Search results for: gravitational search algorithm
2403 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights
Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy
Abstract:
The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems
Procedia PDF Downloads 762402 Multi-Source Data Fusion for Urban Comprehensive Management
Authors: Bolin Hua
Abstract:
In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data
Procedia PDF Downloads 3952401 RAPD Analysis of the Genetic Polymorphism in the Collection of Rye Cultivars
Authors: L. Petrovičová, Ž. Balážová, Z. Gálová, M. Wójcik-Jagła, M. Rapacz
Abstract:
In the present study, RAPD-PCR was used to assess genetic diversity of the rye including landrances and new rye cultivars coming from Central Europe and the Union of Soviet Socialist Republics (SUN). Five arbitrary random primers were used to determine RAPD polymorphism in the set of 38 rye genotypes. These primers amplified altogether 43 different DNA fragments with an average number of 8.6 fragments per genotypes. The number of fragments ranged from 7 (RLZ 8, RLZ 9 and RLZ 10) to 12 (RLZ 6). DI and PIC values of all RAPD markers were higher than 0.8 that generally means high level of polymorphism detected between rye genotypes. The dendrogram based on hierarchical cluster analysis using UPGMA algorithm was prepared. The cultivars were grouped into two main clusters. In this experiment, RAPD proved to be a rapid, reliable and practicable method for revealing of polymorphism in the rye cultivars.Keywords: genetic diversity, polymorphism, RAPD markers, Secale cereale L.
Procedia PDF Downloads 4462400 Optimal Type and Installation Time of Wind Farm in a Power System, Considering Service Providers
Authors: M. H. Abedi, A. Jalilvand
Abstract:
The economic development benefits of wind energy may be the most tangible basis for the local and state officials’ interests. In addition to the direct salaries associated with building and operating wind projects, the wind energy industry provides indirect jobs and benefits. The optimal planning of a wind farm is one most important topic in renewable energy technology. Many methods have been implemented to optimize the cost and output benefit of wind farms, but the contribution of this paper is mentioning different types of service providers and also time of installation of wind turbines during planning horizon years. Genetic algorithm (GA) is used to optimize the problem. It is observed that an appropriate layout of wind farm can cause to minimize the different types of cost.Keywords: renewable energy, wind farm, optimization, planning
Procedia PDF Downloads 5252399 Effects of Reversible Watermarking on Iris Recognition Performance
Authors: Andrew Lock, Alastair Allen
Abstract:
Fragile watermarking has been proposed as a means of adding additional security or functionality to biometric systems, particularly for authentication and tamper detection. In this paper we describe an experimental study on the effect of watermarking iris images with a particular class of fragile algorithm, reversible algorithms, and the ability to correctly perform iris recognition. We investigate two scenarios, matching watermarked images to unmodified images, and matching watermarked images to watermarked images. We show that different watermarking schemes give very different results for a given capacity, highlighting the importance of investigation. At high embedding rates most algorithms cause significant reduction in recognition performance. However, in many cases, for low embedding rates, recognition accuracy is improved by the watermarking process.Keywords: biometrics, iris recognition, reversible watermarking, vision engineering
Procedia PDF Downloads 4592398 LLM-Powered User-Centric Knowledge Graphs for Unified Enterprise Intelligence
Authors: Rajeev Kumar, Harishankar Kumar
Abstract:
Fragmented data silos within enterprises impede the extraction of meaningful insights and hinder efficiency in tasks such as product development, client understanding, and meeting preparation. To address this, we propose a system-agnostic framework that leverages large language models (LLMs) to unify diverse data sources into a cohesive, user-centered knowledge graph. By automating entity extraction, relationship inference, and semantic enrichment, the framework maps interactions, behaviors, and data around the user, enabling intelligent querying and reasoning across various data types, including emails, calendars, chats, documents, and logs. Its domain adaptability supports applications in contextual search, task prioritization, expertise identification, and personalized recommendations, all rooted in user-centric insights. Experimental results demonstrate its effectiveness in generating actionable insights, enhancing workflows such as trip planning, meeting preparation, and daily task management. This work advances the integration of knowledge graphs and LLMs, bridging the gap between fragmented data systems and intelligent, unified enterprise solutions focused on user interactions.Keywords: knowledge graph, entity extraction, relation extraction, LLM, activity graph, enterprise intelligence
