate mindful reflection of both one’s body and environment while on campus. Other themes including creating positive, inspirational messages. There was lack of agreement on the ideal timing for messages. Discussion: This is the first study that explored student perspectives on a mindfulness-app and mindfulness-based text messages for stress and weight management as a pre-trial study for the Mindfulness App trial for stress, lifestyle, and weight in students. It is important to consider maximizing the potential facilitators of use and minimize potential identified barriers when developing and designing a future mHealth mindfulness-based intervention tailored to the student consumer. Conclusion: Future mHealth studies may consider integrating mindfulness-based text messages in their interventions for weight and stress as this is a novel feature that appears to be acceptable for participants. The results of this focus group provide the basis to develop content for a specific purpose student app for weight management.

Keywords: mindfulness, college students, mHealth, weight loss

Procedia PDF Downloads 198
30913 Edge Detection Using Multi-Agent System: Evaluation on Synthetic and Medical MR Images

Authors: A. Nachour, L. Ouzizi, Y. Aoura

Abstract:

Recent developments on multi-agent system have brought a new research field on image processing. Several algorithms are used simultaneously and improved in deferent applications while new methods are investigated. This paper presents a new automatic method for edge detection using several agents and many different actions. The proposed multi-agent system is based on parallel agents that locally perceive their environment, that is to say, pixels and additional environmental information. This environment is built using Vector Field Convolution that attract free agent to the edges. Problems of partial, hidden or edges linking are solved with the cooperation between agents. The presented method was implemented and evaluated using several examples on different synthetic and medical images. The obtained experimental results suggest that this approach confirm the efficiency and accuracy of detected edge.

Keywords: edge detection, medical MRImages, multi-agent systems, vector field convolution

Procedia PDF Downloads 391
30912 Characteristics of Clayey Subgrade Soil Mixed with Cement Stabilizer

Authors: Manju, Praveen Aggarwal

Abstract:

Clayey soil is considered weakest subgrade soil from civil engineering point of view under moist condition. These swelling soils attract and absorb water and losses their strength. Certain inherent properties of these clayey soils need modification for their bulk use in the construction of highways/runways pavements and embankments, etc. In this paper, results of clayey subgrade modified with cement stabilizer is presented. Investigation includes evaluation of specific gravity, Atterberg’s limits, grain size distribution, maximum dry density, optimum moisture content and CBR value of the clayey soil and cement treated clayey soil. A series of proctor compaction and CBR tests (un-soaked and soaked) are carried out on clayey soil and clayey soil mixed with cement stabilizer in 2%, 4% & 6% percentages to the dry weight of soil. In CBR test, under soaked condition best results are obtained with 6% of cement. However, the difference between the CBR value by addition of 4% and 6% cement is not much. Therefore from economical consideration addition of 4% cement gives the best result after soaking period of 90 days.

Keywords: clayey soil, cement, maximum dry density, optimum moisture content, California bearing ratio

Procedia PDF Downloads 340
30911 The Effect of Development of Two-Phase Flow Regimes on the Stability of Gas Lift Systems

Authors: Khalid. M. O. Elmabrok, M. L. Burby, G. G. Nasr

Abstract:

Flow instability during gas lift operation is caused by three major phenomena – the density wave oscillation, the casing heading pressure and the flow perturbation within the two-phase flow region. This paper focuses on the causes and the effect of flow instability during gas lift operation and suggests ways to control it in order to maximise productivity during gas lift operations. A laboratory-scale two-phase flow system to study the effects of flow perturbation was designed and built. The apparatus is comprised of a 2 m long by 66 mm ID transparent PVC pipe with air injection point situated at 0.1 m above the base of the pipe. This is the point where stabilised bubbles were visibly clear after injection. Air is injected into the water filled transparent pipe at different flow rates and pressures. The behavior of the different sizes of the bubbles generated within the two-phase region was captured using a digital camera and the images were analysed using the advanced image processing package. It was observed that the average maximum bubbles sizes increased with the increase in the length of the vertical pipe column from 29.72 to 47 mm. The increase in air injection pressure from 0.5 to 3 bars increased the bubble sizes from 29.72 mm to 44.17 mm and then decreasing when the pressure reaches 4 bars. It was observed that at higher bubble velocity of 6.7 m/s, larger diameter bubbles coalesce and burst due to high agitation and collision with each other. This collapse of the bubbles causes pressure drop and reverse flow within two phase flow and is the main cause of the flow instability phenomena.

