Search results for: hybridization chain reaction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4173

Search results for: hybridization chain reaction

1263 Extracting the Atmospheric Carbon Dioxide and Convert It into Useful Minerals at the Room Conditions

Authors: Muthana A. M. Jamel Al-Gburi

Abstract:

Elimination of carbon dioxide (CO2) gas from our atmosphere is very important but complicated, and since there is always an increase in the gas amounts of the other greenhouse ones in our atmosphere, causes by both some of the human activities and the burning of the fossil fuels, which leads to the Global Warming phenomena i.e., increasing the earth temperature to a higher level, creates desertification, tornadoes and storms. In our present research project, we constructed our own system to extract carbon dioxide directly from the atmospheric air at the room conditions and investigated how to convert the gas into a useful mineral or Nano scale fibers made of carbon by using several chemical processes and chemical reactions leading to a valuable building material and also to mitigate the environmental negative change. In the present water pool system (Carbone Dioxide Domestic Extractor), the ocean-sea water was used to dissolve the CO2 gas from the room and converted into carbonate minerals by using a number of additives like shampoo, clay and MgO. Note that the atmospheric air includes CO2 gas has circulated within the sea water by air pump connected to a perforated tubes fixed deep on the pool base. Those chemical agents were mixed with the ocean-sea water to convert the formed acid from the water-CO2 reaction into a useful mineral. After we successfully constructed the system, we did intense experiments and investigations on the CO2 gas reduction level and found which is the optimum active chemical agent to work in the atmospheric conditions.

Keywords: global warming, CO₂ gas, ocean-sea water, additives, solubility level

Procedia PDF Downloads 87
1262 Effect of Zinc-Lysine on Growth, Photosynthesis, Oxidative Stress and Antioxidant System and Chromium Uptake in Rice under Cr Stress

Authors: Shafaqat Ali, Afzal Hussain, Muhammad Rizwan, Longhua Wu

Abstract:

Chromium (Cr) is one of the widespread and toxic trace elements present in the agricultural land. Chromium can enter into the food chain mainly through agricultural crops grown on Cr-contaminated soils such as rice (Oryza sativa L.). The current study was done to evaluate the effects of increasing concentrations foliar applied zinc (Zn) chelated with lysine (Zn-lys) (0, 10, 20, and 30 mg L⁻¹) on rice biomass, photosynthesis, oxidative stress, key antioxidant enzyme activities and Cr uptake under increasing levels of Cr in the soil (0, 100, 500 mg kg⁻¹). Cr-induced toxicity reduced the height of plants, biomass, chlorophyll contents, gas exchange parameters, and antioxidant enzyme activities while increased the Cr concentrations and oxidative stress (malondialdehyde, electrolyte leakage, and H₂O₂) in shoots and roots than control plants. Foliar application of Zn-lys increased the plant growth, photosynthesis, Zn concentrations, and enzyme activities in rice seedlings. In addition, Zn-lys reduced the Cr concentrations and oxidative stress compared to the respective Cr treatments alone. The present results indicate that foliar Zn-lys stimulates the antioxidant defense system in rice, increase the rice growth while reduced the Cr concentrations in plants by promoting the Zn uptake and photosynthesis. Taken together, foliar spray of Zn-lys chelate can efficiently be employed for improving plant growth and Zn contents while reducing Cr concentration in rice grown in Cr-contaminated and Zn-deficient soils.

Keywords: antioxidants, chromium, zinc-lysine, oxidative stress, photosynthesis, tolerance

Procedia PDF Downloads 196
1261 Characterization of Fatty Acid Glucose Esters as Os9BGlu31 Transglucosidase Substrates in Rice

Authors: Juthamath Komvongsa, Bancha Mahong, Kannika Phasai, Sukanya Luang, Jong-Seong Jeon, James Ketudat-Cairns

Abstract:

Os9BGlu31 is a rice transglucosidase that transfers glucosyl moieties to various acceptors such as carboxylic acids and alcohols, including phenolic acids and flavonoids, in vitro. The role of Os9BGlu31 transglucosidase in rice plant metabolism has not been reported to date. Methanolic extracts of rice bran and flag leaves were found to contain substrates to which Os9BGlu31 could transfer glucose from 4-nitrophenyl β -D-glucopyranoside donor. The semi-purified substrate from rice bran was found to contain oleic acid and linoleic acid and the pure fatty acids were found to act as acceptor substrates for Os9BGlu31 transglucosidase to form 1-O-acyl glucose esters. Os9BGlu31 showed higher activity with oleic acid (18:1) and linoleic acid (18:2) than stearic acid (18:0), and had both higher kcat and higher Km for linoleic than oleic acid in the presence of 8 mM 4NPGlc donor. This transglucosidase reaction is reversible, Os9bglu31 knockout rice lines of flag leaves were found to have higher amounts of fatty acid glucose esters than wild type control lines, these data conclude that fatty acid glucose esters act as glucosyl donor substrates for Os9BGlu31 transglucosidase in rice.

