Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 653

Search results for: word embeddings

653 Genomic Sequence Representation Learning: An Analysis of K-Mer Vector Embedding Dimensionality

Authors: James Jr. Mashiyane, Risuna Nkolele, Stephanie J. Müller, Gciniwe S. Dlamini, Rebone L. Meraba, Darlington S. Mapiye


When performing language tasks in natural language processing (NLP), the dimensionality of word embeddings is chosen either ad-hoc or is calculated by optimizing the Pairwise Inner Product (PIP) loss. The PIP loss is a metric that measures the dissimilarity between word embeddings, and it is obtained through matrix perturbation theory by utilizing the unitary invariance of word embeddings. Unlike in natural language, in genomics, especially in genome sequence processing, unlike in natural language processing, there is no notion of a “word,” but rather, there are sequence substrings of length k called k-mers. K-mers sizes matter, and they vary depending on the goal of the task at hand. The dimensionality of word embeddings in NLP has been studied using the matrix perturbation theory and the PIP loss. In this paper, the sufficiency and reliability of applying word-embedding algorithms to various genomic sequence datasets are investigated to understand the relationship between the k-mer size and their embedding dimension. This is completed by studying the scaling capability of three embedding algorithms, namely Latent Semantic analysis (LSA), Word2Vec, and Global Vectors (GloVe), with respect to the k-mer size. Utilising the PIP loss as a metric to train embeddings on different datasets, we also show that Word2Vec outperforms LSA and GloVe in accurate computing embeddings as both the k-mer size and vocabulary increase. Finally, the shortcomings of natural language processing embedding algorithms in performing genomic tasks are discussed.

Keywords: word embeddings, k-mer embedding, dimensionality reduction

Procedia PDF Downloads 30
652 Multimodal Sentiment Analysis With Web Based Application

Authors: Shreyansh Singh, Afroz Ahmed


Sentiment Analysis intends to naturally reveal the hidden mentality that we hold towards an entity. The total of this assumption over a populace addresses sentiment surveying and has various applications. Current text-based sentiment analysis depends on the development of word embeddings and Machine Learning models that take in conclusion from enormous text corpora. Sentiment Analysis from text is presently generally utilized for consumer loyalty appraisal and brand insight investigation. With the expansion of online media, multimodal assessment investigation is set to carry new freedoms with the appearance of integral information streams for improving and going past text-based feeling examination using the new transforms methods. Since supposition can be distinguished through compelling follows it leaves, like facial and vocal presentations, multimodal opinion investigation offers good roads for examining facial and vocal articulations notwithstanding the record or printed content. These methodologies use the Recurrent Neural Networks (RNNs) with the LSTM modes to increase their performance. In this study, we characterize feeling and the issue of multimodal assessment investigation and audit ongoing advancements in multimodal notion examination in various spaces, including spoken surveys, pictures, video websites, human-machine, and human-human connections. Difficulties and chances of this arising field are additionally examined, promoting our theory that multimodal feeling investigation holds critical undiscovered potential.

Keywords: sentiment analysis, RNN, LSTM, word embeddings

Procedia PDF Downloads 23
651 Text Emotion Recognition by Multi-Head Attention based Bidirectional LSTM Utilizing Multi-Level Classification

Authors: Vishwanath Pethri Kamath, Jayantha Gowda Sarapanahalli, Vishal Mishra, Siddhesh Balwant Bandgar


Recognition of emotional information is essential in any form of communication. Growing HCI (Human-Computer Interaction) in recent times indicates the importance of understanding of emotions expressed and becomes crucial for improving the system or the interaction itself. In this research work, textual data for emotion recognition is used. The text being the least expressive amongst the multimodal resources poses various challenges such as contextual information and also sequential nature of the language construction. In this research work, the proposal is made for a neural architecture to resolve not less than 8 emotions from textual data sources derived from multiple datasets using google pre-trained word2vec word embeddings and a Multi-head attention-based bidirectional LSTM model with a one-vs-all Multi-Level Classification. The emotions targeted in this research are Anger, Disgust, Fear, Guilt, Joy, Sadness, Shame, and Surprise. Textual data from multiple datasets were used for this research work such as ISEAR, Go Emotions, Affect datasets for creating the emotions’ dataset. Data samples overlap or conflicts were considered with careful preprocessing. Our results show a significant improvement with the modeling architecture and as good as 10 points improvement in recognizing some emotions.