Keywords: gas lift instability, bubbles forming, bubbles collapsing, image processing

Procedia PDF Downloads 420
30910 Development of Special Education in Moldova: Paradoxes of Inclusion

Authors: Liya Kalinnikova Magnusson

Abstract:

The present and ongoing research investigation are focusing on special educational origins in Moldova for children with disabilities and its development towards inclusion. The research is coordinated with related research on inclusion in Ukraine and other countries. The research interest in these issues in Moldova is caused by several reasons. The first one is based upon one of the intensive processes of deconstruction of special education institutions in Moldova since 1989. A large number of children with disabilities have been dropping out of these institutions: from 11400 students in 1989 to 5800 students in 1996, corresponding to 1% of all school-age Moldovan learners. Despite the fact that a huge number of students was integrated into regular schools and the dynamics of this data across the country was uneven (the opposite, the dynamics of exclusion was raised in Trans-Dniester on the border of Moldova), the volume of the change was evident and traditional special educational provision was under stable decline. The second reason is tied to transitional challenges, which Moldova met under the force to economic liberalisation that led the country to poverty. Deinstitutionalization of the entire state system took place in the situation of economic polarization of the society. The level of social benefits was dramatically diminished, increasing inequality. The most vulnerable from the comprehensive income consideration were families with many children, children with disabilities, children with health problems, etc.: each third child belonged to the poorest population. In 2000-2001: 87,4% of all families with children had incomes below the minimum wage. The research question raised based upon these considerations has been addressed to the investigation of particular patterns of the origins of special education and its development towards inclusion in Moldova from 1980 until the present date: what is the pattern of special education origins and what are particular arrangements of special education development towards inclusion against inequality? This is a qualitative study, with relevant peer review resources connected to the research question and national documents of educational reforms towards inclusion retrospectively and contemporary, analysed by a content analysis approach. This study utilises long term statistics completed by the respective international agencies as a result of regular monitoring of the implementation of educational reforms. The main findings were composed in three big themes: adoption of the Soviet pattern of special education, ‘endemic stress’ of breaking the pattern, and ‘paradoxes of resolution’.

Keywords: special education, statistics, educational reforms, inclusion, children with disabilities, content analysis

Procedia PDF Downloads 168
30909 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 443
30908 Spatio-Temporal Dynamic of Woody Vegetation Assessment Using Oblique Landscape Photographs