Procedia PDF Downloads 112397 Artificial Intelligence Approach to Manage Human Resources Information System Process in the Construction Industry
Authors: Ahmed Emad Ahmed
Abstract:
This paper aims to address the concept of human resources information systems (HRIS) and how to link it to new technologies such as artificial intelligence (AI) to be implemented in two human resources processes. A literature view has been collected to cover the main points related to HRIS, AI, and BC. A study case has been presented by generating a random HRIS to apply some AI operations to it. Then, an algorithm was applied to the database to complete some human resources processes, including training and performance appraisal, using a pre-trained AI model. After that, outputs and results have been presented and discussed briefly. Finally, a conclusion has been introduced to show the ability of new technologies such as AI and ML to be applied to the human resources management processes.Keywords: human resources new technologies, HR artificial intelligence, HRIS AI models, construction AI HRIS
Procedia PDF Downloads 1742396 Review of Current Literature on Use of Prazosin for Treatment of Post-Traumatic Stress Disorder Related Sleep Disturbances in Child and Adolescent Population
Authors: Davit Khachatryan, Shuo Xiang
Abstract:
Numerous published studies on the use of prazosin in the treatment of PTSD-related sleep disturbances in adult population have resulted in updates to the recommendation for prazosin for nightmares that showed its strength of evidence elevated from C to B in the US Department of Veterans Affairs clinical practice guideline. In addition, the American Academy of Sleep Medicine clinical practice guideline gave prazosin a level-A recommendation for the treatment of PTSD-associated nightmares. The aim of this review is to summarize the available literature for prazosin use for nightmares and other sleep disturbances in children and adolescents with PTSD. Method: A comprehensive search for studies on prazosin use for sleep disturbances in child and adolescent population with PTSD has been performed. We looked at MEDLINE, EMBASE, PsycINFO, CINAHL, AMED, Scopus, Web of Science, and Cochrane CENTRAL databases. Results: Compared to adult population with similar psychopathology, the available literature in child and adolescent population is scarce. Despite increased interest in prazosin in the management of PTSD, only six studies investigating this medication in children and adolescents have been published. Conclusion: A large randomized control trial on this topic is needed for more definite evidence on the efficacy and safety of prazosin in the treatment of nightmares in children and adolescents with PTSD.Keywords: guidelines, prazosin, PTSD, sleep disturbance
Procedia PDF Downloads 3912395 Reduction of Speckle Noise in Echocardiographic Images: A Survey
Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida
Abstract:
Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes
Procedia PDF Downloads 5302394 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 7272393 Detection of Hepatitis B by the Use of Artifical Intelegence
Authors: Shizra Waris, Bilal Shoaib, Munib Ahmad
Abstract:
Background; The using of clinical decision support systems (CDSSs) may recover unceasing disease organization, which requires regular visits to multiple health professionals, treatment monitoring, disease control, and patient behavior modification. The objective of this survey is to determine if these CDSSs improve the processes of unceasing care including diagnosis, treatment, and monitoring of diseases. Though artificial intelligence is not a new idea it has been widely documented as a new technology in computer science. Numerous areas such as education business, medical and developed have made use of artificial intelligence Methods: The survey covers articles extracted from relevant databases. It uses search terms related to information technology and viral hepatitis which are published between 2000 and 2016. Results: Overall, 80% of studies asserted the profit provided by information technology (IT); 75% of learning asserted the benefits concerned with medical domain;25% of studies do not clearly define the added benefits due IT. The CDSS current state requires many improvements to hold up the management of liver diseases such as HCV, liver fibrosis, and cirrhosis. Conclusion: We concluded that the planned model gives earlier and more correct calculation of hepatitis B and it works as promising tool for calculating of custom hepatitis B from the clinical laboratory data.Keywords: detection, hapataties, observation, disesese