Keywords: text emotion recognition, bidirectional LSTM, multi-head attention, multi-level classification, google word2vec word embeddings

Procedia PDF Downloads 24
650 Word of Mouth and Its Impact on Marketing

Authors: Fatima Naz, Ayesha Tariq


In view of growing of the internet users for e-commerce and taking into account, the emergent impact of word of mouth phenomenon this research has different aims. The aims of this study were built following dissimilar discussion with teachers and colleagues enlightening that word of mouth information for online purchasing do not have the same effect for everybody. Then they were born following dissimilar researchers together with what was already done in previous researches and what was completed. As a result different aims were drawn; the initial aim of this research is to study the attention of the customers in the word of mouth to power their online purchasing activities. The next aim is to analyze the people influenced by the interest of word of mouth. The following aim is to examine the marketing behavior bearing in mind the internet progress and word of mouth, their consideration for word of mouth marketing. In the form of research questions the aims of the study are: 1) How community utilizes and multiplies word of mouth information about online purchasing experience? 2) How communities perceive the word of mouth marketing? 3) How marketers take the word of mouth phenomenon and how they handle it?

Keywords: belief, power, inspiration, self-expression, positive attitude to online marketing, forwarding of contents, purchasing decision, standard marketing

Procedia PDF Downloads 334
649 A Word-to-Vector Formulation for Word Representation

Authors: Sandra Rizkallah, Amir F. Atiya


This work presents a novel word to vector representation that is based on embedding the words into a sphere, whereby the dot product of the corresponding vectors represents the similarity between any two words. Embedding the vectors into a sphere enabled us to take into consideration the antonymity between words, not only the synonymity, because of the suitability to handle the polarity nature of words. For example, a word and its antonym can be represented as a vector and its negative. Moreover, we have managed to extract an adequate vocabulary. The obtained results show that the proposed approach can capture the essence of the language, and can be generalized to estimate a correct similarity of any new pair of words.

Keywords: natural language processing, word to vector, text similarity, text mining

Procedia PDF Downloads 182
648 Math Word Problems: Context and Achievement

Authors: Irena Smetackova


The important part of school mathematics are word problems which represent the connection between school knowledge and life reality. To find the reasons why students consider word problems to be difficult, it is necessary to take into consideration the motivational settings, besides mathematical knowledge and reading skills. Our goal is to identify whether the familiar or unfamiliar context of math word problem influences solving success rate and if so, whether the reasons are motivational or cognitive. For this purpose, we conducted three steps study in group of fifty pupils 9-10 years old. In the first step, we asked pupils to create ‘the best’ word problems for entered numerical formula. The set of 19 word problems with different contexts were selected. In the second step, pupils were asked to evaluate (without solving) how they like each item and how easy it is for them. The 6 word problems with low preference and low estimated success rate were selected and combined with other 6 problems with high preference and success rate. In the third step, the same pupils were asked to solve the word problems. The analysis showed that pupils attitudes and solving toward word problems varied by the context. The strong gender patterns both in preferred contexts and in estimated success rates were identified however the real success rate did not differ so strongly. The success gap between word problems with and without preferred contexts were stronger than the gap between problems with and without real experience with the context. The hypothesis that motivational factors are more important than cognitive factors was confirmed.

Keywords: mathematics, context of reality, motivation, cognition, word problems

Procedia PDF Downloads 128
647 Towards End-To-End Disease Prediction from Raw Metagenomic Data

Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker


Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.

Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine

Procedia PDF Downloads 54
646 Network Word Discovery Framework Based on Sentence Semantic Vector Similarity

Authors: Ganfeng Yu, Yuefeng Ma, Shanliang Yang


The word discovery is a key problem in text information retrieval technology. Methods in new word discovery tend to be closely related to words because they generally obtain new word results by analyzing words. With the popularity of social networks, individual netizens and online self-media have generated various network texts for the convenience of online life, including network words that are far from standard Chinese expression. How detect network words is one of the important goals in the field of text information retrieval today. In this paper, we integrate the word embedding model and clustering methods to propose a network word discovery framework based on sentence semantic similarity (S³-NWD) to detect network words effectively from the corpus. This framework constructs sentence semantic vectors through a distributed representation model, uses the similarity of sentence semantic vectors to determine the semantic relationship between sentences, and finally realizes network word discovery by the meaning of semantic replacement between sentences. The experiment verifies that the framework not only completes the rapid discovery of network words but also realizes the standard word meaning of the discovery of network words, which reflects the effectiveness of our work.

Keywords: text information retrieval, natural language processing, new word discovery, information extraction

Procedia PDF Downloads 6
645 A Supervised Approach for Word Sense Disambiguation Based on Arabic Diacritics

Authors: Alaa Alrakaf, Sk. Md. Mizanur Rahman


Since the last two decades’ Arabic natural language processing (ANLP) has become increasingly much more important. One of the key issues related to ANLP is ambiguity. In Arabic language different pronunciation of one word may have a different meaning. Furthermore, ambiguity also has an impact on the effectiveness and efficiency of Machine Translation (MT). The issue of ambiguity has limited the usefulness and accuracy of the translation from Arabic to English. The lack of Arabic resources makes ambiguity problem more complicated. Additionally, the orthographic level of representation cannot specify the exact meaning of the word. This paper looked at the diacritics of Arabic language and used them to disambiguate a word. The proposed approach of word sense disambiguation used Diacritizer application to Diacritize Arabic text then found the most accurate sense of an ambiguous word using Naïve Bayes Classifier. Our Experimental study proves that using Arabic Diacritics with Naïve Bayes Classifier enhances the accuracy of choosing the appropriate sense by 23% and also decreases the ambiguity in machine translation.