Authors: V. V. Fomin, A. P. Mikhailovich, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Ground-level landscape photos can be used as a source of objective data on woody vegetation and vegetation dynamics. We proposed a method for processing, analyzing, and presenting ground photographs, which has the following advantages: 1) researcher has to form holistic representation of the study area in form of a set of interlapping ground-level landscape photographs; 2) it is necessary to define or obtain characteristics of the landscape, objects, and phenomena present on the photographs; 3) it is necessary to create new or supplement existing textual descriptions and annotations for the ground-level landscape photographs; 4) single or multiple ground-level landscape photographs can be used to develop specialized geoinformation layers, schematic maps or thematic maps; 5) it is necessary to determine quantitative data that describes both images as a whole, and displayed objects and phenomena, using algorithms for automated image analysis. It is suggested to match each photo with a polygonal geoinformation layer, which is a sector consisting of areas corresponding with parts of the landscape visible in the photos. Calculation of visibility areas is performed in a geoinformation system within a sector using a digital model of a study area relief and visibility analysis functions. Superposition of the visibility sectors corresponding with various camera viewpoints allows matching landscape photos with each other to create a complete and wholesome representation of the space in question. It is suggested to user-defined data or phenomenons on the images with the following superposition over the visibility sector in the form of map symbols. The technology of geoinformation layers’ spatial superposition over the visibility sector creates opportunities for image geotagging using quantitative data obtained from raster or vector layers within the sector with the ability to generate annotations in natural language. The proposed method has proven itself well for relatively open and clearly visible areas with well-defined relief, for example, in mountainous areas in the treeline ecotone. When the polygonal layers of visibility sectors for a large number of different points of photography are topologically superimposed, a layer of visibility of sections of the entire study area is formed, which is displayed in the photographs. Also, as a result of this overlapping of sectors, areas that did not appear in the photo will be assessed as gaps. According to the results of this procedure, it becomes possible to obtain information about the photos that display a specific area and from which points of photography it is visible. This information may be obtained either as a query on the map or as a query for the attribute table of the layer. The method was tested using repeated photos taken from forty camera viewpoints located on Ray-Iz mountain massif (Polar Urals, Russia) from 1960 until 2023. It has been successfully used in combination with other ground-based and remote sensing methods of studying the climate-driven dynamics of woody vegetation in the Polar Urals. Acknowledgment: This research was collaboratively funded by the Russian Ministry for Science and Education project No. FEUG-2023-0002 (image representation) and Russian Science Foundation project No. 24-24-00235 (automated textual description).

Keywords: woody, vegetation, repeated, photographs

Procedia PDF Downloads 89
30907 Environmental Effect on Yield and Quality of French Bean Genotypes Grown in Poly-Net House of India

Authors: Ramandeep Kaur, Tarsem Singh Dhillon, Rajinder Kumar Dhall, Ruma Devi

Abstract:

French bean (Phaseolous vulgaris L.) is an economically potential legume vegetable grown at high altitude (>1000 ft.). More recently, its cultivation in Northern Indian plans is gaining popularity but there is severe reduction in its yield and quality due to low temperature during extreme winter conditions of December-January in open field conditions. Therefore, present study was undertaken to evaluate 29 indeterminate French bean genotypes for various yield and quality traits in poly-net house with the objective to identify best performing genotypes during winter conditions. The significant variation was observed among all the genotypes for all the studied traits. The green pod yield was significantly higher in genotype Lakshmi (992.33 g/plant) followed by Star-I (955.50 g/plant) and FBK-4 (911.17 g/plant). However, the genotypes FBK-10 (105.50 days) and Lakshmi (106.83 days) took least number of days to first harvest and were significantly better than all other genotypes (109.00-136.83 days). The maximum numbers of 10 pickings were recorded in genotype Lakshmi whereas maximum harvesting span as also observed in Lakshmi (60.50 days) which was significantly higher than all other genotypes (31.17-56.50 days). Regarding quality traits, maximum dry matter was observed in FBK-13 (13.87%), protein content in FBK-1 (9.67%), sugar content in FBK-5 (9.60%) and minimum fiber content in FBK-12 (0.69%). It is hereby concluded that high productivity and better quality of French bean (genotypes: Lakshmi, Star-I, FBK-4) was produced in poly-net house conditions of Punjab, India and these pods fetches premium price in the market as there is no availability of green pods at that time in high altitudes. Hence, there is a great scope of cultivation of indeterminate French bean under poly-net house conditions in Punjab.

Keywords: earliness, pod, protected environment, quality, yield

Procedia PDF Downloads 106
30906 Organic Geochemistry of the Late Cenomanian–Early Turonian Source Rock in Central and Northern Tunisia

Authors: Belhaj Mohamed, M. Saidi, I. Bouazizi, M. Soussi, M. Ben Jrad

Abstract:

The Late Cenomanian-Early Turonian laminated, black, organic-rich limestones were described in Central Tunisia and attributed to the Bahloul Formation. It covers central and northern Tunisia, and the northern part of the Gulf of Gabes. The Bahloul Formation is considered as one of the main source rocks in Tunisia and is composed of outer-shelf to slop-laminated and dark-gray to black-colored limestones and marls. This formation had been deposited in a relatively deep-marine, calm, and anoxic environment. Rock-Eval analysis and vitrinite reflectance (Ro) measurements were performed on the basis of the organic carbon content. Several samples were chosen for molecular organic geochemistry. Saturate and aromatic hydrocarbons were analyzed by gas chromatography (GC) and GC–mass spectrometry. Geochemical data of the Bahloul Formation in northern and central Tunisia show this level to be a good potential source rock as indicated by the high content of type II organic matter. This formation exhibits high total organic carbon contents (as much as 14%), with an average value of 2% and a good to excellent petroleum potential, ranging between 2 and 50 kg of hydrocarbon/ton of rock. The extracts from the Bahloul Formation are characterized by Pr/Ph ratios ranging between 1.5 and 3, a moderate diasterane content, a C27 sterane approximately equal to C29 sterane, a high C28/C29 ratio, low gammacerane index, a C35/C34 homohopane ratio less than 1 and carbon isotope compositions between -24 and -26‰. The thermal maturity is relatively low, corresponding to the beginning of the oil window in the western area near the Algerian border, in the oil window in the eastern area (Sahel basin) and late mature in northern part.

Keywords: biomarkers, organic geochemistry, source rock, Tunisia

Procedia PDF Downloads 483
30905 Effect of Different Planting Times and Mulching Materials on Seed Quality and Yield of China Aster Cultivars

Authors: A. A. Bajad, B. P. Sharma, Y. C. Gupta, B. S. Dilt, R. K. Gupta

Abstract:

The present investigations were carried out at the experimental farm of Department of Floriculture and Landscape Architecture, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, H.P. during 2015 and 2016. The experiment was laid out in a Randomized Block Design (factorial) consisting of 48 treatment combinations of four planting dates viz., D1- mid March, D2-mid April, D3-mid May and D4- mid June and two cultivars namely V1- Kamini and V2 -Poornima with six mulching materials M¬0¬- without mulch, M1- Black plastic mulch (100 µ), M2- Silver plastic mulch (100 µ), M3¬- Transparent plastic mulch (100 µ), M3-Transparent plastic mulch (100 µ), M4¬- Pine needle (100 µ) and M5- Grass (1 inch layer). Among different planting times, D4 i.e. mid June planting obtained best results for number of seed per flower (179.38), germination percent (83.92 %), electrical conductivity (0.97 ds/m), seedling length (7.93 cm), seedling dry weight (7.09 mg), seedling vigour index I (763.79), moisture content (7.83 %) and 1000 seed weight (1.94 g). However, seed yield per plant (14.30 g) was recorded to be maximum in mid of March. Among the cultivars, cv. ‘Poornima’ gave best results for number of seed per plant (187.30). However, cv. ‘Kamini’ recorded the best result for seed yield per plant (12.55), electrical conductivity (1.11 ds/m), germination percent (80.47 %), seedling length (6.39 cm), seedling dry weight (5.11 mg), seedling vigour index I (649.49), moisture content (9.28 %) and 1000 seed weight (1.70 g). Silver plastic obtained best results for number of seed per flower (170.10), seed yield per plant (15.66 g), germination percent (80.17 %), electrical conductivity (1.26 ds/m), seedling length (5.88 cm), seedling dry weight (4.46 mg), seedling vigour index I (616.78), Moisture content (9.35 %) and 100 seed weight (1.97 g).

Keywords: cultivars, mulch materials, planting times, flowers

Procedia PDF Downloads 287
30904 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection

Authors: Evan Lowhorn, Rocio Alba-Flores

Abstract:

Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.