Keywords: fatty acid, fatty acid glucose ester, transglucosidase, rice flag leaf, homologous knockout lines, tandam mass spectrometry

Procedia PDF Downloads 370
1260 Multi-Level Framework for Effective Use of Stock Ordering System: Case Study of Small Enterprises in Kgautswane

Authors: Lethamaga Tladi, Ray Kekwaletswe

Abstract:

This study sought to conceptualise a multi-level framework for the effective use of stock ordering system in small enterprises in a rural area context. The interpretive research methodology has been used to enable the researcher to analyse, in-depth, and the subjective meanings of small enterprises’ employees in using the stock ordering system. The empirical data was collected from 13 small enterprises’ employees as participants through semi-structured interviews and observations. Interpretive Phenomenological Analysis (IPA) approach was used to analyse the small enterprises’ employee’s own account of lived experiences in relations to stock ordering system use in terms of their relatedness to, and cognitive engagement with. A case study of Kgautswane, a rural area in Limpopo Province, South Africa, served as a social context where the phenomenon manifested. Technology-Organisation-Environment Theory (TOE), Technology-to-Performance Chain Model (TPC), and Representation Theory (RT) underpinned this study. In this multi-level study, the findings revealed that; At the organisational level, the effective use of stock ordering system was found to be associated with the organisational performance gains such as efficiency, productivity, quality, competitiveness, and market share. Equally so, at the individual level, the effective use of stock ordering system minimised the end-user’s efforts and time to accomplish their tasks, which yields improved individual performance. The Multi-level framework for effective use of stock ordering system was presented.

Keywords: effective use, multi-dimensions of use, multi-level of use, multi-level research, small enterprises, stock ordering system

Procedia PDF Downloads 174
1259 Continuous Processing Approaches for Tunable Asymmetric Photochemical Synthesis

Authors: Amanda C. Evans

Abstract:

Enabling technologies such as continuous processing (CP) approaches can provide the tools needed to control and manipulate reactivities and transform chemical reactions into micro-controlled in-flow processes. Traditional synthetic approaches can be radically transformed by the application of CP, facilitating the pairing of chemical methodologies with technologies from other disciplines. CP supports sustainable processes that controllably generate reaction specificity utilizing supramolecular interactions. Continuous photochemical processing is an emerging field of investigation. The use of light to drive chemical reactivity is not novel, but the controlled use of specific and tunable wavelengths of light to selectively generate molecular structure under continuous processing conditions is an innovative approach towards chemical synthesis. This investigation focuses on the use of circularly polarized (cp) light as a sustainable catalyst for the CP generation of asymmetric molecules. Chiral photolysis has already been achieved under batch, solid-phase conditions: using synchrotron-sourced cp light, asymmetric photolytic selectivities of up to 4.2% enantiomeric excess (e.e.) have been reported. In order to determine the optimal wavelengths to use for irradiation with cp light for any given molecular building block, CD and anisotropy spectra for each building block of interest have been generated in two different solvents (water, hexafluoroisopropanol) across a range of wavelengths (130-400 nm). These spectra are being used to support a series of CP experiments using cp light to generate enantioselectivity.

Keywords: anisotropy, asymmetry, flow chemistry, active pharmaceutical ingredients

Procedia PDF Downloads 158
1258 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 119
1257 Timber Urbanism: Assessing the Carbon Footprint of Mass-Timber, Steel, and Concrete Structural Prototypes for Peri-Urban Densification in the Hudson Valley’s Urban Fringe

Authors: Eleni Stefania Kalapoda

Abstract:

The current fossil-fuel based urbanization pattern and the estimated human population growth are increasing the environmental footprint on our planet’s precious resources. To mitigate the estimated skyrocketing in greenhouse gas emissions associated with the construction of new cities and infrastructure over the next 50 years, we need a radical rethink in our approach to construction to deliver a net zero built environment. This paper assesses the carbon footprint of a mass-timber, a steel, and a concrete structural alternative for peri-urban densification in the Hudson Valley's urban fringe, along with examining the updated policy and the building code adjustments that support synergies between timber construction in city making and sustainable management of timber forests. By quantifying the carbon footprint of a structural prototype for four different material assemblies—a concrete (post-tensioned), a mass timber, a steel (composite), and a hybrid (timber/steel/concrete) assembly applicable to the three updated building typologies of the IBC 2021 (Type IV-A, Type IV-B, Type IV-C) that range between a nine to eighteen-story structure alternative—and scaling-up that structural prototype to the size of a neighborhood district, the paper presents a quantitative and a qualitative approach for a forest-based construction economy as well as a resilient and a more just supply chain framework that ensures the wellbeing of both the forest and its inhabitants.