Keywords: Arabic natural language processing, machine learning, machine translation, Naive bayes classifier, word sense disambiguation

Procedia PDF Downloads 276
644 Expressivity of Word-Formation in English and Russian Advertising Lexicon

Authors: Voronina Ekaterina Borisovna


The problem of expressivity of advertising lexicon is studied in the article. The comparison of English and Russian advertising lexicons is done. The objects of the analysis were English and Russian advertising texts, both printed advertising texts and texts extracted from the commercials. Some conclusions concerning the expressivity of advertising lexicon were made. Expressivity can be included in the semantic structure of words or created by word-formation means. Expressivity caused by morphological derivatives includes such facilities as derivational affixes, models and types of word formation.

Keywords: advertising lexicon, expressivity, word-formation means, linguistics

Procedia PDF Downloads 277
643 Accounting as Addressed in the Qur’aan

Authors: Shahriar M. Saadullah, Abdul-Quddoos Abdul-Basith, Zaki K. Abushawish


As a part of academic research in Islamic Accounting it is important to know how the word Accounting is discussed in the Qur’aan. This paper identifies and analyzes the word Accounting in the Qur’aan, which is significant to know and understand. The paper uses a methodology of identifying the root word of Accounting Hasaba (حسب) in the Qur’aan with the help of Islam 360 software and analyzes the use of the relevant words derived from the root word. Then the paper attempts to connect the findings to the contemporary Accounting issues. The paper finds that the root word of Accounting Hasaba (حسب) appears in the Qur’aan 109 times but it is only used in the sense Account, Accountable, or Accounting 45 times. These words appear in 44 different verses in the Qur’aan, appearing twice in one of the verses. The paper divides these verses into 8 different themes namely, Day of Accounting, without any Accounting, Accounting of Time, Self-Accounting, Swift in Accounting, Accounting is only with God, Awareness and the Good Accounting, and Heedlessness and the Bad Accounting. The way the words Account, Accounting, and Accountable is discussed in the Qur’aan links to the contemporary accounting issues including Ethics, Agency Theory, and Internal Control. The links discovered in the paper clearly shows the timeless nature of the message of the Qur’aan.

Keywords: accounting, contemporary accounting issues, Qur'aan, root word of accounting hasaba

Procedia PDF Downloads 132
642 Pudhaiyal: A Maze-Based Treasure Hunt Game for Tamil Words

Authors: Aarthy Anandan, Anitha Narasimhan, Madhan Karky


Word-based games are popular in helping people to improve their vocabulary skills. Games like ‘word search’ and crosswords provide a smart way of increasing vocabulary skills. Word search games are fun to play, but also educational which actually helps to learn a language. Finding the words from word search puzzle helps the player to remember words in an easier way, and it also helps to learn the spellings of words. In this paper, we present a tile distribution algorithm for a Maze-Based Treasure Hunt Game 'Pudhaiyal’ for Tamil words, which describes how words can be distributed horizontally, vertically or diagonally in a 10 x 10 grid. Along with the tile distribution algorithm, we also present an algorithm for the scoring model of the game. The proposed game has been tested with 20,000 Tamil words.

Keywords: Pudhaiyal, Tamil word game, word search, scoring, maze, algorithm

Procedia PDF Downloads 304
641 The Role of Reading Self-Efficacy and Perception of Difficulty in English Reading among Chinese ESL Learners

Authors: Kevin Chan, Kevin K. H. Chung, Patcy P. S. Yeung, H. L. Ip, Bill T. C. Chung, Karen M. K. Chung


Purpose: Recent evidence shows that reading self-efficacy and students perceived difficulty in reading are significantly associated with word reading and reading fluency. However, little is known about these relationships among students learning to read English as a second language, particularly in Chinese students. This study examined the contributions of reading self-efficacy, perception of difficulty in reading, and cognitive-linguistic skills to performance on English word reading and reading fluency in Chinese students. Method: A sample of 122 second-and third-grade students in Hong Kong, China, participated in this study. Students completed the measures of reading self-efficacy and perception of difficulty in reading. They were assessed on their English cognitive-linguistic and reading skills: rapid automatized naming, nonword reading, phonological awareness, word reading, and one-minute word reading. Results: Results of path analysis indicated that when students’ grades were controlled, reading self-efficacy was a significant correlate of word reading and reading fluency, whereas perception of difficulty in reading negatively predicted word reading. Conclusion: These findings underscore the importance of taking students’ reading self-efficacy and perception of difficulty in reading and their cognitive-linguistic skills into consideration when designing reading intervention and instructions for students learning English as a second language.