Procedia PDF Downloads 1582392 A Comparative Study of Series-Connected Two-Motor Drive Fed by a Single Inverter
Authors: A. Djahbar, E. Bounadja, A. Zegaoui, H. Allouache
Abstract:
In this paper, vector control of a series-connected two-machine drive system fed by a single inverter (CSI/VSI) is presented. The two stator windings of both machines are connected in series while the rotors may be connected to different loads, are called series-connected two-machine drive. Appropriate phase transposition is introduced while connecting the series stator winding to obtain decoupled control the two-machines. The dynamic decoupling of each machine from the group is obtained using the vector control algorithm. The independent control is demonstrated by analyzing the characteristics of torque and speed of each machine obtained via simulation under vector control scheme. The viability of the control techniques is proved using analytically and simulation approach.Keywords: drives, inverter, multi-phase induction machine, vector control
Procedia PDF Downloads 4812391 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds
Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain
Abstract:
World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.Keywords: buffalo, FSHR gene, bioinformatics, production
Procedia PDF Downloads 5342390 Safety Validation of Black-Box Autonomous Systems: A Multi-Fidelity Reinforcement Learning Approach
Authors: Jared Beard, Ali Baheri
Abstract:
As autonomous systems become more prominent in society, ensuring their safe application becomes increasingly important. This is clearly demonstrated with autonomous cars traveling through a crowded city or robots traversing a warehouse with heavy equipment. Human environments can be complex, having high dimensional state and action spaces. This gives rise to two problems. One being that analytic solutions may not be possible. The other is that in simulation based approaches, searching the entirety of the problem space could be computationally intractable, ruling out formal methods. To overcome this, approximate solutions may seek to find failures or estimate their likelihood of occurrence. One such approach is adaptive stress testing (AST) which uses reinforcement learning to induce failures in the system. The premise of which is that a learned model can be used to help find new failure scenarios, making better use of simulations. In spite of these failures AST fails to find particularly sparse failures and can be inclined to find similar solutions to those found previously. To help overcome this, multi-fidelity learning can be used to alleviate this overuse of information. That is, information in lower fidelity can simulations can be used to build up samples less expensively, and more effectively cover the solution space to find a broader set of failures. Recent work in multi-fidelity learning has passed information bidirectionally using “knows what it knows” (KWIK) reinforcement learners to minimize the number of samples in high fidelity simulators (thereby reducing computation time and load). The contribution of this work, then, is development of the bidirectional multi-fidelity AST framework. Such an algorithm, uses multi-fidelity KWIK learners in an adversarial context to find failure modes. Thus far, a KWIK learner has been used to train an adversary in a grid world to prevent an agent from reaching its goal; thus demonstrating the utility of KWIK learners in an AST framework. The next step is implementation of the bidirectional multi-fidelity AST framework described. Testing will be conducted in a grid world containing an agent attempting to reach a goal position and adversary tasked with intercepting the agent as demonstrated previously. Fidelities will be modified by adjusting the size of a time-step, with higher-fidelity effectively allowing for more responsive closed loop feedback. Results will compare the single KWIK AST learner with the multi-fidelity algorithm with respect to number of samples, distinct failure modes found, and relative effect of learning after a number of trials.Keywords: multi-fidelity reinforcement learning, multi-fidelity simulation, safety validation, falsification
Procedia PDF Downloads 1592389 A Literature Review of Ergonomics Sitting Studies to Characterize Safe and Unsafe Sitting Behaviors
Authors: Yoonjin Lee, Dongwook Hwang, Juhee Park, Woojin Park
Abstract:
As undesirable sitting posture is known to be a major cause of musculoskeletal disorder of office workers, sitting has attracted attention on occupational health. However, there seems to be no consensus on what are safe and unsafe sitting behaviors. The purpose of this study was to characterize safe and unsafe behaviors based on scientific findings of sitting behavior. Three objectives were as follows; to identify different sitting behaviors measure used in ergonomics studies on safe sitting, for each measure identified, to find available findings or recommendations on safe and unsafe sitting behaviors along with relevant empirical grounds, and to synthesize the findings or recommendations to provide characterizations of safe and unsafe behaviors. A systematic review of electronic databases (Google Scholar, PubMed, Web of Science) was conducted for extensive search of sitting behavior. Key terms included awkward sitting position, sedentary sitting, dynamic sitting, sitting posture, sitting posture, and sitting biomechanics, etc. Each article was systemically abstracted to extract a list of studied sitting behaviors, measures used to study the sitting behavior, and presence of empirical evidence of safety of the sitting behaviors. Finally, characterization of safe and unsafe sitting behavior was conducted based on knowledge with empirical evidence. This characterization is expected to provide useful knowledge for evaluation of sitting behavior and about postures to be measured in development of sensing chair.Keywords: sitting position, sitting biomechanics, sitting behavior, unsafe sitting
Procedia PDF Downloads 3052388 Fast Algorithm to Determine Initial Tsunami Wave Shape at Source
Authors: Alexander P. Vazhenin, Mikhail M. Lavrentiev, Alexey A. Romanenko, Pavel V. Tatarintsev
Abstract:
One of the problems obstructing effective tsunami modelling is the lack of information about initial wave shape at source. The existing methods; geological, sea radars, satellite images, contain an important part of uncertainty. Therefore, direct measurement of tsunami waves obtained at the deep water bottom peruse recorders is also used. In this paper we propose a new method to reconstruct the initial sea surface displacement at tsunami source by the measured signal (marigram) approximation with the help of linear combination of synthetic marigrams from the selected set of unit sources, calculated in advance. This method has demonstrated good precision and very high performance. The mathematical model and results of numerical tests are here described.Keywords: numerical tests, orthogonal decomposition, Tsunami Initial Sea Surface Displacement
Procedia PDF Downloads 4702387 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 2072386 Product Design and Development of Wearable Assistant Device
Authors: Hao-Jun Hong, Jung-Tang Huang
Abstract:
The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience.Keywords: big data, heart failure, motion artifact, sensor fusion, wearable medical device
Procedia PDF Downloads 3532385 Programmed Speech to Text Summarization Using Graph-Based Algorithm
Authors: Hamsini Pulugurtha, P. V. S. L. Jagadamba
Abstract:
Programmed Speech to Text and Text Summarization Using Graph-based Algorithms can be utilized in gatherings to get the short depiction of the gathering for future reference. This gives signature check utilizing Siamese neural organization to confirm the personality of the client and convert the client gave sound record which is in English into English text utilizing the discourse acknowledgment bundle given in python. At times just the outline of the gathering is required, the answer for this text rundown. Thus, the record is then summed up utilizing the regular language preparing approaches, for example, solo extractive text outline calculationsKeywords: Siamese neural network, English speech, English text, natural language processing, unsupervised extractive text summarization
Procedia PDF Downloads 2192384 Rechargable N-Halamine Nanoparticles for Antibacterial and Antifouling Applications
Authors: Michal Natan, Ori Gutman, Shlomo Margel, Ehud Banin
Abstract:
Biofilm formation is a serious problem in medical and industrial settings due to the increased resistance of these communities to killing compared to free-living bacteria. This has prompted the search for agents that can inhibit both bacterial growth and biofilm formation. In this study, N-halamine rechargeable nanoparticles (NPs) were synthesized by co-polymerization of the monomer methacryl amide and the cross-linker monomer N,N-methylene bisacryl amide, and were subsequently loaded with Cl+, using bleach. The chlorinated NPs exhibited remarkable stability to organic reagents. The antibacterial mechanism of the P(MAA-MBAA)-Cl NPs involved generation of reactive oxygen species (ROS) only upon exposure to organic media, but not upon incubation in water, suggesting a specific activation. Moreover, a unique interaction of the P(MAA-MBAA)-Cl NPs with Staphylococcus aureus bacteria but not with human cells was discovered, whereby these microorganisms were all specifically targeted and marked for destruction. Finally, in collaboration with Netafim Ltd. irrigation drippers containing the P(MAA-MBAA)-Cl were incubated in the field and were shown to prevent fouling on them for 5 months as opposed to the control drippers that exhibited substantial fouling. Further, the NPs offer recharging to the surface, thus providing long-lasting protection that does not exist in the products available today. Taken together, the results demonstrate the great potential of implementing the charged NPs in devices and surfaces to prevent bacterial growth.Keywords: bacteria, biofilm, fouling, nanoparticles