Keywords: mass-timber innovation, concrete structure, carbon footprint, densification

Procedia PDF Downloads 113
1256 A Convergent Interacting Particle Method for Computing Kpp Front Speeds in Random Flows

Authors: Tan Zhang, Zhongjian Wang, Jack Xin, Zhiwen Zhang

Abstract:

We aim to efficiently compute the spreading speeds of reaction-diffusion-advection (RDA) fronts in divergence-free random flows under the Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity. We study a stochastic interacting particle method (IPM) for the reduced principal eigenvalue (Lyapunov exponent) problem of an associated linear advection-diffusion operator with spatially random coefficients. The Fourier representation of the random advection field and the Feynman-Kac (FK) formula of the principal eigenvalue (Lyapunov exponent) form the foundation of our method implemented as a genetic evolution algorithm. The particles undergo advection-diffusion and mutation/selection through a fitness function originated in the FK semigroup. We analyze the convergence of the algorithm based on operator splitting and present numerical results on representative flows such as 2D cellular flow and 3D Arnold-Beltrami-Childress (ABC) flow under random perturbations. The 2D examples serve as a consistency check with semi-Lagrangian computation. The 3D results demonstrate that IPM, being mesh-free and self-adaptive, is simple to implement and efficient for computing front spreading speeds in the advection-dominated regime for high-dimensional random flows on unbounded domains where no truncation is needed.

Keywords: KPP front speeds, random flows, Feynman-Kac semigroups, interacting particle method, convergence analysis

Procedia PDF Downloads 51
1255 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 146
1254 Modeling and Simulation of Pad Surface Topography by Diamond Dressing in Chemical-Mechanical Polishing Process

Authors: A.Chen Chao-Chang, Phong Pham-Quoc

Abstract:

Chemical-mechanical polishing (CMP) process has been widely applied on fabricating integrated circuits (IC) with a soft polishing pad combined with slurry composed of micron or nano-scaled abrasives for generating chemical reaction to remove substrate or film materials from wafer. During CMP process, pad uniformity usually works as a datum surface of wafer planarization and pad asperities can dominate the microscopic pad-slurry-wafer interaction. However, pad topography can be changed by related mechanism factors of CMP and it needs to be re-conditioned or dressed by a diamond dresser of well-distributed diamond grits on a disc surface. It is still very complicated to analyze and understand kinematic of diamond dressing process under the effects of input variables including oscillatory of diamond dresser and rotation speed ratio between the pad and the diamond dresser. This paper has developed a generic geometric model to clarify the kinematic modeling of diamond dressing processes such as dresser/pad motion, pad cutting locus, the relative velocity of the diamond abrasive grits on pad surface, and overlap of cutting for prediction of pad surface topography. Simulation results focus on comparing and analysis kinematics of the diamond dressing on certain CMP tools. Results have shown the significant parameters for diamond dressing process and also discussed. Future study can apply on diamond dresser design and experimental verification of pad dressing process.

Keywords: kinematic modeling, diamond dresser, pad cutting locus, CMP

Procedia PDF Downloads 259
1253 Thermal and Mechanical Properties of Polycaprolactone-Soy Lecithin Modified Bentonite Nanocomposites

Authors: Danila Merino, Leandro N. Ludueña, Vera A. Alvarez

Abstract:

Clays are commonly used to reinforce polymeric materials. In order to modify them, long-chain quaternary-alkylammonium salts have been widely employed. However, the application of these clays in biological fields is limited by the toxicity and poor biocompatibility presented by these modifiers. Meanwhile, soy lecithin, acts as a natural biosurfactant and environment-friendly biomodifier. In this report, we analyse the effect of content of soy lecithin-modified bentonite on the properties of polycaprolactone (PCL) nanocomposites. Commercial grade PCL (CAPA FB 100) was supplied by Perstorp, with Mw = 100000 g/mol. Minarmco S.A. and Melar S.A supplied bentonite and soy lecithin, respectively. Clays with 18, 30 and 45 wt% of organic content were prepared by exchanging 4 g of Na-Bent with 1, 2 and 4 g of soy lecithin aqueous and acid solution (pH=1, with HCl) at 75ºC for 2 h. Then, they were washed and lyophilized for 72 h. Samples were labeled A, B and C. Nanocomposites with 1 and 2 wt.% of each clay were prepared by melt-intercalation followed by compression-moulding. An intensive Brabender type mixer with two counter-rotating roller rotors was used. Mixing temperature was 100 ºC; speed of rotation was 100 rpm. and mixing time was 10 min. Compression moulding was carried out in a hydraulic press under 75 Kg/mm2 for 10 minutes at 100 ºC. The thickness of the samples was about 1 mm. Thermal and mechanical properties were analysed. PCL nanocomposites with 1 and 2% of B presented the best mechanical properties. It was observed that an excessive organic content produced an increment on the rigidity of PCL, but caused a detrimental effect on the tensile strength and elongation at break of the nanocomposites. Thermogravimetrical analyses suggest that all reinforced samples have higher resistance to degradation than neat PCL.

Keywords: chemical modification, clay, nanocomposite, characterization

Procedia PDF Downloads 203
1252 Growth Model and Properties of a 3D Carbon Aerogel

Authors: J. Marx, D. Smazna, R. Adelung, B. Fiedler

Abstract:

Aerographite is a 3D interconnected carbon foam. Its tetrapodal morphology is based on the zinc oxide (ZnO) template structure, which is replicated in the chemical vapour deposition (CVD) into a hollow carbon structure. This replication process is analyzed in ex-situ studies via interrupted synthesis and the observation of the reaction progress by using scanning electron (SEM), transmission electron microscopy (TEM) and Raman spectroscopy techniques. Based on the epitaxial growth process, with a layer-by-layer growth behaviour of the wall thickness or number of layers and the catalytical graphitization of the deposited amorphous carbon into graphitic carbon by zinc, a growth model is created. The properties of aerographite, such as the electrical conductivity is dependent on the graphitization and number of layer (wall thickness). Wall thicknesses between 3 nm and 22 nm are achieved by a controlled stepwise reduction of the synthesis time on the basis of the developed growth model, and by a further thermal treatment at 1800 °C the graphitization of the presented carbon foam is modified. The variation of the wall thickness leads to an optimum defect density (ID/IG ratio) and the graphitization to an improvement in the electrical conductivity. Furthermore, a metallic conducting behaviour of untreated and 1800 °C treated aerographite can be observed. Due to these structural and defective modifications, a fundamental structural-property equation for the description of their influences on the electrical conductivity is developed.

Keywords: electrical conductivity, electron microscopy (SEM/TEM), graphitization, wall thickness

Procedia PDF Downloads 158
1251 Recognition and Counting Algorithm for Sub-Regional Objects in a Handwritten Image through Image Sets

Authors: Kothuri Sriraman, Mattupalli Komal Teja

Abstract:

In this paper, a novel algorithm is proposed for the recognition of hulls in a hand written images that might be irregular or digit or character shape. Identification of objects and internal objects is quite difficult to extract, when the structure of the image is having bulk of clusters. The estimation results are easily obtained while going through identifying the sub-regional objects by using the SASK algorithm. Focusing mainly to recognize the number of internal objects exist in a given image, so as it is shadow-free and error-free. The hard clustering and density clustering process of obtained image rough set is used to recognize the differentiated internal objects, if any. In order to find out the internal hull regions it involves three steps pre-processing, Boundary Extraction and finally, apply the Hull Detection system. By detecting the sub-regional hulls it can increase the machine learning capability in detection of characters and it can also be extend in order to get the hull recognition even in irregular shape objects like wise black holes in the space exploration with their intensities. Layered hulls are those having the structured layers inside while it is useful in the Military Services and Traffic to identify the number of vehicles or persons. This proposed SASK algorithm is helpful in making of that kind of identifying the regions and can useful in undergo for the decision process (to clear the traffic, to identify the number of persons in the opponent’s in the war).