Keywords: self-efficacy, perception of difficulty in reading, english as a second language, word reading

Procedia PDF Downloads 97
640 Speech Recognition Performance by Adults: A Proposal for a Battery for Marathi

Authors: S. B. Rathna Kumar, Pranjali A Ujwane, Panchanan Mohanty


The present study aimed to develop a battery for assessing speech recognition performance by adults in Marathi. A total of four word lists were developed by considering word frequency, word familiarity, words in common use, and phonemic balance. Each word list consists of 25 words (15 monosyllabic words in CVC structure and 10 monosyllabic words in CVCV structure). Equivalence analysis and performance-intensity function testing was carried using the four word lists on a total of 150 native speakers of Marathi belonging to different regions of Maharashtra (Vidarbha, Marathwada, Khandesh and Northern Maharashtra, Pune, and Konkan). The subjects were further equally divided into five groups based on above mentioned regions. It was found that there was no significant difference (p > 0.05) in the speech recognition performance between groups for each word list and between word lists for each group. Hence, the four word lists developed were equally difficult for all the groups and can be used interchangeably. The performance-intensity (PI) function curve showed semi-linear function, and the groups’ mean slope of the linear portions of the curve indicated an average linear slope of 4.64%, 4.73%, 4.68%, and 4.85% increase in word recognition score per dB for list 1, list 2, list 3 and list 4 respectively. Although, there is no data available on speech recognition tests for adults in Marathi, most of the findings of the study are in line with the findings of research reports on other languages. The four word lists, thus developed, were found to have sufficient reliability and validity in assessing speech recognition performance by adults in Marathi.

Keywords: speech recognition performance, phonemic balance, equivalence analysis, performance-intensity function testing, reliability, validity

Procedia PDF Downloads 289
639 A t-SNE and UMAP Based Neural Network Image Classification Algorithm

Authors: Shelby Simpson, William Stanley, Namir Naba, Xiaodi Wang


Both t-SNE and UMAP are brand new state of art tools to predominantly preserve the local structure that is to group neighboring data points together, which indeed provides a very informative visualization of heterogeneity in our data. In this research, we develop a t-SNE and UMAP base neural network image classification algorithm to embed the original dataset to a corresponding low dimensional dataset as a preprocessing step, then use this embedded database as input to our specially designed neural network classifier for image classification. We use the fashion MNIST data set, which is a labeled data set of images of clothing objects in our experiments. t-SNE and UMAP are used for dimensionality reduction of the data set and thus produce low dimensional embeddings. Furthermore, we use the embeddings from t-SNE and UMAP to feed into two neural networks. The accuracy of the models from the two neural networks is then compared to a dense neural network that does not use embedding as an input to show which model can classify the images of clothing objects more accurately.

Keywords: t-SNE, UMAP, fashion MNIST, neural networks

Procedia PDF Downloads 85
638 Sentence Structure for Free Word Order Languages in Context with Anaphora Resolution: A Case Study of Hindi

Authors: Pardeep Singh, Kamlesh Dutta


Many languages have fixed sentence structure and others are free word order. The accuracy of anaphora resolution of syntax based algorithm depends on structure of the sentence. So, it is important to analyze the structure of any language before implementing these algorithms. In this study, we analyzed the sentence structure exploiting the case marker in Hindi as well as some special tag for subject and object. We also investigated the word order for Hindi. Word order typology refers to the study of the order of the syntactic constituents of a language. We analyzed 165 news items of Ranchi Express from EMILEE corpus of plain text. It consisted of 1745 sentences. Eight file of dialogue based from the same corpus has been analyzed which will have 1521 sentences. The percentages of subject object verb structure (SOV) and object subject verb (OSV) are 66.90 and 33.10, respectively.

Keywords: anaphora resolution, free word order languages, SOV, OSV

Procedia PDF Downloads 384
637 Effects of Word Formation Dissimilarities on Youruba Learners of English

Authors: Pelumi Olowofoyeku


English as a language has great reach and influence; it is taught all over the world. For instance, in Nigeria, English language is been taught and learned as a second language; therefore second learners of English in Nigeria have certain problems they contend with. Because of the dissimilarities in word formation patterns of English and Yoruba languages, Yoruba learners of English mostly found in the south west of Nigeria, and some parts of Kwara, Kogi, and Edo states of Nigeria have problems with word formation patterns in English. The objectives of this paper therefore, are: to identify the levels of word formation dissimilarities in English and Yoruba languages and to examine the effects of these dissimilarities on the Yoruba learners of English. The data for this paper were graded words purposely selected and presented to selected students of Adeniran Ogunsanya College of Education, Oto-Ijanikin, Lagos, who are Yoruba learners of English. These respondents were randomly selected to form words which are purposively selected to test the effects of word formation dissimilarities between Yoruba (the respondent’s first language) and English language on the respondents. The dissimilarities are examined using contrastive analysis tools. This paper reveals that there are differences in the word formation patterns of Yoruba and English languages. The writer believes that there is need for language teachers to undertake comparative studies of the two languages involved for methodological reasons. The author then suggests that teachers should identify the problem areas and systematically teach their students. The paper concludes that although English and Yoruba word formation patterns differ very significantly in many respects, there exist language universals in all languages which language educators should take advantage of in teaching.