Procedia PDF Downloads 1992383 Quantifying Multivariate Spatiotemporal Dynamics of Malaria Risk Using Graph-Based Optimization in Southern Ethiopia
Authors: Yonas Shuke Kitawa
Abstract:
Background: Although malaria incidence has substantially fallen sharply over the past few years, the rate of decline varies by district, time, and malaria type. Despite this turn-down, malaria remains a major public health threat in various districts of Ethiopia. Consequently, the present study is aimed at developing a predictive model that helps to identify the spatio-temporal variation in malaria risk by multiple plasmodium species. Methods: We propose a multivariate spatio-temporal Bayesian model to obtain a more coherent picture of the temporally varying spatial variation in disease risk. The spatial autocorrelation in such a data set is typically modeled by a set of random effects that assign a conditional autoregressive prior distribution. However, the autocorrelation considered in such cases depends on a binary neighborhood matrix specified through the border-sharing rule. Over here, we propose a graph-based optimization algorithm for estimating the neighborhood matrix that merely represents the spatial correlation by exploring the areal units as the vertices of a graph and the neighbor relations as the series of edges. Furthermore, we used aggregated malaria count in southern Ethiopia from August 2013 to May 2019. Results: We recognized that precipitation, temperature, and humidity are positively associated with the malaria threat in the area. On the other hand, enhanced vegetation index, nighttime light (NTL), and distance from coastal areas are negatively associated. Moreover, nonlinear relationships were observed between malaria incidence and precipitation, temperature, and NTL. Additionally, lagged effects of temperature and humidity have a significant effect on malaria risk by either species. More elevated risk of P. falciparum was observed following the rainy season, and unstable transmission of P. vivax was observed in the area. Finally, P. vivax risks are less sensitive to environmental factors than those of P. falciparum. Conclusion: The improved inference was gained by employing the proposed approach in comparison to the commonly used border-sharing rule. Additionally, different covariates are identified, including delayed effects, and elevated risks of either of the cases were observed in districts found in the central and western regions. As malaria transmission operates in a spatially continuous manner, a spatially continuous model should be employed when it is computationally feasible.Keywords: disease mapping, MSTCAR, graph-based optimization algorithm, P. falciparum, P. vivax, waiting matrix
Procedia PDF Downloads 832382 Biologically Inspired Small Infrared Target Detection Using Local Contrast Mechanisms
Authors: Tian Xia, Yuan Yan Tang
Abstract:
In order to obtain higher small target detection accuracy, this paper presents an effective algorithm inspired by the local contrast mechanism. The proposed method can enhance target signal and suppress background clutter simultaneously. In the first stage, a enhanced image is obtained using the proposed Weighted Laplacian of Gaussian. In the second stage, an adaptive threshold is adopted to segment the target. Experimental results on two changeling image sequences show that the proposed method can detect the bright and dark targets simultaneously, and is not sensitive to sea-sky line of the infrared image. So it is fit for IR small infrared target detection.Keywords: small target detection, local contrast, human vision system, Laplacian of Gaussian
Procedia PDF Downloads 4692381 Measuring Engagement Equation in Educational Institutes
Authors: Mahfoodh Saleh Al Sabbagh, Venkoba Rao
Abstract:
There is plenty of research, both in academic and consultancy circles, about the importance and benefits of employee engagement and customer engagement and how it gives organization an opportunity to reduce variability and improve performance. Customer engagement is directly related to the engagement level of the organization's employees. It is therefore important to measure both. This research drawing from the work of Human Sigma by Fleming and Asplund, attempts to assess engagement level of customer and employees - the human systems of business - in an educational setup. Student is important to an educational institute and is a customer to be served efficiently and effectively. Considering student as customer and faculty as employees serving them, in–depth interviews were conducted to analyze the relationship between faculty and student engagement in two leading colleges in Oman, one from private sector and another from public sector. The study relied mainly on secondary data sources to understand the concept of engagement. However, the search of secondary sources was extensive to compensate the limited primary data. The results indicate that high faculty engagement is likely to lead to high student engagement. Engaged students were excited about learning, loved the feeling of they being cared as a person by their faculty and advocated the organization to other. The interaction truly represents an opportunity to build emotional connection to the organization. This study could be of interest to organizations interest in building and maintaining engagement with employees and customers.Keywords: customer engagement, consumer psychology, strategy, educational institutes
Procedia PDF Downloads 4762380 Design of Reconfigurable Fixed-Point LMS Adaptive FIR Filter
Authors: S. Padmapriya, V. Lakshmi Prabha
Abstract:
In this paper, an efficient reconfigurable fixed-point Least Mean Square Adaptive FIR filter is proposed. The proposed architecture has two methods of operation: one is area efficient design and the other is optimized power. Pipelining of the adder blocks and partial product generator are used to achieve low area and reversible logic is used to obtain low power design. Depending upon the input samples and filter coefficients, one of the techniques is chosen. Least-Mean-Square adaptation is performed to update the weights. The architecture is coded using Verilog and synthesized in cadence encounter 0.18μm technology. The synthesized results show that the area reduction ratio of the proposed when compared with conventional technique is about 1.2%.Keywords: adaptive filter, carry select adder, least mean square algorithm, reversible logic
Procedia PDF Downloads 3302379 Feasibility Study of Distributed Lightless Intersection Control with Level 1 Autonomous Vehicles
Authors: Bo Yang, Christopher Monterola
Abstract:
Urban intersection control without the use of the traffic light has the potential to vastly improve the efficiency of the urban traffic flow. For most proposals in the literature, such lightless intersection control depends on the mass market commercialization of highly intelligent autonomous vehicles (AV), which limits the prospects of near future implementation. We present an efficient lightless intersection traffic control scheme that only requires Level 1 AV as defined by NHTSA. The technological barriers of such lightless intersection control are thus very low. Our algorithm can also accommodate a mixture of AVs and conventional vehicles. We also carry out large scale numerical analysis to illustrate the feasibility, safety and robustness, comfort level, and control efficiency of our intersection control scheme.Keywords: intersection control, autonomous vehicles, traffic modelling, intelligent transport system
Procedia PDF Downloads 4592378 A Multiobjective Damping Function for Coordinated Control of Power System Stabilizer and Power Oscillation Damping
Authors: Jose D. Herrera, Mario A. Rios
Abstract:
This paper deals with the coordinated tuning of the Power System Stabilizer (PSS) controller and Power Oscillation Damping (POD) Controller of Flexible AC Transmission System (FACTS) in a multi-machine power systems. The coordinated tuning is based on the critical eigenvalues of the power system and a model reduction technique where the Hankel Singular Value method is applied. Through the linearized system model and the parameter-constrained nonlinear optimization algorithm, it can compute the parameters of both controllers. Moreover, the parameters are optimized simultaneously obtaining the gains of both controllers. Then, the nonlinear simulation to observe the time response of the controller is performed.Keywords: electromechanical oscillations, power system stabilizers, power oscillation damping, hankel singular values
Procedia PDF Downloads 5942377 Hand Motion Trajectory Analysis for Dynamic Hand Gestures Used in Indian Sign Language
Authors: Daleesha M. Viswanathan, Sumam Mary Idicula
Abstract:
Dynamic hand gestures are an intrinsic component in sign language communication. Extracting spatial temporal features of the hand gesture trajectory plays an important role in a dynamic gesture recognition system. Finding a discrete feature descriptor for the motion trajectory based on the orientation feature is the main concern of this paper. Kalman filter algorithm and Hidden Markov Models (HMM) models are incorporated with this recognition system for hand trajectory tracking and for spatial temporal classification, respectively.Keywords: orientation features, discrete feature vector, HMM., Indian sign language