Keywords: chain code, Hull regions, Hough transform, Hull recognition, Layered Outline Extraction, SASK algorithm

Procedia PDF Downloads 353
1250 Soft Computing Employment to Optimize Safety Stock Levels in Supply Chain Dairy Product under Supply and Demand Uncertainty

Authors: Riyadh Jamegh, Alla Eldin Kassam, Sawsan Sabih

Abstract:

In order to overcome uncertainty conditions and inability to meet customers' requests due to these conditions, organizations tend to reserve a certain safety stock level (SSL). This level must be chosen carefully in order to avoid the increase in holding cost due to excess in SSL or shortage cost due to too low SSL. This paper used soft computing fuzzy logic to identify optimal SSL; this fuzzy model uses the dynamic concept to cope with high complexity environment status. The proposed model can deal with three input variables, i.e., demand stability level, raw material availability level, and on hand inventory level by using dynamic fuzzy logic to obtain the best SSL as an output. In this model, demand stability, raw material, and on hand inventory levels are described linguistically and then treated by inference rules of the fuzzy model to extract the best level of safety stock. The aim of this research is to provide dynamic approach which is used to identify safety stock level, and it can be implanted in different industries. Numerical case study in the dairy industry with Yogurt 200 gm cup product is explained to approve the validity of the proposed model. The obtained results are compared with the current level of safety stock which is calculated by using the traditional approach. The importance of the proposed model has been demonstrated by the significant reduction in safety stock level.

Keywords: inventory optimization, soft computing, safety stock optimization, dairy industries inventory optimization

Procedia PDF Downloads 129
1249 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 294
1248 Comparative Study on Hydrothermal Carbonization as Pre- and Post-treatment of Anaerobic Digestion of Dairy Sludge: Focus on Energy Recovery, Resources Transformation and Hydrochar Utilization

Authors: Mahmood Al Ramahi, G. Keszthelyi-Szabo, S. Beszedes

Abstract:

Hydrothermal carbonization (HTC) is a thermochemical reaction that utilizes saturated water and vapor pressure to convert waste biomass to C-rich products This work evaluated the effect of HTC as a pre- and post-treatment technique to anaerobic digestion (AD) of dairy sludge, as information in this field is still in its infancy, with many research and methodological gaps. HTC effect was evaluated based on energy recovery, nutrients transformation, and sludge biodegradability. The first treatment approach was executed by applying hydrothermal carbonization (HTC) under a range of temperatures, prior to mesophilic anaerobic digestion (AD) of dairy sludge. Results suggested an optimal pretreatment temperature at 210 °C for 30 min. HTC pretreatment increased methane yield and chemical oxygen demand removal. The theoretical model based on Boyle’s equation had a very close match with the experimental results. On the other hand, applying HTC subsequent to AD increased total energy production, as additional energy yield was obtained by the solid fuel (hydrochar) beside the produced biogas. Furthermore, hydrothermal carbonization of AD digestate generated liquid products (HTC digestate) with improved chemical characteristics suggesting their use as liquid fertilizers.

Keywords: hydrothermal carbonization, anaerobic digestion, energy balance, sludge biodegradability, biogas

Procedia PDF Downloads 189
1247 Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red

Authors: Mandeep Kataria, Ritu Narula, Navneet Kaur

Abstract:

Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices.

Keywords: fiber optic biosensor, chitosan, teos, l-asparaginase

Procedia PDF Downloads 292
1246 Degradation of Acetaminophen with Fe3O4 and Fe2+ as Activator of Peroxymonosulfate

Authors: Chaoqun Tan, Naiyun Gao, Xiaoyan Xin

Abstract:

Perxymonosulfate (PMS)-based oxidation processes, as an alternative of hydrogen peroxide-based oxidation processes, are more and more popular because of reactive radical species (SO4-•, OH•) produced in systems. Magnetic nano-scaled particles Fe3O4 and ferrous anion (Fe2+) were studied for the activation of PMS for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for APAP and the reactions well followed a pseudo-first-order kinetics pattern (R2 > 0.95), while the degradation of APAP in PMS-Fe2+ system proceeds through two stages: a fast stage and a much slower stage. Within 5 min, approximately 7% and 18% of 10 ppm APAP was accomplished by 0.2 mM PMS in Fe3O4 (0.8g/L) and Fe2+ (0.1mM) activation process. However, as reaction proceed to 120 min, approximately 75% and 35% of APAP was removed in Fe3O4 activation process and Fe2+ activation process, respectively. Within 120 min, the mineralization of APAP was about 7.5% and 5.0% (initial APAP of 10 ppm and [PMS]0 of 0.2 mM) in Fe3O4-PMS and Fe2+-PMS system, while the mineralization could be greatly increased to about 31% and 40% as [PMS]0 increased to 2.0 mM in in Fe3O4-PMS and Fe2+-PMS system, respectively. At last, the production of reactive radical species were validated directly from Electron Paramagnetic Resonance (ESR) tests with 0.1 M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 and Fe2+ activation of PMS are proposed on the results of radial identification tests. The results demonstrated that Fe3O4 MNPs activated PMS and Fe2+ anion activated PMS systems are promising technologies for water pollution caused by contaminants such as pharmaceutical. Fe3O4-PMS system is more suitable for slowly remediation, while Fe2+-PMS system is more suitable for fast remediation.