Keywords: word formation patterns, graded words, ESL, Yoruba learners

Procedia PDF Downloads 417
636 Transcription Skills and Written Composition in Chinese

Authors: Pui-sze Yeung, Connie Suk-han Ho, David Wai-ock Chan, Kevin Kien-hoa Chung


Background: Recent findings have shown that transcription skills play a unique and significant role in Chinese word reading and spelling (i.e. word dictation), and written composition development. The interrelationships among component skills of transcription, word reading, word spelling, and written composition in Chinese have rarely been examined in the literature. Is the contribution of component skills of transcription to Chinese written composition mediated by word level skills (i.e., word reading and spelling)? Methods: The participants in the study were 249 Chinese children in Grade 1, Grade 3, and Grade 5 in Hong Kong. They were administered measures of general reasoning ability, orthographic knowledge, stroke sequence knowledge, word spelling, handwriting fluency, word reading, and Chinese narrative writing. Orthographic knowledge- orthographic knowledge was assessed by a task modeled after the lexical decision subtest of the Hong Kong Test of Specific Learning Difficulties in Reading and Writing (HKT-SpLD). Stroke sequence knowledge: The participants’ performance in producing legitimate stroke sequences was measured by a stroke sequence knowledge task. Handwriting fluency- Handwriting fluency was assessed by a task modeled after the Chinese Handwriting Speed Test. Word spelling: The stimuli of the word spelling task consist of fourteen two-character Chinese words. Word reading: The stimuli of the word reading task consist of 120 two-character Chinese words. Written composition: A narrative writing task was used to assess the participants’ text writing skills. Results: Analysis of covariance results showed that there were significant between-grade differences in the performance of word reading, word spelling, handwriting fluency, and written composition. Preliminary hierarchical multiple regression analysis results showed that orthographic knowledge, word spelling, and handwriting fluency were unique predictors of Chinese written composition even after controlling for age, IQ, and word reading. The interaction effects between grade and each of these three skills (orthographic knowledge, word spelling, and handwriting fluency) were not significant. Path analysis results showed that orthographic knowledge contributed to written composition both directly and indirectly through word spelling, while handwriting fluency contributed to written composition directly and indirectly through both word reading and spelling. Stroke sequence knowledge only contributed to written composition indirectly through word spelling. Conclusions: Preliminary hierarchical regression results were consistent with previous findings about the significant role of transcription skills in Chinese word reading, spelling and written composition development. The fact that orthographic knowledge contributed both directly and indirectly to written composition through word reading and spelling may reflect the impact of the script-sound-meaning convergence of Chinese characters on the composing process. The significant contribution of word spelling and handwriting fluency to Chinese written composition across elementary grades highlighted the difficulty in attaining automaticity of transcription skills in Chinese, which limits the working memory resources available for other composing processes.

Keywords: orthographic knowledge, transcription skills, word reading, writing

Procedia PDF Downloads 330
635 The Greek Root Word ‘Kos’ and the Trade of Ancient Greek with Tamil Nadu, India

Authors: D. Pugazhendhi


The ancient Greeks were forerunners in many fields than other societies. So, the Greeks were well connected with all the countries which were well developed during that time through trade route. In this connection, trading of goods from the ancient Greece to Tamil Nadu which is presently in India, though they are geographically far away, played an important role. In that way, the word and the goods related with kos and kare got exchanged between these two societies. So, it is necessary to compare the phonology and the morphological occurrences of these words that are found common both in the ancient Greek and Tamil literatures of the contemporary period. The results show that there were many words derived from the root kos with the basic meaning of ‘arrange’ in the ancient Greek language, but this is not the case in the usage of the word kare. In the ancient Tamil literature, the word ‘kos’ does not have any root and also had rare occurrences. But it was just the opposite in the case of the word ‘kare’. One of all the meanings of the word, which was derived from the root ‘kos’ in ancient Greek literature, is related with costly ornaments. This meaning seems to have close resemblance with the usage of word ‘kos’ in ancient Tamil literature. Also, the meaning of the word ‘kare’ in ancient Tamil literature is related with spices whereas, in the ancient Greek literature, its meaning is related to that of the cooking of meat using spices. Hence, the similarity seen in the meanings of these words ‘kos’ and ‘kare’ in both these languages provides lead for further study. More than that, the ancient literary resources which are available in both these languages ensure the export and import of gold and spices from the ancient Greek land to Tamil land.