Keywords: computer vision, drone control, keypoint detection, openpose

Procedia PDF Downloads 184
30903 Metaphorical Devices in Political Cartoons with Reference to Political Confrontation in Pakistan after Panama Leaks

Authors: Ayesha Ashfaq, Muhammad Ajmal Ashfaq

Abstract:

It has been assumed that metaphorical and symbolic contests are waged with metaphors, captions, and signs in political cartoons that play a significant role in image construction of political actors, situations or events in the political arena. This paper is an effort to explore the metaphorical devices in political cartoons related to the political confrontation in Pakistan between the ruling party Pakistan Muslim League Nawaz (PMLN) and opposition parties especially after Panama leaks. For this purpose, political cartoons sketched by five renowned political cartoonists on the basis of their belongings to the most highly circulated mainstream English newspapers of Pakistan and their professional experiences in their genre, were selected. The cartoons were analyzed through the Barthes’s model of Semiotics under the umbrella of the first level of agenda setting theory ‘framing’. It was observed that metaphorical devices in political cartoons are one of the key weapons of cartoonists’ armory. These devices are used to attack the candidates and contribute to the image and character building. It was found that all the selected political cartoonists used different forms of metaphors including situational metaphors and embodying metaphors. Not only the physical stature but also the debates and their activities were depicted metaphorically in the cartoons that create the scenario of comparison between the cartoons and their real political confrontation. It was examined that both forms of metaphors shed light on cartoonist’s perception and newspaper’s policy about political candidates, political parties and particular events. In addition, it was found that zoomorphic metaphors and metaphors of diminishments were also predominantly used to depict the conflict between two said political actors.

Keywords: metaphor, Panama leaks, political cartoons, political communication

Procedia PDF Downloads 307
30902 A Questionnaire Survey Reviewing Radiographers' Knowledge of Computed Tomography Exposure Parameters

Authors: Mohammad Rawashdeh, Mark McEntee, Maha Zaitoun, Mostafa Abdelrahman, Patrick Brennan, Haytham Alewaidat, Sarah Lewis, Charbel Saade

Abstract:

Despite the tremendous advancements that have been generated by Computed Tomography (CT) in the field of diagnosis, concerns have been raised about the potential cancer induction risk from CT because of the exponentially increased use of it in medicine. This study aims at investigating the application and knowledge of practicing radiographers in Jordan about CT radiation. In order to collect the primary data of this study, a questionnaire was designed and distributed by social media using a snow-balling sampling method. The respondents (n=54) have answered 36 questions including the questions about their demographic information, knowledge about Diagnostic Reference Levels (DRLs), CT exposure and adaptation of pediatric patients exposure. The educational level of the respondents was either at a diploma degree (35.2%) or bachelor (64.8%). The results of this study have indicated a good level of general knowledge between radiographers about the relationship between image quality, exposure parameters, and patient dose. The level of knowledge related to DRL was poor where less than 7.4 percent of the sample members were able to give specific values for a number of common anatomical fields, including abdomen, brain, and chest. Overall, Jordanian radiographers need to gain more knowledge about the expected levels of the dose when applying good practice. Additional education on DRL or DRL inclusion in educational programs is highlighted.

Keywords: computed tomography, CT scan, DRLs, exposure parameters, image quality, radiation dose

Procedia PDF Downloads 144
30901 The Effect of Extruded Full-Fat Rapeseed on Productivity and Eggs Quality of Isa Brown Laying Hens

Authors: Vilma Sasyte, Vilma Viliene, Agila Dauksiene, Asta Raceviciute-Stupeliene, Romas Gruzauskas, Saulius Alijosius

Abstract:

The eight-week feeding trial was conducted involving 27-wk-old Isa brown laying hens to study the effect of dry extrusion processing on partial reduction in total glucosinolates content of locally produced rapeseed and on productivity and eggs quality parameters of laying hens. Thirty-six hens were randomly assigned one of three treatments (CONTR, AERS and HERS), each comprising 12, individual caged layers. The main composition of the diets was the same, but extruded soya bean seed were replaced with 2.5% of the extruded rapeseed in the AERS group and 4.5 % in the HERS group. Rapeseed was extruded together with faba beans. Due to extrusion process the glucosinolates content was reduced by 7.83 µmol/g of rapeseed. The results of conducted trial shows, that during all experimental period egg production parameters, such as the average feed intake (6529.17 vs. 6257 g/hen/14 day; P < 0.05) and laying intensity (94.35% vs. 89.29; P < 0.05) were statistically different for HERS and CONTR laying hens respectively. Only the feed conversion ratio to produce 1 kg of eggs, kg in AERS group was by 11 % lower compared to CONTR group (P < 0.05). By analysing the effect of extruded rapeseed on egg mass, the statistical differences between treatments were no determined. The dietary treatments did not affect egg weight, albumen height, haugh units, albumen and yolk pH. However, in the HERS group were get eggs with the more intensive yolk color, higher redness (a) and yellowness (b) values. The inclusion of full-fat extruded rapeseed had no effect on egg shell quality parameters, i.e. shell breaking strength, shell weight with and without coat and shell index, but in the experimental groups were get eggs with the thinner shell (P < 0.05). The internal egg quality analysis showed that with higher content of extruded rapeseed (4.5 %) level in the diet, the total cholesterol in the eggs yolk decreased by 1.92 mg/g in comparison with CONTR group (P < 0.05). Eggs laid by hens fed the diet containing 2.5% and 4.5% had increasing ∑PNRR/∑SRR ratio and decreasing ∑(n-6)/∑(n-3) ratio values of eggs yolk fatty acids than in CONTR group. Eggs of hens fed different amount of extruded rapeseed presented an n-6 : n-3 ratio changed from 5.17 to 4.71. The analysis of the relationship between hypocholesteremia/ hypercholesterolemia fatty acids (H/H), which is based on the functional properties of fatty acids, found that the value of it ratio is significant higher in laying hens fed diets supplemented with 4.5% extruded rapeseed than the CONTR group, demonstrating the positive effects of extruded rapeseed on egg quality. The results of trial confirmed that extruded full fat rapeseed to the 4.5% are suitable to replace soyabean in the compound feed of laying hens.

Keywords: egg quality, extruded full-fat rapeseed, laying hens, productivity

Procedia PDF Downloads 216
30900 Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers

Authors: Intan Izafina Idrus, Mardina Abdullah, Alina Marie Hasbi, Asnawi Husin

Abstract:

This paper presents the result of large-scale traveling ionospheric disturbance (LSTID) observation during moderate magnetic storm event on 25 October 2011 with SYM-H ~ -160 nT and Kp ~ 7 over Peninsular Malaysia at equatorial region using vertical total electron content (VTEC) from the Global Positioning System (GPS) observation measurement. The propagation of the LSTID signatures in the TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTID was found to propagate equator-ward during this event. The results showed that the LSTID propagated with an average phase velocity of 526.41 m/s and average periods of 140 min. The occurrence of this LSTID was also found to be the subsequent effects of substorm activities in the auroral region.

Keywords: Global Positioning System (GPS), large-scale traveling ionospheric disturbance (LSTID), moderate geomagnetic storm, vertical total electron content (VTEC)

Procedia PDF Downloads 225
30899 Genetic Variability in Advanced Derivatives of Interspecific Hybrids in Brassica

Authors: Yasir Ali, Farhatullah

Abstract:

The present study was conducted to estimate the genetic variability, heritability and genetic advance in six parental lines and their 56 genotypes derived from five introgressed brassica populations on the basis of morphological and biochemical traits. The experiment was laid out in a randomized complete block design with two replications at The University of Agriculture Peshawar-Pakistan during growing season of 2015-2016. The ANOVA of all traits of F5:6 populations showed highly significant differences (P ≤ 0.01) for all morphological and biochemical traits. Among F5:6 populations, the genotype 2(526) was earlier in flowering (108.65 days), and genotype 14(485) was earlier in maturity (170 days). Tallest plants (182.5 cm), largest main raceme (91.5 cm) and maximum number of pods (80.5) on main raceme were recorded for genotype 17(34). Maximum primary branches plant-1(6.2) and longest pods (10.26 cm) were recorded for genotype 15, while genotype 16(171) had more seeds pod⁻¹ (22) and gave maximum yield plant-1 (30.22 g). The maximum 100-seed weight (0.60 g) was observed for genotype 10(506) while high protein content (22.61%) was recorded for genotype 4(99). Maximum oil content (54.08 %) and low linoleic acid (7.07 %) were produced by genotype (12(138) and low glucosinolate (59.01 µMg⁻¹) was recorded for genotype 21(113). The genotype 27(303) having high oleic acid content (51.73 %) and genotype 1(209) gave low erucic acid (35.97 %). Among the F5:6 populations moderate to high heritability observed for all morphological and biochemical traits coupled with high genetic advance. Cluster analysis grouped the 56 F5:6 populations along their parental lines into seven different groups. Each group was different from the other group on the basis of morphological and biochemical traits. Moreover all the F5:6 populations showed sufficient variability. Genotypes 10(506) and 16(171) were superior for high seed yield⁻¹, 100-seeds weight, and seed pod⁻¹ and are recommended for future breeding program.

Keywords: Brassicaceae, biochemical characterization, introgression, morphological characterization

Procedia PDF Downloads 180
30898 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm

Authors: Ping Bo, Meng Yunshan

Abstract:

Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.

Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter

Procedia PDF Downloads 324
30897 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 157
30896 Anonymous Editing Prevention Technique Using Gradient Method for High-Quality Video

Authors: Jiwon Lee, Chanho Jung, Si-Hwan Jang, Kyung-Ill Kim, Sanghyun Joo, Wook-Ho Son

Abstract:

Since the advances in digital imaging technologies have led to development of high quality digital devices, there are a lot of illegal copies of copyrighted video content on the internet. Thus, we propose a high-quality (HQ) video watermarking scheme that can prevent these illegal copies from spreading out. The proposed scheme is applied spatial and temporal gradient methods to improve the fidelity and detection performance. Also, the scheme duplicates the watermark signal temporally to alleviate the signal reduction caused by geometric and signal-processing distortions. Experimental results show that the proposed scheme achieves better performance than previously proposed schemes and it has high fidelity. The proposed scheme can be used in broadcast monitoring or traitor tracking applications which need fast detection process to prevent illegally recorded video content from spreading out.

Keywords: editing prevention technique, gradient method, luminance change, video watermarking

Procedia PDF Downloads 456
30895 A Study and Design Scarf Collection Applied Vietnamese Traditional Patterns by Using Printing Method on Fabric

Authors: Mai Anh Pham Ho

Abstract:

Scarf products today is a symbol of fashion to decorate, to make our life more beautiful and bring new features to our living space. It also shows the cultural identity by using the traditional patterns that make easily to introduce the image of Vietnam to other nations all over the world. Therefore, the purpose of this research is to classify Vietnamese traditional patterns according to the era and dynasties. Vietnamese traditional patterns through the dynasties of Vietnamese history are done and classified by five groups of patterns including the geometric patterns, the natural patterns, the animal patterns, the floral patterns, and the character patterns in the Prehistoric times, the Bronze and Iron age, the Chinese domination, the Ngo-Dinh-TienLe-Ly-Tran-Ho dynasty, and the LeSo-Mac-LeTrinh-TaySon-Nguyen dynasty. Besides, there are some special kinds of Vietnamese traditional patterns like buffalo, lotus, bronze-drum, Phuc Loc Tho character, and so on. Extensive research was conducted for modernizing scarf collection applied Vietnamese traditional patterns which the fashion trend is used on creating works. The concept, target, image map, lifestyle map, motif, colours, arrangement and completion of patterns on scarf were set up. The scarf collection is designed and developed by the Adobe Illustrator program with three colour ways for each scarf. Upon completion of the research, digital printing technology is chosen for using on scarf collection which Vietnamese traditional patterns were researched deeply and widely with the purpose of establishment the basic background for Vietnamese culture in order to identify Vietnamese national personality as well as establish and preserve the cultural heritage.

Keywords: scarf collection, Vietnamese traditional patterns, printing methods, fabric design

Procedia PDF Downloads 342
30894 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 84
30893 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases

Authors: Hsin Lee, Hsuan Lee

Abstract:

Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.

Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases

Procedia PDF Downloads 72
30892 Dynamic Soil-Structure Interaction Analysis of Reinforced Concrete Buildings

Authors: Abdelhacine Gouasmia, Abdelhamid Belkhiri, Allaeddine Athmani

Abstract:

The objective of this paper is to evaluate the effects of soil-structure interaction (SSI) on the modal characteristics and on the dynamic response of current structures. The objective is on the overall behaviour of a real structure of five storeys reinforced concrete (R/C) building typically encountered in Algeria. Sensitivity studies are undertaken in order to study the effects of frequency content of the input motion, frequency of the soil-structure system, rigidity and depth of the soil layer on the dynamic response of such structures. This investigation indicated that the rigidity of the soil layer is the predominant factor in soil-structure interaction and its increases would definitely reduce the deformation in the R/C structure. On the other hand, increasing the period of the underlying soil will cause an increase in the lateral displacements at story levels and create irregularity in the distribution of story shears. Possible resonance between the frequency content of the input motion and soil could also play an important role in increasing the structural response.

Keywords: direct method, finite element method, foundation, R/C Frame, soil-structure interaction

Procedia PDF Downloads 641
30891 Network User Rules in Universities

Authors: Michel Berthiaume, Daniel Chamberland-Tremblay, Elaine Paiva Mosconi, Jérôme Blanchet-Brisson

Abstract:

This presentation documents the overall failure of North-American universities to build an effective IT Policies communication with their primary users: the students. A sample of 12 universities was selected. A set of indicators based on usability principles to assess the content of IT Policies vas devised. Then, IT Policies were rated according to the indicators and the results analyzed to build an overall picture of the potential of communication problems in policy communication. The initial finding is that network security professionals in Universities have to reach a delicate balance between asset protection, asset valorization and user security awareness.

Keywords: computer security, IT policy, security awareness, network user rules

Procedia PDF Downloads 562
30890 Multimodal Sentiment Analysis With Web Based Application

Authors: Shreyansh Singh, Afroz Ahmed

Abstract:

Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.

Keywords: sentiment analysis, RNN, LSTM, word embeddings

Procedia PDF Downloads 119
30889 Hybrid Method for Smart Suggestions in Conversations for Online Marketplaces

Authors: Yasamin Rahimi, Ali Kamandi, Abbas Hoseini, Hesam Haddad

Abstract:

Online/offline chat is a convenient approach in the electronic markets of second-hand products in which potential customers would like to have more information about the products to fill the information gap between buyers and sellers. Online peer in peer market is trying to create artificial intelligence-based systems that help customers ask more informative questions in an easier way. In this article, we introduce a method for the question/answer system that we have developed for the top-ranked electronic market in Iran called Divar. When it comes to secondhand products, incomplete product information in a purchase will result in loss to the buyer. One way to balance buyer and seller information of a product is to help the buyer ask more informative questions when purchasing. Also, the short time to start and achieve the desired result of the conversation was one of our main goals, which was achieved according to A/B tests results. In this paper, we propose and evaluate a method for suggesting questions and answers in the messaging platform of the e-commerce website Divar. Creating such systems is to help users gather knowledge about the product easier and faster, All from the Divar database. We collected a dataset of around 2 million messages in Persian colloquial language, and for each category of product, we gathered 500K messages, of which only 2K were Tagged, and semi-supervised methods were used. In order to publish the proposed model to production, it is required to be fast enough to process 10 million messages daily on CPU processors. In order to reach that speed, in many subtasks, faster and simplistic models are preferred over deep neural models. The proposed method, which requires only a small amount of labeled data, is currently used in Divar production on CPU processors, and 15% of buyers and seller’s messages in conversations is directly chosen from our model output, and more than 27% of buyers have used this model suggestions in at least one daily conversation.

Keywords: smart reply, spell checker, information retrieval, intent detection, question answering

Procedia PDF Downloads 187