Keywords: acetaminophen, peroxymonosulfate, radicals, Fe3O4

Procedia PDF Downloads 262
1245 Near-Infrared Hyperspectral Imaging Spectroscopy to Detect Microplastics and Pieces of Plastic in Almond Flour

Authors: H. Apaza, L. Chévez, H. Loro

Abstract:

Plastic and microplastic pollution in human food chain is a big problem for human health that requires more elaborated techniques that can identify their presences in different kinds of food. Hyperspectral imaging technique is an optical technique than can detect the presence of different elements in an image and can be used to detect plastics and microplastics in a scene. To do this statistical techniques are required that need to be evaluated and compared in order to find the more efficient ones. In this work, two problems related to the presence of plastics are addressed, the first is to detect and identify pieces of plastic immersed in almond seeds, and the second problem is to detect and quantify microplastic in almond flour. To do this we make use of the analysis hyperspectral images taken in the range of 900 to 1700 nm using 4 unmixing techniques of hyperspectral imaging which are: least squares unmixing (LSU), non-negatively constrained least squares unmixing (NCLSU), fully constrained least squares unmixing (FCLSU), and scaled constrained least squares unmixing (SCLSU). NCLSU, FCLSU, SCLSU techniques manage to find the region where the plastic is found and also manage to quantify the amount of microplastic contained in the almond flour. The SCLSU technique estimated a 13.03% abundance of microplastics and 86.97% of almond flour compared to 16.66% of microplastics and 83.33% abundance of almond flour prepared for the experiment. Results show the feasibility of applying near-infrared hyperspectral image analysis for the detection of plastic contaminants in food.

Keywords: food, plastic, microplastic, NIR hyperspectral imaging, unmixing

Procedia PDF Downloads 134
1244 Quorum Quenching Activities of Bacteria Isolated from Red Sea Sediments

Authors: Zahid Rehman, TorOve Leiknes

Abstract:

Quorum sensing (QS) is the process by which bacteria communicate with each other through small signaling molecules, such as N-acylhomoserine lactones (AHLs). Also, certain bacteria have the ability to degrade AHL molecules by a process referred to as quorum quenching (QQ); therefore, QQ can be used to control bacterial infections and biofilm formation. In this study, we aimed to identify new species of bacteria with QQ activities. To achieve this, sediments from Red Sea were collected either in the close vicinity of Sea grass or from area with no vegetation. From these samples, we isolated 72 bacterial strains and tested their ability to degrade/inactivate AHL molecules. Chromobacterium violaceum based bioassay was used in initial screening of isolates for QQ activity. The QQ activity of the positive isolates was further confirmed and quantified by employing liquid chromatography and mass spectrometry. These analyses showed that isolated bacterial strain could degrade AHL molecules with different acyl chain length and modifications. Sequencing of 16S-rRNA genes of positive isolates revealed that they belong to three different genera. Specifically, two isolates belong to genus Erythrobacter, four to Labrenzia and one isolate belongs to Bacterioplanes. Time course experiment showed that isolate belonging to genus Erythrobacter could degrade AHLs faster than other isolates. Furthermore, these isolates were tested for their ability to inhibit formation of biofilm and degradation of 3OXO-C12 AHLs produced by P. aeruginosa PAO1. Our results showed that isolate VG12 is better at controlling biofilm formation. This aligns with the ability of VG12 to cause at least 10-fold reduction in the amount of different AHLs tested.

Keywords: quorum sensing, biofilm, quorum quenching, anti-biofouling

Procedia PDF Downloads 170
1243 Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture

Authors: Rupinder Kaur, Parmjit S. Panesar, Ram S. Singh

Abstract:

Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer.

Keywords: β-galactosidase, fungus, yeast, whey

Procedia PDF Downloads 330
1242 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles

Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia

Abstract:

This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.

Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes

Procedia PDF Downloads 24
1241 Effect of BaO-Bi₂O₃-P₂O₅ Glass Additive on Structural and Dielectric Properties of BaTiO₃ Ceramics

Authors: El Mehdi Haily, Lahcen Bih, Mohammed Azrour, Bouchaib Manoun

Abstract:

The effects of xBi₂O₃-yBaO-zP₂O₅ (BBP) glass addition on the sintering, structural, and dielectric properties of BaTiO₃ ceramic (BT) are studied. The BT ceramic was synthesized by the conventional solid-state reaction method while the glasses BaO-Bi₂O₃-P₂O₅ (BBP) were elaborated by melting and quenching process. Different composites BT-xBBP were formed by mixing the BBP glasses with BT ceramic. For each glass composition, where the ratio (x:y:z) is maintained constant, we have developed three composites with different glass weight percentage (x = 2.5, 5, and 7.5 wt %). Addition of the glass helps in better sintering at lower temperatures with the presence of liquid phase at the respective sintering temperatures. The results showed that the sintering temperature decreased from more than 1300°C to 900°C. Density measurements of the composites are performed using the standard Archimedean method with water as medium liquid. It is found that their density and molar volume decrease and increase with glass content, respectively. Raman spectroscopy is used to characterize their structural approach. This technique has allowed the identification of different structural units of phosphate and the characteristic vibration modes of the BT. The electrical properties of the composite samples are carried out by impedance spectroscopy in the frequency range of 10 Hz to 1 MHz under various temperatures from 300 to 473 K. The obtained results show that their dielectric properties depend both on the content of the glass in the composite and the Bi/P ratio in the glasses.

Keywords: phosphate, glasses, composite, Raman spectroscopy, dielectric properties

Procedia PDF Downloads 167
1240 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 83
1239 Bioremediation of Disposed X-Ray Film for Nanoparticles Production

Authors: Essam A. Makky, Siti H. Mohd Rasdi, J. B. Al-Dabbagh, G. F. Najmuldeen

Abstract:

The synthesis of silver nano particles (SNPs) extensively studied by using chemical and physical methods. Here, the biological methods were used and give benefits in research field in the aspect of very low cost (from waste to wealth) and safe time as well. The study aims to isolate and exploit the microbial power in the production of industrially important by-products in nano-size with high economic value, to extract highly valuable materials from hazardous waste, to quantify nano particle size, and characterization of SNPs by X-Ray Diffraction (XRD) analysis. Disposal X-ray films were used as substrate because it consumes about 1000 tons of total silver chemically produced worldwide annually. This silver is being wasted when these films are used and disposed. Different bacterial isolates were obtained from various sources. Silver was extracted as nano particles by microbial power degradation from disposal X-ray film as the sole carbon source for ten days incubation period in darkness. The protein content was done and all the samples were analyzed using XRD, to characterize of silver (Ag) nano particles size in the form of silver nitrite. Bacterial isolates CL4C showed the average size of SNPs about 19.53 nm, GL7 showed average size about 52.35 nm and JF Outer 2A (PDA) showed 13.52 nm. All bacterial isolates partially identified using Gram’s reaction and the results obtained exhibited that belonging to Bacillus sp.

Keywords: nanotechnology, bioremediation, disposal X-ray film, nanoparticle, waste, XRD

Procedia PDF Downloads 486
1238 Assessing Digestive Enzymes Inhibitory Properties of Anthocyanins and Procyanidins from Apple, Red Grape, Cinnamon

Authors: Pinar Ercan, Sedef N. El

Abstract:

The goals of this study were to determine the total anthocyanin and procyanidin contents and their in vitro bioaccessibilities of apple, red grape and cinnamon by a static in vitro digestion method reported by the COST FA1005 Action INFOGEST, as well as in vitro inhibitory effects of these food samples on starch and lipid digestive enzymes. While the highest total anthocyanin content was found in red grape (164.76 ± 2.51 mg/100 g), the highest procyanidin content was found in cinnamon (6432.54±177.31 mg/100 g) among the selected food samples (p<0.05). The anthocyanin bioaccessibilities were found as 10.23±1 %, 8.23±0.64 %, and 8.73±0.70 % in apple, red grape, and cinnamon, respectively. The procyanidin bioaccessibilities of apple, red grape, and cinnamon were found as 17.57±0.71 %, 14.08±0.74 % and 18.75±1.49 %, respectively. The analyzed apple, red grape and cinnamon showed the inhibitory activity against α-glucosidase (IC50 544.27±21.94, 445.63±15.67, 1592±17.58 μg/mL, respectively), α-amylase (IC50 38.41±7.26, 56.12±3.60, 3.54±0.86 μg/mL, respectively), and lipase (IC50 52.65±2.05, 581.70±54.14, 49.63±2.72 μg/mL, respectively). Red grape sample showed the highest inhibitory activity against α-glucosidase, cinnamon showed the highest inhibitory activity against α-amylase and lipase according to IC50 (concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction) and Catechin equivalent inhibition capacity (CEIC50) values. This study reported that apple, grape and cinnamon samples can inhibit the activity of digestive enzymes in vitro. The consumption of these samples would be used in conjunction with a low-calorie diet for body weight management.