Keywords: arrange, kare, Kos, ornament, Tamil

Procedia PDF Downloads 70
634 A Comparative Study on the Positive and Negative of Electronic Word-of-Mouth on the SERVQUAL Scale-Take A Certain Armed Forces General Hospital in Taiwan As An Example

Authors: Po-Chun Lee, Li-Lin Liang, Ching-Yuan Huang


Purpose: Research on electronic word-of-mouth (eWOM)& online review has been widely used in service industry management research in recent years. The SERVQUAL scale is the most commonly used method to measure service quality. Therefore, the purpose of this research is to combine electronic word of mouth & online review with the SERVQUAL scale. To explore the comparative study of positive and negative electronic word-of-mouth reviews of a certain armed force general hospital in Taiwan. Data sources: This research obtained online word-of-mouth comment data on google maps from a military hospital in Taiwan in the past ten years through Internet data mining technology. Research methods: This study uses the semantic content analysis method to classify word-of-mouth reviews according to the revised PZB SERVQUAL scale. Then carry out statistical analysis. Results of data synthesis: The results of this study disclosed that the negative reviews of this military hospital in Taiwan have been increasing year by year. Under the COVID-19 epidemic, positive word-of-mouth has a downward trend. Among the five determiners of SERVQUAL of PZB, positive word-of-mouth reviews performed best in “Assurance,” with a positive review rate of 58.89%, Followed by 43.33% of “Responsiveness.” In negative word-of-mouth reviews, “Assurance” performed the worst, with a positive rate of 70.99%, followed by responsive 29.01%. Conclusions: The important conclusions of this study disclosed that the total number of electronic word-of-mouth reviews of the military hospital has revealed positive growth in recent years, and the positive word-of-mouth growth has revealed negative growth after the epidemic of COVID-19, while the negative word-of-mouth has grown substantially. Regardless of the positive and negative comments, what patients care most about is “Assurance” of the professional attitude and skills of the medical staff, which needs to be strengthened most urgently. In addition, good “Reliability” will help build positive word-of-mouth. However, poor “Responsiveness” can easily lead to the spread of negative word-of-mouth. This study suggests that the hospital should focus on these few service-oriented quality management and audits.

Keywords: quality of medical service, electronic word-of-mouth, armed forces general hospital

Procedia PDF Downloads 106
633 Computable Difference Matrix for Synonyms in the Holy Quran

Authors: Mohamed Ali Al Shaari, Khalid M. El Fitori


In the field of Quran Studies known as Ghareeb A Quran (the study of the meanings of strange words and structures in Holy Quran), it is difficult to distinguish some pragmatic meanings from conceptual meanings. One who wants to study this subject may need to look for a common usage between any two words or more; to understand general meaning, and sometimes may need to look for common differences between them, even if there are synonyms (word sisters). Some of the distinguished scholars of Arabic linguistics believe that there are no synonym words, they believe in varieties of meaning and multi-context usage. Based on this viewpoint, our method was designed to look for synonyms of a word, then the differences that distinct the word and their synonyms. There are many available books that use such a method e.g. synonyms books, dictionaries, glossaries, and some books on the interpretations of strange vocabulary of the Holy Quran, but it is difficult to look up words in these written works. For that reason, we proposed a logical entity, which we called Differences Matrix (DM). DM groups the synonyms words to extract the relations between them and to know the general meaning, which defines the skeleton of all word synonyms; this meaning is expressed by a word of its sisters. In Differences Matrix, we used the sisters(words) as titles for rows and columns, and in the obtained cells we tried to define the row title (word) by using column title (her sister), so the relations between sisters appear, the expected result is well defined groups of sisters for each word. We represented the obtained results formally, and used the defined groups as a base for building the ontology of the Holy Quran synonyms.

Keywords: Quran, synonyms, differences matrix, ontology

Procedia PDF Downloads 336
632 Efficient Layout-Aware Pretraining for Multimodal Form Understanding

Authors: Armineh Nourbakhsh, Sameena Shah, Carolyn Rose


Layout-aware language models have been used to create multimodal representations for documents that are in image form, achieving relatively high accuracy in document understanding tasks. However, the large number of parameters in the resulting models makes building and using them prohibitive without access to high-performing processing units with large memory capacity. We propose an alternative approach that can create efficient representations without the need for a neural visual backbone. This leads to an 80% reduction in the number of parameters compared to the smallest SOTA model, widely expanding applicability. In addition, our layout embeddings are pre-trained on spatial and visual cues alone and only fused with text embeddings in downstream tasks, which can facilitate applicability to low-resource of multi-lingual domains. Despite using 2.5% of training data, we show competitive performance on two form understanding tasks: semantic labeling and link prediction.