Procedia PDF Downloads 3742376 Geometric Intuition and Formalism in Passing from Indivisibles to Infinitesimals: Pascal and Leibniz
Authors: Remus Titiriga
Abstract:
The paper focuses on Pascal's indivisibles evolving to Leibniz's infinitesimals. It starts with parallel developments by the two savants in Combinatorics (triangular numbers for Pascal and harmonic triangles for Leibniz) and their implication in determining the sum of mathematical series. It follows with a focus on the geometrical contributions of Pascal. He considered the cycloid and other mechanical curves the epitome of geometric comprehensibility in a series of challenging problems he posed to the mathematical world. Pascal provided the solutions in 1658, in a volume published under the pseudonym of Dettonville, using indivisibles and ratios between curved and straight lines. In the third part, the research follows the impact of this volume on Leibniz as the initial impetus for the elaboration of modern calculus as an algorithmic method disjoint of geometrical intuition. Then paper analyses the further steps and proves that Leibniz's developments relate to his philosophical frame (the search for a characteristic Universalis, the consideration of principle of continuity or the rule of sufficient reason) different from Pascal's and impacting mathematical problems and their solutions. At this stage in Leibniz's evolution, the infinitesimals replaced the indivisibles proper. The last part of the paper starts with speculation around "What if?". Could Pascal, if he lived more, accomplish the same feat? The document uses Pascal's reconstructed philosophical frame to formulate a positive answer. It also proposes to teach calculus with indivisibles and infinitesimals mimicking Pascal and Leibniz's achievements.Keywords: indivisibles, infinitesimals, characteristic triangle, the principle of continuity
Procedia PDF Downloads 1312375 Tongue Image Retrieval Based Using Machine Learning
Authors: Ahmad FAROOQ, Xinfeng Zhang, Fahad Sabah, Raheem Sarwar
Abstract:
In Traditional Chinese Medicine, tongue diagnosis is a vital inspection tool (TCM). In this study, we explore the potential of machine learning in tongue diagnosis. It begins with the cataloguing of the various classifications and characteristics of the human tongue. We infer 24 kinds of tongues from the material and coating of the tongue, and we identify 21 attributes of the tongue. The next step is to apply machine learning methods to the tongue dataset. We use the Weka machine learning platform to conduct the experiment for performance analysis. The 457 instances of the tongue dataset are used to test the performance of five different machine learning methods, including SVM, Random Forests, Decision Trees, and Naive Bayes. Based on accuracy and Area under the ROC Curve, the Support Vector Machine algorithm was shown to be the most effective for tongue diagnosis (AUC).Keywords: medical imaging, image retrieval, machine learning, tongue
Procedia PDF Downloads 842374 Compliance with the Health and Safety Standards/Regulations in the South African Mining Industry: A Literature Review
Authors: Livhuwani Muthelo, Tebogo Maria Mothiba, Rambelani Nancy Malema
Abstract:
Background: Despite occupational legislation/standards being in place in the industry, there are many reported health and safety incidents, including both occupational injuries and illnesses in the South African mining industry. Purpose: This systematic literature review aimed to describe and identify the existing gaps in health and safety compliance within the South African mining industry and propose future research areas. Methodology: A systematic literature review was conducted using the key concepts of health and safety, compliance, standards, and mining. A total of 102 papers issued from 1994 to April 2020 were extracted from an online database search, which included a combination of South African and international government OHS legislation documents, policies, standards, reports from the mineral departments and international labour office, qualitative and quantitative journal articles, dissertations, seminars and conference proceedings. Results: The literature review revealed that, though there are laws, regulations, standards to guide the industry on health and safety issues in South Africa, the main challenge is with the compliance with the existing health and safety systems, wherein systems are not being implemented. Conclusion: Gaps between research, policy, and implementation in occupational health practice in the South African mining industry were also identified.Keywords: circumstances, non-compliance, health and safety, standards, mining industry
Procedia PDF Downloads 290