Keywords: anthocyanin, α-amylase, α-glucosidase, lipase, procyanidin

Procedia PDF Downloads 185
1237 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 266
1236 Taking Learning beyond Kirkpatrick’s Levels: Applying Return on Investment Measurement in Training

Authors: Charles L. Sigmund, M. A. Aed, Lissa Graciela Rivera Picado

Abstract:

One critical component of the training development process is the evaluation of the impact and value of the program. Oftentimes, however, learning organizations bypass this phase either because they are unfamiliar with effective methods for measuring the success or effect of the training or because they believe the effort to be too time-consuming or cumbersome. As a result, most organizations that do conduct evaluation limit their scope to Kirkpatrick L1 (reaction) and L2 (learning), or at most carry through to L4 (results). In 2021 Microsoft made a strategic decision to assess the measurable and monetized impact for all training launches and designed a scalable and program-agnostic tool for providing full-scale L5 return on investment (ROI) estimates for each. In producing this measurement tool, the learning and development organization built a framework for making business prioritizations and resource allocations that is based on the projected ROI of a course. The analysis and measurement posed by this process use a combination of training data and operational metrics to calculate the effective net benefit derived from a given training effort. Business experts in the learning field generally consider a 10% ROI to be an outstanding demonstration of the value of a project. Initial findings from this work applied to a critical customer-facing program yielded an estimated ROI of more than 49%. This information directed the organization to make a more concerted and concentrated effort in this specific line of business and resulted in additional investment in the training methods and technologies being used.

Keywords: evaluation, measurement, return on investment, value

Procedia PDF Downloads 187
1235 Geometric Optimization of Catalytic Converter

Authors: P. Makendran, M. Pragadeesh, N. Narash, N. Manikandan, A. Rajasri, V. Sanal Kumar

Abstract:

The growing severity of government-obligatory emissions legislation has required continuous improvement in catalysts performance and the associated reactor systems. IC engines emit a lot of harmful gases into the atmosphere. These gases are toxic in nature and a catalytic converter is used to convert these toxic gases into less harmful gases. The catalytic converter converts these gases by Oxidation and reduction reaction. Stoichiometric engines usually use the three-way catalyst (TWC) for simultaneously destroying all of the emissions. CO and NO react to form CO2 and N2 over one catalyst, and the remaining CO and HC are oxidized in a subsequent one. Literature review reveals that typically precious metals are used as a catalyst. The actual reactor is composed of a washcoated honeycomb-style substrate, with the catalyst being contained in the washcoat. The main disadvantage of a catalytic converter is that it exerts a back pressure to the exhaust gases while entering into them. The objective of this paper is to optimize the back pressure developed by the catalytic converter through geometric optimization of catalystic converter. This can be achieved by designing a catalyst with a optimum cone angle and a more surface area of the catalyst substrate. Additionally, the arrangement of the pores in the catalyst substrate can be changed. The numerical studies have been carried out using k-omega turbulence model with varying inlet angle of the catalytic converter and the length of the catalyst substrate. We observed that the geometry optimization is a meaningful objective for the lucrative design optimization of a catalytic converter for industrial applications.

Keywords: catalytic converter, emission control, reactor systems, substrate for emission control

Procedia PDF Downloads 908
1234 From Sound to Music: The Trajectory of Musical Semiotics in a Selected Soundscape Environment in South-Western Nigeria

Authors: Olatunbosun Samuel Adekogbe

Abstract:

This paper addresses the question of musical signification, revolving around nature and its natural divides; the paper tends to examine the roles of the dispositional apparatus of listeners to react to sounding environments through music as coordinated sound that focuses on the powerful strain between vibrational occurrences of sound and potentials of being structured. This paper sets out to examine music as a simple conventional design that does not allude to something beyond music and sound as a vehicle to communicate through production, perception, translation, and reaction with regard to melodic and semiotic functions of sounds. This paper adopts the application of questionnaire and evolutionary approach methods to probe musical adaptation, reproduction, and natural selection as the basis for explaining specific human behavioural responses to musical sense-making beyond the above-sketched dichotomies, with a major focus on the transition from acoustic-emotional sensibilities to musical meaning in the selected soundscapes. It was observed that music has emancipated itself from the level of mere acoustic processing of sounds to a functional description in terms of allowing music users to share experiences and interact with the soundscaping environment. The paper, therefore, concludes that the audience as music participants and listeners in the selected soundscapes have been conceived as adaptive devices in the paradigm shift, which can build up new semiotic linkages with the sounding environments in southwestern Nigeria.

Keywords: semiotics, sound, music, soundscape, environment

Procedia PDF Downloads 70