Keywords: layout understanding, form understanding, multimodal document understanding, bias-augmented attention

Procedia PDF Downloads 40
631 An Investigation of the Effects of Word Length on Amblyopic Eye Movement during Reading

Authors: Yahya Maeni


It is well established that amblyopic patients have a reduced reading performance and oculomotor deficits. Word length has a significant impact on reading performance and eye movement behaviour during reading. As there no previous attempts to assess whether amblyopic eyes would be affected by word length while reading. This study aims to assess the effect of word length on amblyopic eye movement behaviour during reading including fixation duration, number of fixation and gaze duration. 21 adults with amblyopia and 21 age-matched controls participated in the study (age ± SD) (23.80 ± 4.66) for amblyopes and (24.20 ± 3.58) for Controls. Eye movement was recorded during reading binocularly using Eyelink 1000. Study was designed as 2 x 2 (amblyopia vs. control) x 2 lengths (4 letters, and 8 letters). Compared to controls, the amblyopic participants report significant longer duration of fixation, higher number of fixation and longer gaze duration for short words with far higher significant difference for long words. It could be concluded that eye movement in amblyopia during reading might be accounted for by the length of a word within a text and this could possible explanation of reduced reading performance among amblyopes. By understanding the effect of word length on amblyopia will shed light on reading deficits in amblyopia and help to determine the reading needs of amplyopes in educational and clinical settings.

Keywords: amblyopia, eye movement, reading, fixation

Procedia PDF Downloads 54
630 BiLex-Kids: A Bilingual Word Database for Children 5-13 Years Old

Authors: Aris R. Terzopoulos, Georgia Z. Niolaki, Lynne G. Duncan, Mark A. J. Wilson, Antonios Kyparissiadis, Jackie Masterson


As word databases for bilingual children are not available, researchers, educators and textbook writers must rely on monolingual databases. The aim of this study is thus to develop a bilingual word database, BiLex-kids, an online open access developmental word database for 5-13 year old bilingual children who learn Greek as a second language and have English as their dominant one. BiLex-kids is compiled from 120 Greek textbooks used in Greek-English bilingual education in the UK, USA and Australia, and provides word translations in the two languages, pronunciations in Greek, and psycholinguistic variables (e.g. Zipf, Frequency per million, Dispersion, Contextual Diversity, Neighbourhood size). After clearing the textbooks of non-relevant items (e.g. punctuation), algorithms were applied to extract the psycholinguistic indices for all words. As well as one total lexicon, the database produces values for all ages (one lexicon for each age) and for three age bands (one lexicon per age band: 5-8, 9-11, 12-13 years). BiLex-kids provides researchers with accurate figures for a wide range of psycholinguistic variables, making it a useful and reliable research tool for selecting stimuli to examine lexical processing among bilingual children. In addition, it offers children the opportunity to study word spelling, learn translations and listen to pronunciations in their second language. It further benefits educators in selecting age-appropriate words for teaching reading and spelling, while special educational needs teachers will have a resource to control the content of word lists when designing interventions for bilinguals with literacy difficulties.

Keywords: bilingual children, psycholinguistics, vocabulary development, word databases

Procedia PDF Downloads 232
629 Intensifier as Changed from the Impolite Word in Thai

Authors: Methawee Yuttapongtada


Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.

Keywords: impolite word, intensifier, Thai, semantic change

Procedia PDF Downloads 111
628 Strategies for Word Order Variation Repair between English and Tshivenda at a Rural University

Authors: Farisani Thomas Nephawe, Matodzi Nancy Lambani


Syntactical structures among languages vary considerably and take a simple form despite some complexities in grammar usage. Competence in rules for arranging appropriate word order in sentences avoids ambiguity and misinterpretation of the intended meaning in communication. Nevertheless, writers whose mother tongue is not English often experience difficulties in their endeavour to produce an error-free discourse. This paper examined strategies for word order variation repair between English and Tshivenda among Module 1141 English Communication Skills (ECS) students registered in the 2022 academic year at the University of Venda in Limpopo Province, South Africa. A qualitative research approach was adopted to obtain an in-depth understanding of the use of word order in students' written essays. An action research method was utilised as it is a critical classroom-based inquiry for identifying and improving the teaching and learning of a particular grammatical aspect. Data were collected from 15 purposefully selected participants’ written essays on the basis that they represent the entire ECS population at this university. The researchers conducted a pilot study on the use of word order by ten students who were not part of the study group but shared similar characteristics with them. After utilising discourse critical analysis due to its vigorous assessment and description of the meaning when language has been used, it was revealed that learners experienced difficulties in the proper use of word order regarding declarative, interrogative, and negative sentences. However, after employing scaffolding strategies, the students' performance in the use of word order was preternatural because the lowest challenge was misformation with only 8%, while misordering had 11%. Scaffolding strategies, therefore, are recommended in the teaching and learning of English word order.

Keywords: competence, word order, Tshivenda language, variation repair

Procedia PDF Downloads 0
627 Brand Extension and Customer WOM: Evidence from the Sports Industry

Authors: Jim Shih-Chiao Chin, Yu Ting Yeh, Shui Lien Chen, Yi-Fen Tsai


his study is taking Adidas Company as the object, explored the brand awareness directly or indirectly affects brand affect and word of mouth. First, explored the brand awareness on category fit and image fit, and examined the influence of category fit and image fit on extension attitude. This study then designates the effect of extension attitude on brand affect and word-of-mouth. The relationship of brand awareness on brand affect and word-of-mouth was also explored. The study participants are people who have purchased Adidas extension products. A total of 700 valid questionnaires were collected and statistical software AMOS 20.0 was used to examine the research hypotheses by using structural equation modeling (SEM). Finally, theoretical implications and research directions are provided for future studies.

Keywords: brand extension, brand awareness, product category fit, brand image fit, brand affect, word-of-mouth (WOM)

Procedia PDF Downloads 251
626 Substitutional Inference in Poetry: Word Choice Substitutions Craft Multiple Meanings by Inference

Authors: J. Marie Hicks


The art of the poetic conjoins meaning and symbolism with imagery and rhythm. Perhaps the reader might read this opening sentence as 'The art of the poetic combines meaning and symbolism with imagery and rhythm,' which holds a similar message, but is not quite the same. The reader understands that these factors are combined in this literary form, but to gain a sense of the conjoining of these factors, the reader is forced to consider that these aspects of poetry are not simply combined, but actually adjoin, abut, skirt, or touch in the poetic form. This alternative word choice is an example of substitutional inference. Poetry is, ostensibly, a literary form where language is used precisely or creatively to evoke specific images or emotions for the reader. Often, the reader can predict a coming rhyme or descriptive word choice in a poem, based on previous rhyming pattern or earlier imagery in the poem. However, there are instances when the poet uses an unexpected word choice to create multiple meanings and connections. In these cases, the reader is presented with an unusual phrase or image, requiring that they think about what that image is meant to suggest, and their mind also suggests the word they expected, creating a second, overlying image or meaning. This is what is meant by the term 'substitutional inference.' This is different than simply using a double entendre, a word or phrase that has two meanings, often one complementary and the other disparaging, or one that is innocuous and the other suggestive. In substitutional inference, the poet utilizes an unanticipated word that is either visually or phonetically similar to the expected word, provoking the reader to work to understand the poetic phrase as written, while unconsciously incorporating the meaning of the line as anticipated. In other words, by virtue of a word substitution, an inference of the logical word choice is imparted to the reader, while they are seeking to rationalize the word that was actually used. There is a substitutional inference of meaning created by the alternate word choice. For example, Louise Bogan, 4th Poet Laureate of the United States, used substitutional inference in the form of homonyms, malapropisms, and other unusual word choices in a number of her poems, lending depth and greater complexity, while actively engaging her readers intellectually with her poetry. Substitutional inference not only adds complexity to the potential interpretations of Bogan’s poetry, as well as the poetry of others, but provided a method for writers to infuse additional meanings into their work, thus expressing more information in a compact format. Additionally, this nuancing enriches the poetic experience for the reader, who can enjoy the poem superficially as written, or on a deeper level exploring gradations of meaning.

Keywords: poetic inference, poetic word play, substitutional inference, word substitution

Procedia PDF Downloads 162
625 Hierarchical Tree Long Short-Term Memory for Sentence Representations

Authors: Xiuying Wang, Changliang Li, Bo Xu


A fixed-length feature vector is required for many machine learning algorithms in NLP field. Word embeddings have been very successful at learning lexical information. However, they cannot capture the compositional meaning of sentences, which prevents them from a deeper understanding of language. In this paper, we introduce a novel hierarchical tree long short-term memory (HTLSTM) model that learns vector representations for sentences of arbitrary syntactic type and length. We propose to split one sentence into three hierarchies: short phrase, long phrase and full sentence level. The HTLSTM model gives our algorithm the potential to fully consider the hierarchical information and long-term dependencies of language. We design the experiments on both English and Chinese corpus to evaluate our model on sentiment analysis task. And the results show that our model outperforms several existing state of the art approaches significantly.

Keywords: deep learning, hierarchical tree long short-term memory, sentence representation, sentiment analysis

Procedia PDF Downloads 273
624 Chinese Fantasy Novel: New Word Teaching for Non-Native Learners

Authors: Bok Check Meng, Goh Ying Soon


Giving additional learning materials such as Chinese fantasy novel to non-native learners can be strenuous. Instructors have to understand the underpinning theories about cognitive theory for new word instruction. This paper discusses the underpinning theories. Relevant literature reviews are given. There are basically five major areas of cognitive related theories mentioned in this article. These include motivational learning theory, Affective theory of learning, Cognitive psychology theory, Vocabulary acquisition theory and Bloom’s cognitive levels theory. A theoretical framework has been constructed. Thus, this will give a hand in ensuring non-native learners might gain positive outcomes in the instruction process. Instructors who are interested in teaching new word from Chinese fantasy novel in specific to support additional learning might be able to get insights from this article.

Keywords: Chinese fantasy novel, new word teaching, non-native learners, cognitive theory, bloom

Procedia PDF Downloads 646